PV Panels Fault Detection Video Method Based on Mini-Patterns
Abstract
1. Introduction
2. Methods
- The number of defective points;
- Their individual and cumulative surface area;
- Their spatial distribution across the panel surface;
- Their possible causes through technical correlations.
- Visible spectrum processing. I(x,y) is the image captured by a drone-mounted camera. The reference panel is represented by a set of n mini-patterns extracted from a reference panel template. The image processing sequence proceeds as follows:
- 1.1.
- Feature matching: Each mini-pattern Pi is searched in the input image I using the similarity index (cross-correlation). Matching scores are computed as:Si = sim (Pi, I)
- 1.2.
- Panel boundary reconstruction: If at least k valid mini-patterns are identified (k < n), the algorithm reconstructs the panel geometry by estimating the transformation T (via homography) that maps the panel model coordinates (xp, yp) onto the image coordinates (xi, yi):
- 1.3.
- Metric calibration: If Ldim is the known length of the panel (usually 1650 mm) and the panel’s length in pixels Lpix is determined from the transformation T, the image scale factor α is calculated as:
- 2.
- Infrared spectrum processing. Let IIR(x,y) denote the infrared image aligned with I. The panel area, as determined from visible spectrum processing, is mapped onto the IR domain using the transformation T. Within this region, the following are computed:
- 2.1.
- Thermal segmentation: A thermal gradient map is constructed as:
- 2.2.
- Dimensional measurement: For each segmented hot spot, its pixel dimensions (width wpix and height hpix) are extracted. Using the scale factor α, obtained during visible-spectrum calibration, the surface area of the detected hot spots is determined in metric units as:A = (wpix × hpix) × α2
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zapata, S.; Uriona-Maldonado, M.; Herrera, M.M. The Role of Renewable Energy Policy and R&D in Renewables Diffusion. Electricity 2024, 5, 526–545. [Google Scholar] [CrossRef]
- Vodapally, S.N.; Ali, M.H. A Comprehensive Review of Solar Photovoltaic (PV) Technologies, Architecture, and Its Applications to Improved Efficiency. Energies 2023, 16, 319. [Google Scholar] [CrossRef]
- Hadar, I.; Song, T.-B.; Ke, W.; Kanatzidis, M.G. Modern Processing and Insights on Selenium Solar Cells: The World’s First Photovoltaic Device. Adv. Energy Mater. 2019, 9, 1802766. [Google Scholar] [CrossRef]
- Kumar, K.; Finnegan, H.; Farabow, G.; Dunner, L.L.P. A History of the Solar Cell, in Patents; Finnegan, Henderson, Farabow, Garrett & Dunner LLP: Washington, DC, USA, 2020; Volume 901. [Google Scholar]
- Goodnick, S.M.; Honsberg, C. Solar Cells. In Springer Handbook of Semiconductor Devices; Jain, F.C., Ed.; Springer: Cham, Switzerland, 2022; pp. 699–745. [Google Scholar]
- Hepp, A.F.; Raffaelle, R.P. Photovoltaics Overview: Historical Background and Current Technologies. In Photovoltaics Beyond Silicon; Hepp, A.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 3–74. [Google Scholar]
- Li, J.; Aierken, A.; Liu, Y.; Zhuang, Y.; Yang, X.; Mo, J.H.; Zhang, Q. A Brief Review of High Efficiency III-V Solar Cells for Space Application. Front. Phys. 2021, 8, 631925. [Google Scholar] [CrossRef]
- VanSant, K.T.; Tamboli, A.C.; Warren, E.L. III-V-on-Si Tandem Solar Cells. Joule 2021, 5, 514–518. [Google Scholar] [CrossRef]
- Tyagi, A.; Dubey, M.; Gawre, S. Advance Monitoring of Electrical and Environmental Parameters of PV System: A Review. In Proceedings of the 2018 International Conference on Sustainable Energy, Electronics, and Computing Systems (SEEMS), Pune, India, 12–14 October 2018; pp. 1–5. [Google Scholar]
- Jeong, H.; Kwon, G.-R.; Lee, S.-W. Deterioration Diagnosis of Solar Module Using Thermal and Visible Image Processing. Energies 2020, 13, 2856. [Google Scholar] [CrossRef]
- Polymeropoulos, I.; Bezyrgiannidis, S.; Vrochidou, E.; Papakostas, G.A. Enhancing Solar Plant Efficiency: A Review of Vision-Based Monitoring and Fault Detection Techniques. Technologies 2024, 12, 175. [Google Scholar] [CrossRef]
- Sharma, P. Advanced Image Segmentation Technique Using Improved K Means Clustering Algorithm with Pixel Potential. In Proceedings of the 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, India, 19–21 November 2020; pp. 561–565. [Google Scholar]
- Khan, J.A.; Tang, S.; Ji, B.; Khan, F.; Khan, M.A.; Khalil, U.K.; Ullah, I. A fuzzy classification method based on rules learning for shaded and unshaded hotspot faults on photovoltaic modules. J. Clean. Prod. 2024, 449, 141785. [Google Scholar] [CrossRef]
- Ali, M.U.; Saleem, S.; Masood, H.; Kallu, K.D.; Masud, M.; Alvi, M.J.; Zafar, A. Early hotspot detection in photovoltaic modules using color image descriptors: An infrared thermography study. Int. J. Energy Res. 2022, 46, 774–785. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, Y.; Zhang, K.; Wei, H. A segmentation method for PV modules in infrared thermography images. In Proceedings of the 2021 13th IEEE PES Asia Pacific Power & Energy Engineering Conference (APPEEC), Singapore, 14–17 November 2021; pp. 1–5. [Google Scholar]
- Buerhop, C.; Bommes, L.; Schlipf, J.; Pickel, T.; Fladung, A.; Peters, I.M. Infrared imaging of photovoltaic modules: A review of the state of the art and future challenges facing gigawatt photovoltaic power stations. Prog. Energy 2022, 4, 042010. [Google Scholar] [CrossRef]
- Liu, B.; Chen, L.; Sun, K.; Wang, X.; Zhao, J. A Hot Spot Identification Approach for Photovoltaic Module Based on Enhanced U-Net with Squeeze-and-Excitation and VGG19. IEEE Trans. Instrum. Meas. 2024, 73, 3516510. [Google Scholar] [CrossRef]
- Ayadi, N.; Et-Taleby, A.; Chaibi, Y.; Salem, C.E.; Benslimane, M.; Chalh, Z. Photovoltaic Hotspot Fault Detection Based on Detectron2 with Faster R-CNN. In Proceedings of the 2024 3rd International Conference on Embedded Systems and Artificial Intelligence (ESAI), Fez, Morocco, 19–20 December 2024; IEEE: Piscataway, NJ, USA; pp. 1–12. [Google Scholar]
- Khang, N.P.H.; Triet, N.M.; Tuan, H.V.; Nhan, N.C. Applying RetinaNet Machine Learning Models for Hot-Spot Detection in Thermal Images of Photovoltaic Panels. IEEJ Trans. Electr. Electron. Eng. 2025, 20, e70067. [Google Scholar] [CrossRef]
- Arafin, P.; Issa, A.; Billah, A.H.M.M. Performance Comparison of Multiple Convolutional Neural Networks for Concrete Defects Classification. Sensors 2022, 22, 8714. [Google Scholar] [CrossRef] [PubMed]
- Harasim, E.; Donciu, C.; Ghinda, I. Mini Patterns Algorithm for Industrial Applications. In Proceedings of the 2018 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 18–19 October 2018; pp. 0831–0835. [Google Scholar]
- Li, L.; Wang, Z.; Zhang, T. Photovoltaic Panel Defect Detection Based on Ghost Convolution with BottleneckCSP and Tiny Target Prediction Head Incorporating YOLOv5. arXiv 2023, arXiv:2303.00886. [Google Scholar]
- Pierdicca, R.; Paolanti, M.; Felicetti, A.; Piccinini, F.; Zingaretti, P. Automatic Faults Detection of Photovoltaic Farms: solAIr, a Deep Learning-Based System for Thermal Images. Energies 2020, 13, 6496. [Google Scholar] [CrossRef]
- Tang, C.; Ren, H.; Xia, J.; Wang, F.; Lu, J. Automatic defect identification of PV panels with IR images through unmanned aircraft. IET Renew. Power Gener. 2023, 17, 3108–3119. [Google Scholar] [CrossRef]
- Abraheem, S.; Yusupov, Z.; Rahebi, J.; Ghadami, R. Advanced Solar Panel Fault Detection Using VGG19 and Jellyfish Optimization. Processes 2025, 13, 2021. [Google Scholar] [CrossRef]
- Baltacı, Ö.; Kıral, Z.; Dalkılınç, K.; Karaman, O. Thermal Image and Inverter Data Analysis for Fault Detection and Diagnosis of PV Systems. Appl. Sci. 2024, 14, 3671. [Google Scholar] [CrossRef]
- Yiğit, A.Y.; Şenol, H.İ. Surface Change and Stability Analysis in Open-Pit Mines Using UAV Photogrammetric Data and Geospatial Analysis. Drones 2025, 9, 472. [Google Scholar] [CrossRef]
- Li, Q.; Yang, G.; Bian, C.; Long, L.; Wang, X.; Gao, C.; Chen, B.M. Autonomous Design Framework for Deploying Building Integrated Photovoltaics. Appl. Energy 2025, 377, 124760. [Google Scholar] [CrossRef]
Panel No. | Defect Type | No. of Images on Set (n) | Manual Detection Defect Area (cm2) | Automatic Detection Defect Area (cm2) | Absolute Error % absi | ||
---|---|---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | ||||
1 | Junction box | 13 | 75 | 5.6 | 77 | 1.3 | 2.67% |
2 | Junction box | 11 | 82 | 4.2 | 83 | 1.4 | 1.22% |
3 | Junction box | 9 | 86 | 3.4 | 85 | 1.5 | 1.16% |
4 | Single-cell | 8 | 219 | 4.4 | 221 | 2.3 | 0.91% |
5 | Single-cell | 12 | 170 | 4.1 | 164 | 1.9 | 3.35% |
6 | Single-cell | 9 | 182 | 3.8 | 179 | 2.1 | 1.65% |
7 | Multicell | 8 | 321 | 4.6 | 325 | 2.2 | 1.25% |
8 | Multicell | 14 | 422 | 5.1 | 415 | 2.3 | 1.66% |
9 | Multicell | 8 | 437 | 3.1 | 438 | 2.1 | 0.23% |
10 | Bypass diode-activated | 16 | 4511 | 10.1 | 4553 | 5.8 | 0.93% |
11 | Bypass diode-activated | 8 | 4308 | 11.4 | 4289 | 6.7 | 0.44% |
12 | Bypass diode-activated | 10 | 4527 | 14.8 | 4563 | 5.9 | 0.80% |
Method | Accuracy (%) | Repeatability | Computational Cost | Occlusion Robustness | Training Required |
---|---|---|---|---|---|
Ghost Convolution with BottleneckCSP and Tiny Target Prediction Head (GBH-YOLOv5) [22] | 93.4 | Moderate | High | Moderate | Yes |
solAIr: Deep learning-based system for thermal images [23] | 94.0 | High | High | Moderate | Yes |
Improved MobileNet-V3 for PV fault classification [24] | 97.8 | High | Moderate | Low | Yes |
Deep neural network VGG19 with the Jellyfish Optimization Search Algorithm (JFOSA) [25] | 98.34% | High | High | Moderate | Yes |
Thermal image and inverter data analysis for fault detection [26] | 89.5 | Moderate | Low | Low | No |
Mini-pattern algorithm | 98.59 | High | Moderate | High | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donciu, C.; Temneanu, M.C.; Serea, E. PV Panels Fault Detection Video Method Based on Mini-Patterns. AppliedMath 2025, 5, 89. https://doi.org/10.3390/appliedmath5030089
Donciu C, Temneanu MC, Serea E. PV Panels Fault Detection Video Method Based on Mini-Patterns. AppliedMath. 2025; 5(3):89. https://doi.org/10.3390/appliedmath5030089
Chicago/Turabian StyleDonciu, Codrin, Marinel Costel Temneanu, and Elena Serea. 2025. "PV Panels Fault Detection Video Method Based on Mini-Patterns" AppliedMath 5, no. 3: 89. https://doi.org/10.3390/appliedmath5030089
APA StyleDonciu, C., Temneanu, M. C., & Serea, E. (2025). PV Panels Fault Detection Video Method Based on Mini-Patterns. AppliedMath, 5(3), 89. https://doi.org/10.3390/appliedmath5030089