Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,145)

Search Parameters:
Keywords = photovoltaic lighting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3840 KiB  
Article
Evaluation of Incident Light Characteristics for Vehicle-Integrated Photovoltaics Installed on Roofs and Hoods Across All Types of Vehicles: A Case Study of Commercial Passenger Vehicles
by Shota Matsushita, Kenji Araki, Yasuyuki Ota and Kensuke Nishioka
Appl. Sci. 2025, 15(15), 8702; https://doi.org/10.3390/app15158702 - 6 Aug 2025
Abstract
The output of vehicle-integrated photovoltaics (VIPVs) varies due to complex surface interactions, shading, weather conditions, module temperature, and module configuration, making accurate predictions of power generation challenging. This study examines the characteristics of incident light on VIPVs, focusing on installations on automobile roofs [...] Read more.
The output of vehicle-integrated photovoltaics (VIPVs) varies due to complex surface interactions, shading, weather conditions, module temperature, and module configuration, making accurate predictions of power generation challenging. This study examines the characteristics of incident light on VIPVs, focusing on installations on automobile roofs and hoods. Surface element data were collected from areas near the target locations (hood and roof), with shading effects taken into account. The calculations evaluated how the angle of incoming light impacts the intensity on specific parts of the vehicle, identifying which surfaces are most likely to receive maximum illumination. For example, the hood exhibited the highest incident light intensity when sunlight approached directly from the front at a solar altitude of 71°, reaching approximately 98% of the light intensity. These calculations enable the assessment of incident light intensity characteristics for various vehicle parts, including the hood and roof. Additionally, by utilizing database information, it is possible to calculate the incident light on vehicle surfaces at any given time and location. Full article
(This article belongs to the Special Issue New Insights into Solar Cells and Their Applications)
Show Figures

Figure 1

31 pages, 6551 KiB  
Article
Optimization Study of the Electrical Microgrid for a Hybrid PV–Wind–Diesel–Storage System in an Island Environment
by Fahad Maoulida, Kassim Mohamed Aboudou, Rabah Djedjig and Mohammed El Ganaoui
Solar 2025, 5(3), 39; https://doi.org/10.3390/solar5030039 - 4 Aug 2025
Viewed by 311
Abstract
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity [...] Read more.
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity to a rural village in Grande Comore. The proposed system integrates photovoltaic (PV) panels, wind turbines, a diesel generator, and battery storage. Detailed modeling and simulation were conducted using HOMER Energy, accompanied by a sensitivity analysis on solar irradiance, wind speed, and diesel price. The results indicate that the optimal configuration consists solely of PV and battery storage, meeting 100% of the annual electricity demand with a competitive levelized cost of energy (LCOE) of 0.563 USD/kWh and zero greenhouse gas emissions. Solar PV contributes over 99% of the total energy production, while wind and diesel components remain unused under optimal conditions. Furthermore, the system generates a substantial energy surplus of 63.7%, which could be leveraged for community applications such as water pumping, public lighting, or future system expansion. This study highlights the technical viability, economic competitiveness, and environmental sustainability of 100% solar microgrids for non-interconnected island territories. The approach provides a practical and replicable decision-support framework for decentralized energy planning in remote and vulnerable regions. Full article
Show Figures

Figure 1

17 pages, 1738 KiB  
Article
Evaluation of Optimal Visible Wavelengths for Free-Space Optical Communications
by Modar Dayoub and Hussein Taha
Telecom 2025, 6(3), 57; https://doi.org/10.3390/telecom6030057 - 4 Aug 2025
Viewed by 54
Abstract
Free-space optical (FSO) communications have emerged as a promising complement to conventional radio-frequency (RF) systems due to their high bandwidth, low interference, and license-free spectrum. Visible-light FSO communication, using laser diodes or LEDs, offers potential for short-range data links, but performance is highly [...] Read more.
Free-space optical (FSO) communications have emerged as a promising complement to conventional radio-frequency (RF) systems due to their high bandwidth, low interference, and license-free spectrum. Visible-light FSO communication, using laser diodes or LEDs, offers potential for short-range data links, but performance is highly wavelength-dependent under varying atmospheric conditions. This study presents an experimental evaluation of three visible laser diodes at 650 nm (red), 532 nm (green), and 405 nm (violet), focusing on their optical output power, quantum efficiency, and modulation behavior across a range of driving currents and frequencies. A custom laboratory testbed was developed using an Atmega328p microcontroller and a Visual Basic control interface, allowing precise control of current and modulation frequency. A silicon photovoltaic cell was employed as the optical receiver and energy harvester. The results demonstrate that the 650 nm red laser consistently delivers the highest quantum efficiency and optical output, with stable performance across electrical and modulation parameters. These findings support the selection of 650 nm as the most energy-efficient and versatile wavelength for short-range, cost-effective visible-light FSO communication. This work provides experimentally grounded insights to guide wavelength selection in the development of energy-efficient optical wireless systems. Full article
(This article belongs to the Special Issue Optical Communication and Networking)
Show Figures

Figure 1

11 pages, 929 KiB  
Article
Dye-Sensitized Solar Cells Application of TiO2 Using Spirulina and Chlorella Algae Extract
by Maria Vitória França Corrêa, Gideã Taques Tractz, Guilherme Arielo Rodrigues Maia, Hagata Emmanuely Slusarski Fonseca, Larissa Oliveira Berbel, Lucas José de Almeida and Everson do Prado Banczek
Colorants 2025, 4(3), 25; https://doi.org/10.3390/colorants4030025 - 4 Aug 2025
Viewed by 122
Abstract
The present study investigates dye-sensitized solar cells (DSSCs) incorporating natural extracts from the microalgae Spirulina and Chlorella as photosensitizers. TiO2-based electrodes were prepared and immersed in methanolic algae extracts for 24 and 48 h. UV–Vis spectroscopy revealed absorption peaks near 400 [...] Read more.
The present study investigates dye-sensitized solar cells (DSSCs) incorporating natural extracts from the microalgae Spirulina and Chlorella as photosensitizers. TiO2-based electrodes were prepared and immersed in methanolic algae extracts for 24 and 48 h. UV–Vis spectroscopy revealed absorption peaks near 400 nm and 650 nm, characteristic of chlorophyll. Electrochemical analyses, including photochronoamperometry and open-circuit potential, confirmed the photosensitivity and charge transfer capabilities of all systems. The cell sensitized with Chlorella after 48 h of immersion exhibited the highest energy conversion efficiency (0.0184% ± 0.0015), while Spirulina achieved 0.0105% ± 0.0349 after 24 h. Chlorella’s superior performance is attributed to its higher chlorophyll content and enhanced light absorption, facilitating more efficient electron injection and interaction with the TiO2 surface. Although the efficiency remains lower than that of conventional silicon-based solar cells, the results highlight the potential of natural colorants as sustainable and low-cost alternatives for photovoltaic applications. Nonetheless, further, improvements are required, particularly in dye stability and anchorage, to improve device performance. This research reinforces the viability of natural photosensitizers in DSSC technology and supports continued efforts to optimize their application. Full article
Show Figures

Figure 1

12 pages, 1167 KiB  
Article
Experimental Studies on Partial Energy Harvesting by Novel Solar Cages, Microworlds, to Explore Sustainability
by Mohammad A. Khan, Brian Maricle, Zachary D. Franzel, Gabe Gransden and Matthew Vannette
Solar 2025, 5(3), 36; https://doi.org/10.3390/solar5030036 - 1 Aug 2025
Viewed by 175
Abstract
Sources of renewable energy have attracted considerable attention. Their expanded use will have a substantial impact on both the cost of energy production and climate change. Solar energy is one efficient and safe option; however, solar energy harvesting sites, irrespective of the location, [...] Read more.
Sources of renewable energy have attracted considerable attention. Their expanded use will have a substantial impact on both the cost of energy production and climate change. Solar energy is one efficient and safe option; however, solar energy harvesting sites, irrespective of the location, can impact the ecosystem. This experimental study explores the energy available inside and outside of novel miniature energy harvesting cages by measuring light intensity and power generated. Varying light intensity outside the cage has been utilized to study the remaining energy inside the cage of a flexible design, where the heights of the harvesting panels are parameters. Cages are built from custom photovoltaic panels arranged in a staircase manner to provide access to growing plants. The balance between power generation and biological development is investigated. Two different structures are presented to explore the variation of illumination intensity inside the cages. The experimental results show a substantial reduction in energy inside the cages. The experimental results showed up to 24% reduction in illumination inside the cages in winter. The reduction is even larger in summer, up to 57%. The results from the models provide a framework to study the possible impact on a biological system residing inside the cages, paving the way for practical farming with sustainable energy harvesting. Full article
Show Figures

Figure 1

33 pages, 4366 KiB  
Review
Progress and Prospects of Biomolecular Materials in Solar Photovoltaic Applications
by Anna Fricano, Filippo Tavormina, Bruno Pignataro, Valeria Vetri and Vittorio Ferrara
Molecules 2025, 30(15), 3236; https://doi.org/10.3390/molecules30153236 - 1 Aug 2025
Viewed by 263
Abstract
This Review examines up-to-date advancements in the integration of biomolecules and solar energy technologies, with a particular focus on biohybrid photovoltaic systems. Biomolecules have recently garnered increasing interest as functional components in a wide range of solar cell architectures, since they offer a [...] Read more.
This Review examines up-to-date advancements in the integration of biomolecules and solar energy technologies, with a particular focus on biohybrid photovoltaic systems. Biomolecules have recently garnered increasing interest as functional components in a wide range of solar cell architectures, since they offer a huge variety of structural, optical, and electronic properties, useful to fulfill multiple roles within photovoltaic devices. These roles span from acting as light-harvesting sensitizers and charge transport mediators to serving as micro- and nanoscale structural scaffolds, rheological modifiers, and interfacial stabilizers. In this Review, a comprehensive overview of the state of the art about the integration of biomolecules across the various generations of photovoltaics is provided. The functional roles of pigments, DNA, proteins, and polysaccharides are critically reported improvements and limits associated with the use of biological molecules in optoelectronics. The molecular mechanisms underlying the interaction between biomolecules and semiconductors are also discussed as essential for a functional integration of biomolecules in solar cells. Finally, this Review shows the current state of the art, and the most significant results achieved in the use of biomolecules in solar cells, with the main scope of outlining some guidelines for future further developments in the field of biohybrid photovoltaics. Full article
(This article belongs to the Special Issue Thermal and Photocatalytic Analysis of Nanomaterials: 2nd Edition)
Show Figures

Figure 1

39 pages, 9517 KiB  
Article
Multidimensional Evaluation Framework and Classification Strategy for Low-Carbon Technologies in Office Buildings
by Hongjiang Liu, Yuan Song, Yawei Du, Tao Feng and Zhihou Yang
Buildings 2025, 15(15), 2689; https://doi.org/10.3390/buildings15152689 - 30 Jul 2025
Viewed by 179
Abstract
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% [...] Read more.
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% of building energy consumption. However, a systematic and regionally adaptive low-carbon technology evaluation framework is lacking. To address this gap, this study develops a multidimensional decision-making system to quantify and rank low-carbon technologies for office buildings in Beijing. The method includes four core components: (1) establishing three archetypal models—low-rise (H ≤ 24 m), mid-rise (24 m < H ≤ 50 m), and high-rise (50 m < H ≤ 100 m) office buildings—based on 99 office buildings in Beijing; (2) classifying 19 key technologies into three clusters—Envelope Structure Optimization, Equipment Efficiency Enhancement, and Renewable Energy Utilization—using bibliometric analysis and policy norm screening; (3) developing a four-dimensional evaluation framework encompassing Carbon Reduction Degree (CRD), Economic Viability Degree (EVD), Technical Applicability Degree (TAD), and Carbon Intensity Degree (CID); and (4) conducting a comprehensive quantitative evaluation using the AHP-entropy-TOPSIS algorithm. The results indicate distinct priority patterns across the building types: low-rise buildings prioritize roof-mounted photovoltaic (PV) systems, LED lighting, and thermal-break aluminum frames with low-E double-glazed laminated glass. Mid- and high-rise buildings emphasize integrated PV-LED-T8 lighting solutions and optimized building envelope structures. Ranking analysis further highlights LED lighting, T8 high-efficiency fluorescent lamps, and rooftop PV systems as the top-recommended technologies for Beijing. Additionally, four policy recommendations are proposed to facilitate the large-scale implementation of the program. This study presents a holistic technical integration strategy that simultaneously enhances the technological performance, economic viability, and carbon reduction outcomes of architectural design and renovation. It also establishes a replicable decision-support framework for decarbonizing office and public buildings in cities, thereby supporting China’s “dual carbon” goals and contributing to global carbon mitigation efforts in the building sector. Full article
Show Figures

Figure 1

23 pages, 5813 KiB  
Article
Integrated Lighting and Solar Shading Strategies for Energy Efficiency, Daylighting and User Comfort in a Library Design Proposal
by Egemen Kaymaz and Banu Manav
Buildings 2025, 15(15), 2669; https://doi.org/10.3390/buildings15152669 - 28 Jul 2025
Viewed by 197
Abstract
This research proposes an integrated lighting and solar shading strategy to improve energy efficiency and user comfort in a retrofit project in a temperate-humid climate. The study examines a future library addition to an existing faculty building in Bursa, featuring highly glazed façades [...] Read more.
This research proposes an integrated lighting and solar shading strategy to improve energy efficiency and user comfort in a retrofit project in a temperate-humid climate. The study examines a future library addition to an existing faculty building in Bursa, featuring highly glazed façades (77% southwest, 81% northeast window-to-wall ratio), an open-plan layout, and situated within an unobstructed low-rise campus environment. Trade-offs between daylight availability, heating, cooling, lighting energy use, and visual and thermal comfort are evaluated through integrated lighting (DIALux Evo), climate-based daylight (CBDM), and energy simulations (DesignBuilder, EnergyPlus, Radiance). Fifteen solar shading configurations—including brise soleil, overhangs, side fins, egg crates, and louvres—are evaluated alongside a daylight-responsive LED lighting system that meets BS EN 12464-1:2021. Compared to the reference case’s unshaded glazing, optimal design significantly improves building performance: a brise soleil with 0.4 m slats at 30° reduces annual primary energy use by 28.3% and operational carbon emissions by 29.1% and maintains thermal comfort per ASHRAE 55:2023 Category II (±0.7 PMV; PPD < 15%). Daylight performance achieves 91.5% UDI and 2.1% aSE, with integrated photovoltaics offsetting 129.7 kWh/m2 of grid energy. This integrated strategy elevates the building’s energy class under national benchmarks while addressing glare and overheating in the original design. Full article
(This article belongs to the Special Issue Lighting in Buildings—2nd Edition)
Show Figures

Figure 1

12 pages, 309 KiB  
Article
Theoretical Study of the Impact of Al, Ga and In Doping on Magnetization, Polarization, and Band Gap Energy of CuFeO2
by A. T. Apostolov, I. N. Apostolova and J. M. Wesselinowa
Appl. Sci. 2025, 15(14), 8097; https://doi.org/10.3390/app15148097 - 21 Jul 2025
Viewed by 244
Abstract
We have conducted a first-time investigation into the multiferroic properties and band gap behavior of CuFeO2 doped with Al, Ga, and In ions at the Fe site, employing a microscopic model and Green’s function formalism. The tunability of the band gap across [...] Read more.
We have conducted a first-time investigation into the multiferroic properties and band gap behavior of CuFeO2 doped with Al, Ga, and In ions at the Fe site, employing a microscopic model and Green’s function formalism. The tunability of the band gap across a broad energy spectrum highlights the potential of perovskite materials for advanced applications, including photovoltaics, photodetectors, lasers, light-emitting diodes, and high-energy particle sensors. The disparity in ionic radii between the dopant and host ions introduces local lattice distortions, leading to modifications in the exchange interaction parameters. As a result, the influence of ion doping on various properties of CuFeO2 has been elucidated at microscopic level. Our findings indicate that Al doping enhances magnetization and reduces the band gap energy. In contrast, doping with Ga or In results in a decrease in magnetization and an increase in band gap energy. Additionally, it is demonstrated that ferroelectric polarization can be induced either via external magnetic fields or by Al substitution at the Fe site. The theoretical results show good qualitative agreement with experimental data, confirming the validity of the proposed model and method. Full article
Show Figures

Figure 1

19 pages, 3080 KiB  
Article
A Case Study-Based Framework Integrating Simulation, Policy, and Technology for nZEB Retrofits in Taiwan’s Office Buildings
by Ruey-Lung Hwang and Hung-Chi Chiu
Energies 2025, 18(14), 3854; https://doi.org/10.3390/en18143854 - 20 Jul 2025
Viewed by 334
Abstract
Nearly zero-energy buildings (nZEBs) are central to global carbon reduction strategies, and Taiwan is actively promoting their adoption through building energy performance labeling, particularly in the retrofit of existing buildings. Under Taiwan’s nZEB framework, qualification requires both an A+ energy performance label [...] Read more.
Nearly zero-energy buildings (nZEBs) are central to global carbon reduction strategies, and Taiwan is actively promoting their adoption through building energy performance labeling, particularly in the retrofit of existing buildings. Under Taiwan’s nZEB framework, qualification requires both an A+ energy performance label and over 50% energy savings from retrofit technologies. This study proposes an integrated assessment framework for retrofitting small- to medium-sized office buildings into nZEBs, incorporating diagnostics, technical evaluation, policy alignment, and resource integration. A case study of a bank branch in Kaohsiung involved on-site energy monitoring and EnergyPlus V22.2 simulations to calibrate and assess the retrofit impacts. Lighting improvements and two HVAC scenarios—upgrading the existing fan coil unit (FCU) system and adopting a completely new variable refrigerant flow (VRF) system—were evaluated. The FCU and VRF scenarios reduced the energy use intensity from 141.3 to 82.9 and 72.9 kWh/m2·yr, respectively. Combined with rooftop photovoltaics and green power procurement, both scenarios met Taiwan’s nZEB criteria. The proposed framework demonstrates practical and scalable strategies for decarbonizing existing office buildings, supporting Taiwan’s 2050 net-zero target. Full article
Show Figures

Figure 1

16 pages, 2975 KiB  
Article
Control Strategy of Distributed Photovoltaic Storage Charging Pile Under Weak Grid
by Yan Zhang, Shuangting Xu, Yan Lin, Xiaoling Fang, Yang Wang and Jiaqi Duan
Processes 2025, 13(7), 2299; https://doi.org/10.3390/pr13072299 - 19 Jul 2025
Viewed by 312
Abstract
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance [...] Read more.
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance in the system under weak grid conditions. Firstly, the topology of a photovoltaic storage charging pile is introduced, including a bidirectional DC/DC converter, unidirectional DC/DC converter, and single-phase grid-connected inverter. Then, the maximum power tracking control strategy based on improved conductance micro-increment is derived for a photovoltaic power generation system, and a constant voltage and constant current charge–discharge control strategy is derived for energy storage equipment. Additionally, a segmented reflective charging control strategy is introduced for charging piles, and the quasi-PR controller is introduced for single-phase grid-connected inverters. In addition, an improved second-order general integrator phase-locked loop (SOGI-PLL) based on feed-forward of the grid current is derived. Finally, a simulation model is built to verify the performance of the solar–storage charging pile and lay the technical groundwork for future integrated control strategies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

27 pages, 4005 KiB  
Article
Quantum-Enhanced Predictive Degradation Pathway Optimization for PV Storage Systems: A Hybrid Quantum–Classical Approach for Maximizing Longevity and Efficiency
by Dawei Wang, Shuang Zeng, Liyong Wang, Baoqun Zhang, Cheng Gong, Zhengguo Piao and Fuming Zheng
Energies 2025, 18(14), 3708; https://doi.org/10.3390/en18143708 - 14 Jul 2025
Viewed by 264
Abstract
The increasing deployment of photovoltaic and energy storage systems (ESSs) in modern power grids has highlighted the critical challenge of component degradation, which significantly impacts system efficiency, operational costs, and long-term reliability. Conventional energy dispatch and optimization approaches fail to adequately mitigate the [...] Read more.
The increasing deployment of photovoltaic and energy storage systems (ESSs) in modern power grids has highlighted the critical challenge of component degradation, which significantly impacts system efficiency, operational costs, and long-term reliability. Conventional energy dispatch and optimization approaches fail to adequately mitigate the progressive efficiency loss in PV modules and battery storage, leading to suboptimal performance and reduced system longevity. To address these challenges, this paper proposes a quantum-enhanced degradation pathway optimization framework that dynamically adjusts operational strategies to extend the lifespan of PV storage systems while maintaining high efficiency. By leveraging quantum-assisted Monte Carlo simulations and hybrid quantum–classical optimization, the proposed model evaluates degradation pathways in real time and proactively optimizes energy dispatch to minimize efficiency losses due to aging effects. The framework integrates a quantum-inspired predictive maintenance algorithm, which utilizes probabilistic modeling to forecast degradation states and dynamically adjust charge–discharge cycles in storage systems. Unlike conventional optimization methods, which struggle with the complexity and stochastic nature of degradation mechanisms, the proposed approach capitalizes on quantum parallelism to assess multiple degradation scenarios simultaneously, significantly enhancing computational efficiency. A three-layer hierarchical optimization structure is introduced, ensuring real-time degradation risk assessment, periodic dispatch optimization, and long-term predictive adjustments based on PV and battery aging trends. The framework is tested on a 5 MW PV array coupled with a 2.5 MWh lithium-ion battery system, with real-world degradation models applied to reflect light-induced PV degradation (0.7% annual efficiency loss) and battery state-of-health deterioration (1.2% per 100 cycles). A hybrid quantum–classical computing environment, utilizing D-Wave’s Advantage quantum annealer alongside a classical reinforcement learning-based optimization engine, enables large-scale scenario evaluation and real-time operational adjustments. The simulation results demonstrate that the quantum-enhanced degradation optimization framework significantly reduces efficiency losses, extending the PV module’s lifespan by approximately 2.5 years and reducing battery-degradation-induced wear by 25% compared to conventional methods. The quantum-assisted predictive maintenance model ensures optimal dispatch strategies that balance energy demand with system longevity, preventing excessive degradation while maintaining grid reliability. The findings establish a novel paradigm in degradation-aware energy optimization, showcasing the potential of quantum computing in enhancing the sustainability and resilience of PV storage systems. This research paves the way for the broader integration of quantum-based decision-making in renewable energy infrastructure, enabling scalable, high-performance optimization for future energy systems. Full article
Show Figures

Figure 1

24 pages, 3361 KiB  
Article
Numerical Analysis of Bifacial Photovoltaic Systems Under Different Snow Climatic Conditions
by Furkan Dincer and Emre Ozer
Sustainability 2025, 17(14), 6350; https://doi.org/10.3390/su17146350 - 11 Jul 2025
Viewed by 381
Abstract
The reflective property (albedo) of the ground plays an important role in the performance of bifacial photovoltaic modules. Snow, as a natural light-colored surface, reflects most of the light that falls on it. However, snow does not have a fixed albedo value. Therefore, [...] Read more.
The reflective property (albedo) of the ground plays an important role in the performance of bifacial photovoltaic modules. Snow, as a natural light-colored surface, reflects most of the light that falls on it. However, snow does not have a fixed albedo value. Therefore, it is essential to investigate the high albedo provided by snow in bifacial panels, which are becoming increasingly common. The albedo value of snow is influenced by numerous factors, including the precipitation characteristics of the snow, its depth, and the time since the previous snowfall. This study aims to investigate the impact of snow cover and the number of days with snow cover on the energy production of bifacial panels. An innovative dynamic albedo model integrating the snow type, depth, and duration was developed to advance bifacial PV system performance analysis under various snow and climate scenarios. PVsyst simulations were conducted to analyze the annual energy yield of bifacial photovoltaic panels in Erzurum Province under various snow conditions and accumulation levels. Furthermore, the variation in the number of days with snow cover according to different climatic regions and its effect on the energy production were evaluated for seven different provinces located in seven different regions of Turkey. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

11 pages, 1733 KiB  
Article
PV Panels Fault Detection Video Method Based on Mini-Patterns
by Codrin Donciu, Marinel Costel Temneanu and Elena Serea
AppliedMath 2025, 5(3), 89; https://doi.org/10.3390/appliedmath5030089 - 10 Jul 2025
Viewed by 240
Abstract
The development of solar technologies and the widespread adoption of photovoltaic (PV) panels have significantly transformed the global energy landscape. PV panels have evolved from niche applications to become a primary source of electricity generation, driven by their environmental benefits and declining costs. [...] Read more.
The development of solar technologies and the widespread adoption of photovoltaic (PV) panels have significantly transformed the global energy landscape. PV panels have evolved from niche applications to become a primary source of electricity generation, driven by their environmental benefits and declining costs. However, the performance and operational lifespan of PV systems are often compromised by various faults, which can lead to efficiency losses and increased maintenance costs. Consequently, effective and timely fault detection methods have become a critical focus of current research in the field. This work proposes an innovative video-based method for the dimensional evaluation and detection of malfunctions in solar panels, utilizing processing techniques applied to aerial images captured by unmanned aerial vehicles (drones). The method is based on a novel mini-pattern matching algorithm designed to identify specific defect features despite challenging environmental conditions such as strong gradients of non-uniform lighting, partial shading effects, or the presence of accidental deposits that obscure panel surfaces. The proposed approach aims to enhance the accuracy and reliability of fault detection, enabling more efficient monitoring and maintenance of PV installations. Full article
Show Figures

Figure 1

16 pages, 2478 KiB  
Article
On the Influence of PV Cell and Diode Configurations on the Performance of a CPVT Collector: A Comparative Analysis
by João Gomes, Juan Pablo Santana, Damu Murali, George Pius and Iván P. Acosta-Pazmiño
Energies 2025, 18(13), 3479; https://doi.org/10.3390/en18133479 - 1 Jul 2025
Viewed by 317
Abstract
Concentrating photovoltaic-thermal (CPVT) collectors use reflective surfaces to focus sunlight onto a smaller receiver area, increasing thermal energy output while maintaining annual energy efficiency. Ray-tracing simulations are employed in this study using Tonatiuh to optimise the characteristics of the Double MaReCo (DM) collector, [...] Read more.
Concentrating photovoltaic-thermal (CPVT) collectors use reflective surfaces to focus sunlight onto a smaller receiver area, increasing thermal energy output while maintaining annual energy efficiency. Ray-tracing simulations are employed in this study using Tonatiuh to optimise the characteristics of the Double MaReCo (DM) collector, which is an improved version of the commercially available Solarus Power Collector (PC). Focused on enhancing electrical performance, the photovoltaic (PV) cell configurations are varied on the bottom side of the receiver, while the top-side PV cells remain constant. The study also analyses the influence of diodes and transparent gables on the annual solar irradiance received by the PV cells. From the analysis, it is observed that the specific annual irradiance received by the PV cells in the DM collector with transparent gables is nearly 64% more compared to that of the PC counterpart. It is also observed that the transparency of gables becomes significant only when the whole area of the receiver is covered by PV cells. With the goal of improving performance while lowering the cost and complexity of the DM collector, the study investigates various collector design characteristics that may shed more light on optimising the current model. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

Back to TopTop