Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (223)

Search Parameters:
Keywords = photolithography process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3135 KiB  
Article
Selective Gelation Patterning of Solution-Processed Indium Zinc Oxide Films via Photochemical Treatments
by Seullee Lee, Taehui Kim, Ye-Won Lee, Sooyoung Bae, Seungbeen Kim, Min Woo Oh, Doojae Park, Youngjun Yun, Dongwook Kim, Jin-Hyuk Bae and Jaehoon Park
Nanomaterials 2025, 15(15), 1147; https://doi.org/10.3390/nano15151147 - 24 Jul 2025
Viewed by 264
Abstract
This study presents a photoresist-free patterning method for solution-processed indium zinc oxide (IZO) thin films using two photochemical exposure techniques, namely pulsed ultraviolet (UV) light and UV-ozone, and a plasma-based method using oxygen (O2) plasma. Pulsed UV light delivers short, high-intensity [...] Read more.
This study presents a photoresist-free patterning method for solution-processed indium zinc oxide (IZO) thin films using two photochemical exposure techniques, namely pulsed ultraviolet (UV) light and UV-ozone, and a plasma-based method using oxygen (O2) plasma. Pulsed UV light delivers short, high-intensity flashes of light that induce localised photochemical reactions with minimal thermal damage, whereas UV-ozone enables smooth and uniform surface oxidation through continuous low-pressure UV irradiation combined with in situ ozone generation. By contrast, O2 plasma generates ionised oxygen species via radio frequency (RF) discharge, allowing rapid surface activation, although surface damage may occur because of energetic ion bombardment. All three approaches enabled pattern formation without the use of conventional photolithography or chemical developers, and the UV-ozone method produced the most uniform and clearly defined patterns. The patterned IZO films were applied as active layers in bottom-gate top-contact thin-film transistors, all of which exhibited functional operation, with the UV-ozone-patterned devices exhibiting the most favourable electrical performance. This comparative study demonstrates the potential of photochemical and plasma-assisted approaches as eco-friendly and scalable strategies for next-generation IZO patterning in electronic device applications. Full article
Show Figures

Graphical abstract

11 pages, 2558 KiB  
Article
Highly Efficient Digitized Quasi-3D Photolithography Based on a Modified Golomb Coding via DMD Laser Direct Writing
by Hui Wang, Zhe Huang, Yanting Shen and Shangying Zhou
Photonics 2025, 12(6), 587; https://doi.org/10.3390/photonics12060587 - 9 Jun 2025
Viewed by 392
Abstract
Three-dimensional (3D) photolithography has found wide applications in microelectronics, optoelectronics, biomedicine, etc. Traditionally, it requires repetitive exposure and developing cycles. Meanwhile, a laser direct writing (LDW) system with a digital micromirror device (DMD) enables high-speed maskless lithography with programmable doses. In this paper, [...] Read more.
Three-dimensional (3D) photolithography has found wide applications in microelectronics, optoelectronics, biomedicine, etc. Traditionally, it requires repetitive exposure and developing cycles. Meanwhile, a laser direct writing (LDW) system with a digital micromirror device (DMD) enables high-speed maskless lithography with programmable doses. In this paper, we propose a quasi-3D digitized photolithography via LDW with a DMD to remove multiple developing cycles from the process. This approach quantizes the dose of the 3D geometry and stores it in a grayscale image. And the entire dose distribution can be formed by overlapping the exposures with sliced binary dose maps from the above grayscale dose map. In the image slicing algorithm, a modified Golomb coding is introduced to make full use of the highest available exposure intensity. Both 1D multi-step patterns and diffractive optical devices (DOEs) have been fabricated to verify its feasibility. This type of digitized quasi-3D photolithography can be applied to fabricating DOEs, microlens arrays (MLAs), micro-refractive optical elements (μROEs), etc., and 3D molds for micro-embossing/nano-imprinting. Full article
Show Figures

Figure 1

17 pages, 5333 KiB  
Article
An Adaptive Three-Dimensional Self-Masking Strategy for the Micro-Fabrication of Quartz-MEMS with Out-of-Plane Vibration Units
by Yide Dong, Chunyan Yin, Guangbin Dou and Litao Sun
Micromachines 2025, 16(6), 609; https://doi.org/10.3390/mi16060609 - 23 May 2025
Viewed by 2379
Abstract
Quartz crystal out-of-plane vibration units are critical components of QMEMS devices. However, the fabrication of their 3D sidewall electrode structures presents significant challenges, particularly within ultrafine etched grooves. These challenges seriously limit further miniaturization, which is critical for portable and wearable electronic applications. [...] Read more.
Quartz crystal out-of-plane vibration units are critical components of QMEMS devices. However, the fabrication of their 3D sidewall electrode structures presents significant challenges, particularly within ultrafine etched grooves. These challenges seriously limit further miniaturization, which is critical for portable and wearable electronic applications. In this paper, we propose a novel 3D self-masking fabrication strategy that enables the precise formation of sidewall electrodes by using the etched beam structure as a self-aligned pattern transfer medium. Based solely on photolithography and wet etching processes, this approach overcomes the limitations of the conventional shadow mask technique by improving alignment accuracy, process efficiency, and fabrication yields. In addition, a predictive mathematical model was developed to guide process optimization, enabling adaptive and reliable fabrication. Sidewall electrodes were successfully achieved in etched grooves as narrow as 45 μm, closely matching the theoretical predictions. To validate the approach, an ultra-miniaturized out-of-plane vibration unit with a beam spacing of just 150 μm—the narrowest reported to date—was fabricated, representing an 80% reduction compared to previously documented structures. The unit exhibited a repeatability error below 1.13%, confirming the precision and reliability of the proposed fabrication strategy. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Electronic and Optoelectronic Devices)
Show Figures

Figure 1

12 pages, 6811 KiB  
Article
The Fabrication and Characterization of Surface-Acoustic-Wave and Resistive Types of Ozone Sensors Based on Zinc Oxide: A Comparative Study
by Sheng-Hua Yan and Chia-Yen Lee
Sensors 2025, 25(9), 2723; https://doi.org/10.3390/s25092723 - 25 Apr 2025
Viewed by 2496
Abstract
Micro-Electro-Mechanical System (MEMS) technology is employed to fabricate surface acoustic wave (SAW)-type and resistive-type ozone sensors on quartz glass (SiO2) substrates. The fabrication process commences by using a photolithography technique to define interdigitated electrodes (IDEs) on the substrates. Electron-beam evaporation (EBE) [...] Read more.
Micro-Electro-Mechanical System (MEMS) technology is employed to fabricate surface acoustic wave (SAW)-type and resistive-type ozone sensors on quartz glass (SiO2) substrates. The fabrication process commences by using a photolithography technique to define interdigitated electrodes (IDEs) on the substrates. Electron-beam evaporation (EBE) followed by radio frequency (RF) magnetron sputtering is then used to deposit platinum (Pt) and chromium (Cr) electrode layers as well as a zinc oxide (ZnO) sensing layer, respectively. Finally, annealing is performed to improve the crystallinity and sensing performance of the ZnO films. The experimental results reveal that the ZnO thin films provide an excellent ozone-concentration sensing capability in both sensors. The SAW-type sensor demonstrates a peak sensitivity at a frequency of 200 kHz, with a rapid response time of just 35 s. Thus, it is suitable for applications requiring a quick response and high sensitivity, such as real-time monitoring and high-precision environmental detection. The resistive-type sensor shows optimal sensitivity at a relatively low operating temperature of 180 °C, but has a longer response time of approximately 103 s. Therefore, it is better suited for low-cost and large-scale applications such as industrial-gas-concentration monitoring. Full article
(This article belongs to the Special Issue Advanced Sensors for Gas Monitoring)
Show Figures

Figure 1

30 pages, 11610 KiB  
Review
Bump-Fabrication Technologies for Micro-LED Display: A Review
by Xin Wu, Xueqi Zhu, Shuaishuai Wang, Xuehuang Tang, Taifu Lang, Victor Belyaev, Aslan Abduev, Alexander Kazak, Chang Lin, Qun Yan and Jie Sun
Materials 2025, 18(8), 1783; https://doi.org/10.3390/ma18081783 - 14 Apr 2025
Cited by 1 | Viewed by 1644
Abstract
Micro Light Emitting Diode (Micro-LED) technology, characterized by exceptional brightness, low power consumption, fast response, and long lifespan, holds significant potential for next-generation displays, yet its commercialization hinges on resolving challenges in high-density interconnect fabrication, particularly micrometer-scale bump formation. Traditional fabrication approaches such [...] Read more.
Micro Light Emitting Diode (Micro-LED) technology, characterized by exceptional brightness, low power consumption, fast response, and long lifespan, holds significant potential for next-generation displays, yet its commercialization hinges on resolving challenges in high-density interconnect fabrication, particularly micrometer-scale bump formation. Traditional fabrication approaches such as evaporation enable precise bump control but face scalability and cost limitations, while electroplating offers lower costs and higher throughput but suffers from substrate conductivity requirements and uneven current density distributions that compromise bump-height uniformity. Emerging alternatives include electroless plating, which achieves uniform metal deposition on non-conductive substrates through autocatalytic reactions albeit with slower deposition rates; ball mounting and dip soldering, which streamline processes via automated solder jetting or alloy immersion but struggle with bump miniaturization and low yield; and photosensitive conductive polymers that simplify fabrication via photolithography-patterned composites but lack validated long-term stability. Persistent challenges in achieving micrometer-scale uniformity, thermomechanical stability, and environmental compatibility underscore the need for integrated hybrid processes, eco-friendly manufacturing protocols, and novel material innovations to enable ultra-high-resolution and flexible Micro-LED implementations. This review systematically compares conventional and emerging methodologies, identifies critical technological bottlenecks, and proposes strategic guidelines for industrial-scale production of high-density Micro-LED displays. Full article
Show Figures

Figure 1

12 pages, 3543 KiB  
Article
Layout Design Strategies for Scaling Down Semiconductor Systems Based on Current Flow Analysis in Interconnect
by Seung Hwan Oh, Tae Yeong Hong, Sarah Eunkyung Kim, Jong Kyung Park and Seul Ki Hong
Appl. Sci. 2025, 15(7), 3944; https://doi.org/10.3390/app15073944 - 3 Apr 2025
Viewed by 664
Abstract
As the demand for high-density integrated circuits increases, scaling down devices has already reached its limit, making the optimization of interconnect–via layout an important research challenge. Conventional semiconductor design adopts conservative margins to ensure process reliability, but this often results in inefficient space [...] Read more.
As the demand for high-density integrated circuits increases, scaling down devices has already reached its limit, making the optimization of interconnect–via layout an important research challenge. Conventional semiconductor design adopts conservative margins to ensure process reliability, but this often results in inefficient space utilization and degraded electrical performance. This study evaluates the possibility of optimizing design rules by analyzing the impact of reduced contact area in interconnect–via structures on the current flow and resistance. Finite element method analysis (FEM) using Ansys Workbench revealed that current is concentrated in approximately 20% of the interconnect height and the diagonal region of the via. A resistance model reflecting this current distribution demonstrated high accuracy, with an error range of 1–3% compared to simulation results. Resistance measurements of various fabricated structures produced through photolithography and lift-off processes showed a significant increase in resistance when the contact area was reduced to 50% or less, consistent with simulation results. This study demonstrates the potential to optimize both space utilization and electrical performance by minimizing the conservative margins between interconnects and vias, contributing to next-generation high-density integrated circuit design. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

15 pages, 1516 KiB  
Article
Directional Fluidity of Dense Emulsion Activated by Transverse Wedge-Shaped Microroughness
by Giacomo Guastella, Daniele Filippi, Davide Ferraro, Giampaolo Mistura and Matteo Pierno
Micromachines 2025, 16(3), 335; https://doi.org/10.3390/mi16030335 - 14 Mar 2025
Viewed by 616
Abstract
The handling and fluidization of amorphous soft solids, such as emulsions, foams, or gels, is crucial in many technological processes. This is generally achieved by applying mechanical stress that overcomes a critical threshold, known as yield stress, below which these systems behave as [...] Read more.
The handling and fluidization of amorphous soft solids, such as emulsions, foams, or gels, is crucial in many technological processes. This is generally achieved by applying mechanical stress that overcomes a critical threshold, known as yield stress, below which these systems behave as elastic solids. However, the interaction with the walls can facilitate the transition from solid to fluid by activating rearrangements of the fluid constituents close to the wall, resulting in increased fluidity of the system up to distances greater than the spatial scale of the rearrangements. We address the impact of wedge-shaped microroughness on activating the fluidization of emulsion droplets in pressure-driven flow through microfluidic channels. We realize the micro wedges by maskless photolithography to texture one wall of the channel and measure the velocity profiles for flow directed accordingly and against the increasing ramp of the wedge-shaped grooves. We report the enhancement of the emulsion flow in the direction of the climbing ramp of the wedge activated by increasing the magnitude of the pressure gradient. A gain for the volumetric flow rate is registered with respect to the opposite direction as being to 30%, depending on the pressure drop. Full article
(This article belongs to the Special Issue Flows in Micro- and Nano-Systems)
Show Figures

Figure 1

14 pages, 2563 KiB  
Article
One-Step Fabrication of Microfluidic Channels in Polydimethylsiloxane: Influence of Laser Power on Channel Formation
by Seong-Yeop Kim, Han-Byeol Son and Hyo-Ryoung Lim
Micromachines 2025, 16(3), 282; https://doi.org/10.3390/mi16030282 - 28 Feb 2025
Viewed by 2131
Abstract
Recent advancements in microfluidic technologies have revolutionized their applications, particularly in drug monitoring, continuous biochemical analysis, and real-time physiological assessments. However, the fabrication of microfluidic devices with precise flow control remains constrained by either cost-prohibitive photolithography processes or limited-precision 3D printing techniques. In [...] Read more.
Recent advancements in microfluidic technologies have revolutionized their applications, particularly in drug monitoring, continuous biochemical analysis, and real-time physiological assessments. However, the fabrication of microfluidic devices with precise flow control remains constrained by either cost-prohibitive photolithography processes or limited-precision 3D printing techniques. In this study, we propose a one-step fabrication method employing picosecond laser processing to directly create microfluidic channels in (PDMS). This method achieves micron-scale channel precision while significantly simplifying the fabrication process and reducing costs. This approach eliminates the need for additional encapsulation steps, further reducing contamination risks and improving production scalability. These findings highlight the potential of this fabrication method to advance next-generation wearable biochemical devices and personalized healthcare technologies. Full article
(This article belongs to the Special Issue Polymer-Based Microfluidics)
Show Figures

Figure 1

15 pages, 9141 KiB  
Article
Novel Technique for Backside Alignment Using Direct Laser Writing
by Melissa Mitchell, Siva Sivaraya, Simon J. Bending and Ali Mohammadi
Micromachines 2025, 16(3), 255; https://doi.org/10.3390/mi16030255 - 25 Feb 2025
Viewed by 2255
Abstract
Backside alignment is a key microfabrication process step, especially in micro-electromechanical systems (MEMS). The double-side mask aligners used for this purpose are unaffordable for many research centres. We propose a new method that aligns the backside mask to the features on the topside [...] Read more.
Backside alignment is a key microfabrication process step, especially in micro-electromechanical systems (MEMS). The double-side mask aligners used for this purpose are unaffordable for many research centres. We propose a new method that aligns the backside mask to the features on the topside using a direct laser writer, which is available in many cleanrooms. In this method, the corner co-ordinates of the sample are used as alignment features, and a transformation matrix is developed to map the design co-ordinates to the stage co-ordinates. This method has been validated on copper features as small as 100 μm on silicon substrates. Test samples are cut from a 2 inch Si wafer, and copper features are sputtered and developed onto the topside. Backside patterns that are aligned to these copper features are created using photolithography through the application of this alignment method. This method exhibited challenges for samples without sharp right-angled corners, where the estimation of the corner co-ordinates resulted in misalignment. Sixteen areas over nine samples were analysed. An average alignment resolution of 23 ± 1 μm was established in the x and 8 ± 4 μm in the y direction, and a rotation misalignment of less than 1° was achieved. Differences in alignment were due to the individual quality of each sample’s corners and to the clarity of the corner co-ordinates. This new approach provides a route towards low-cost microfabrication process development. Full article
Show Figures

Figure 1

42 pages, 9156 KiB  
Review
Recent Progress in PDMS-Based Microfluidics Toward Integrated Organ-on-a-Chip Biosensors and Personalized Medicine
by Fahad Alghannam, Mrwan Alayed, Salman Alfihed, Mahmoud A. Sakr, Dhaifallah Almutairi, Naif Alshamrani and Nojoud Al Fayez
Biosensors 2025, 15(2), 76; https://doi.org/10.3390/bios15020076 - 29 Jan 2025
Cited by 4 | Viewed by 3359
Abstract
The organ-on-a-chip (OoC) technology holds significant promise for biosensors and personalized medicine by enabling the creation of miniature, patient-specific models of human organs. This review studies the recent advancements in the application of polydimethylsiloxane (PDMS) microfluidics for OoC purposes. It underscores the main [...] Read more.
The organ-on-a-chip (OoC) technology holds significant promise for biosensors and personalized medicine by enabling the creation of miniature, patient-specific models of human organs. This review studies the recent advancements in the application of polydimethylsiloxane (PDMS) microfluidics for OoC purposes. It underscores the main fabrication technologies of PDMS microfluidic systems, such as photolithography, injection molding, hot embossing, and 3D printing. The review also highlights the crucial role of integrated biosensors within OoC platforms. These electrochemical, electrical, and optical sensors, integrated within the microfluidic environment, provide valuable insights into cellular behavior and drug response. Furthermore, the review explores the exciting potential of PDMS-based OoC technology for personalized medicine. OoC devices can forecast drug effectiveness and tailor therapeutic strategies for patients by incorporating patient-derived cells and replicating individual physiological variations, helping the healing process and accelerating recovery. This personalized approach can revolutionize healthcare by offering more precise and efficient treatment options. Understanding OoC fabrication and its applications in biosensors and personalized medicine can play a pivotal role in future implementations of multifunctional OoC biosensors. Full article
(This article belongs to the Special Issue Microfluidic Chips for Life Science and Health Care Applications)
Show Figures

Figure 1

12 pages, 7826 KiB  
Communication
Novel MEMS Multisensor Chip for Aerodynamic Pressure Measurements
by Žarko Lazić, Milče M. Smiljanić, Dragan Tanasković, Milena Rašljić-Rafajilović, Katarina Cvetanović, Evgenija Milinković, Marko V. Bošković, Stevan Andrić, Ivana Jokić, Predrag Poljak and Miloš Frantlović
Sensors 2025, 25(3), 600; https://doi.org/10.3390/s25030600 - 21 Jan 2025
Cited by 1 | Viewed by 2946
Abstract
The key equipment for performing aerodynamic testing of objects, such as road and railway vehicles, aircraft, and wind turbines, as well as stationary objects such as bridges and buildings, are multichannel pressure measurement instruments (pressure scanners). These instruments are typically based on arrays [...] Read more.
The key equipment for performing aerodynamic testing of objects, such as road and railway vehicles, aircraft, and wind turbines, as well as stationary objects such as bridges and buildings, are multichannel pressure measurement instruments (pressure scanners). These instruments are typically based on arrays of separate pressure sensors built in an enclosure that also contains temperature sensors used for temperature compensation. However, there are significant limitations to such a construction, especially when increasing requirements in terms of miniaturization, the number of pressure channels, and high measurement performance must be met at the same time. In this paper, we present the development and realization of an innovative MEMS multisensor chip, which is designed with the intention of overcoming these limitations. The chip has four MEMS piezoresistive pressure-sensing elements and two resistive temperature-sensing elements, which are all monolithically integrated, enabling better sensor matching and thermal coupling while providing a high number of pressure channels per unit area. The main steps of chip development are preliminary chip design, numerical simulations of the chip’s mechanical behavior when exposed to the measured pressure, final chip design, fabrication processes (photolithography, thermal oxidation, diffusion, layer deposition, micromachining, anodic bonding, and wafer dicing), and electrical testing. Full article
Show Figures

Figure 1

15 pages, 5909 KiB  
Article
Controlling the Dissolution Behavior of (Meth)acrylate-Based Photoresist Polymers in Tetramethylammonium Hydroxide by Introducing Adamantyl Groups
by Jinyoung Kim, Choong-Jae Lee, Dong-Gun Lee, Geon-Ho Lee, Jayoung Hyeon, Yura Choi and Namchul Cho
Materials 2025, 18(2), 381; https://doi.org/10.3390/ma18020381 - 15 Jan 2025
Viewed by 1429
Abstract
(Meth)acrylate polymers are commonly used as photoresist materials in photolithography. However, these polymers encounter the problem of swelling during the development process. To address this, we explored the use of a hydrophobic group to control the solubility in the hydrophilic developer. In this [...] Read more.
(Meth)acrylate polymers are commonly used as photoresist materials in photolithography. However, these polymers encounter the problem of swelling during the development process. To address this, we explored the use of a hydrophobic group to control the solubility in the hydrophilic developer. In this study, we synthesized two types of polymers to evaluate the impact of the developer on (meth)acrylate polymers for photoresist applications. Adamantyl methacrylate (AdMA) was selected as the hydrophobic group, while 2-ethoxyethyl acrylate (2-EEA) served as the hydrophilic group, enabling the synthesis of both hydrophilic and hydrophobic polymers. Our goal was to assess how the presence of adamantyl monomers influenced the solubility of the polymer. This study demonstrated that solubility was primarily influenced by functional groups, particularly hydrophobic groups, rather than other factors. Polymers with more than 50% hydrophobic groups can be effectively controlled for their solubility in TMAH. These findings show that the solubility of photoresist polymers in TMAH can be tuned by incorporating a high proportion of hydrophobic groups. The study further confirms the role of adamantyl monomers as effective hydrophobic (aliphatic) groups in modulating the solubility of (meth)acrylate polymers in developer solutions. Full article
Show Figures

Figure 1

13 pages, 2529 KiB  
Article
Concave Microwell Formation Induced by PDMS Water Vapor Permeability for Spheroid Generation
by Min-Cheol Lim, Tai-Yong Kim, Gyeongsik Ok, Hyun Jung Kim, Yun-Sang Choi and Young-Rok Kim
Micromachines 2024, 15(12), 1496; https://doi.org/10.3390/mi15121496 - 14 Dec 2024
Cited by 1 | Viewed by 1408
Abstract
This study introduces a novel method for the fabrication of concave microwells involving water vapor permeation through polydimethylsiloxane (PDMS). This method leverages the exceptional water vapor permeability of PDMS to enable a scalable and cost-effective fabrication process, addressing the limitations of existing techniques [...] Read more.
This study introduces a novel method for the fabrication of concave microwells involving water vapor permeation through polydimethylsiloxane (PDMS). This method leverages the exceptional water vapor permeability of PDMS to enable a scalable and cost-effective fabrication process, addressing the limitations of existing techniques such as photolithography that are resource-intensive and complex. PDMS is more permeable to water vapor than to other gas molecules, resulting in the formation of microwells. Smooth-sloped concave microwells are formed by depositing droplets of 10% ethylene glycol on a PDMS substrate followed by curing at 70 °C and evaporation of water vapor. These microwells exhibit a unique structural gradient that is highly conducive for biological applications. Concave microwells were further used as a platform to generate animal cell spheroids, demonstrating their potential for three-dimensional cell culture. Unlike conventional methods, this approach allows precise control over microwell morphology by simply adjusting droplet size and curing conditions, offering enhanced tunability and reproducibility. The formation yield of these microwells is dependent on the volume of the water droplets, demonstrating the importance of droplet size in controlling microwell morphology. This approach provides a simple and effective method for creating microwells without complex lithographic processes, making it a highly promising tool for a range of biomedical applications, including tissue engineering, cancer research, and high-throughput drug screening. Full article
Show Figures

Figure 1

14 pages, 3259 KiB  
Communication
Parallel DNA Synthesis to Produce Multi-Usage Two-Dimensional Barcodes
by Etkin Parlar and Jory Lietard
Appl. Sci. 2024, 14(24), 11663; https://doi.org/10.3390/app142411663 - 13 Dec 2024
Viewed by 1132
Abstract
Data storage on DNA has emerged as a molecular approach to safeguarding digital information. Microarrays are an excellent source of complex DNA sequence libraries and are playing a central role in the development of this technology. However, the amount of DNA recovered from [...] Read more.
Data storage on DNA has emerged as a molecular approach to safeguarding digital information. Microarrays are an excellent source of complex DNA sequence libraries and are playing a central role in the development of this technology. However, the amount of DNA recovered from microarrays is often too small, and a PCR amplification step is usually required. Primer information can be conveyed alongside the DNA library itself in the form of readable barcodes made of DNA on the array surface. Here, we present a synthetic method to pattern QR and data matrix barcodes using DNA photolithography, phosphoramidite chemistry and fluorescent labeling. Patterning and DNA library synthesis occur simultaneously and on the same surface. We manipulate the chemical composition of the barcodes to make them indelible, erasable or hidden, and a simple chemical treatment under basic conditions can reveal or degrade the pattern. In doing so, information crucial to retrieval and amplification can be made available by the user at the appropriate stage. The code and its data contained within are intimately linked to the library as they are synthesized simultaneously and on the same surface. This process is, in principle, applicable to any in situ microarray synthesis method, for instance, inkjet or electrochemical DNA synthesis. Full article
Show Figures

Figure 1

12 pages, 16546 KiB  
Article
Silica Waveguide Thermo-Optic Mode Switch with Bimodal S-Bend
by Zhentao Yao, Manzhuo Wang, Yue Zhang, Zhaoyang Sun, Xiaoqiang Sun, Yuanda Wu and Daming Zhang
Nanomaterials 2024, 14(24), 1991; https://doi.org/10.3390/nano14241991 (registering DOI) - 12 Dec 2024
Viewed by 814
Abstract
A silica waveguide thermo-optic mode switch with small radius bimodal S-bends is demonstrated in this study. The cascaded multimode interference coupler is adopted to implement the E11 and E21 mode selective output. The beam propagation method is used in design optimization. [...] Read more.
A silica waveguide thermo-optic mode switch with small radius bimodal S-bends is demonstrated in this study. The cascaded multimode interference coupler is adopted to implement the E11 and E21 mode selective output. The beam propagation method is used in design optimization. Standard CMOS processing of ultraviolet photolithography, chemical vapor deposition, and plasma etching are adopted in fabrication. Detailed characterizations on the prepared switch are performed to confirm the precise fabrication. The measurement results show that within the wavelength range from 1530 to 1575 nm, for the E11 mode input, the switch exhibits an extinction ratio of ≥13.1 dB and a crosstalk ≤−22.8 dB at an electrical driving power of 284.8 mW, while for the E21 mode input, the extinction ratio is ≥15.5 dB and the crosstalk is ≤−18.1 dB at an electrical driving power of 282.4 mW. These results prove the feasibility of multimode S-bends in mode switching. The favorable performance of the demonstrated switch promises good potential for on-chip mode routing. Full article
Show Figures

Figure 1

Back to TopTop