Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = photodynamic reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1282 KiB  
Systematic Review
Actinic Cheilitis: A Systematic Review and Meta-Analysis of Interventions, Treatment Outcomes, and Adverse Events
by Matthäus Al-Fartwsi, Anne Petzold, Theresa Steeb, Lina Amin Djawher, Anja Wessely, Anett Leppert, Carola Berking and Markus V. Heppt
Biomedicines 2025, 13(8), 1896; https://doi.org/10.3390/biomedicines13081896 - 4 Aug 2025
Viewed by 259
Abstract
Introduction: Actinic cheilitis (AC) is a common precancerous condition affecting the lips, primarily caused by prolonged ultraviolet radiation exposure. Various treatment options are available. However, the optimal treatment approach remains a subject of debate. Objective: To summarize and compare practice-relevant interventions for AC. [...] Read more.
Introduction: Actinic cheilitis (AC) is a common precancerous condition affecting the lips, primarily caused by prolonged ultraviolet radiation exposure. Various treatment options are available. However, the optimal treatment approach remains a subject of debate. Objective: To summarize and compare practice-relevant interventions for AC. Materials and Methods: A pre-defined protocol was registered in PROSPERO (CRD42021225182). Systematic searches in Medline, Embase, and Central, along with manual trial register searches, identified studies reporting participant clearance rates (PCR) or recurrence rates (PRR). Quality assessment for randomized controlled trials (RCTs) was conducted using the Cochrane Risk of Bias tool 2. Uncontrolled studies were evaluated using the tool developed by the National Heart, Lung, and Blood Institute. The generalized linear mixed model was used to pool proportions for uncontrolled studies. A pairwise meta-analysis for RCTs was applied, using the odds ratio (OR) as the effect estimate and the GRADE approach to evaluate the quality of the evidence. Adverse events were analyzed qualitatively. Results: A comprehensive inclusion of 36 studies facilitated an evaluation of 614 participants for PCR, and 430 patients for PRR. Diclofenac showed the lowest PCR (0.53, 95% confidence interval (CI) [0.41; 0.66]), while CO2 laser showed the highest PCR (0.97, 95% CI [0.90; 0.99]). For PRR, Er:YAG laser showed the highest rates (0.14, 95% CI [0.08; 0.21]), and imiquimod the lowest (0.00, 95% CI [0.00; 0.06]). In a pairwise meta-analysis, the OR indicated a lower recurrence rate for Er:YAG ablative fractional laser (AFL)-primed methyl-aminolevulinate photodynamic therapy (MAL-PDT) (Er:YAG AFL-PDT) compared to methyl-aminolevulinate photodynamic therapy (MAL-PDT) alone (OR = 0.22, 95% CI [0.06; 0.82]). The CO2 laser showed fewer local side effects than the Er:YAG laser, while PDTs caused more skin reactions. Due to qualitative data, comparability was limited, highlighting the need for individualized treatment. Conclusions: This study provides a complete and up-to-date evidence synthesis of practice-relevant interventions for AC, identifying the CO2 laser as the most effective treatment and regarding PCR and imiquimod as most effective concerning PRR. Full article
(This article belongs to the Special Issue Skin Diseases and Cell Therapy)
Show Figures

Figure 1

16 pages, 4479 KiB  
Article
Photophysical Properties of 1,3-Diphenylisobenzofuran as a Sensitizer and Its Reaction with O2
by Ștefan Stan, João P. Prates Ramalho, Alexandru Holca and Vasile Chiș
Molecules 2025, 30(14), 3021; https://doi.org/10.3390/molecules30143021 - 18 Jul 2025
Viewed by 367
Abstract
1,3-Diphenylisobenzofuran (DPBF) is a widely used fluorescent probe for singlet oxygen (1O2) detection in photodynamic applications. In this work, we present an integrated experimental and computational analysis to describe its spectroscopic, photophysical, and reactive properties in ethanol, DMSO, and [...] Read more.
1,3-Diphenylisobenzofuran (DPBF) is a widely used fluorescent probe for singlet oxygen (1O2) detection in photodynamic applications. In this work, we present an integrated experimental and computational analysis to describe its spectroscopic, photophysical, and reactive properties in ethanol, DMSO, and DMF. UV-Vis and fluorescence measurements across a wide concentration range show well-resolved S0 → S1 electronic transition of a π → π* nature with small red shifts in polar aprotic solvents. Fluorescence lifetimes increase slightly with solvent polarity, showing stabilization of the excited state. The 2D PES and Boltzmann populations analysis indicate two co-existing conformers (Cs and C2), with Cs being slightly more stable at room temperature. TD-DFT calculations have been performed using several density functionals and the 6-311+G(2d,p) basis set to calculate absorption/emission wavelengths, oscillator strengths, transition dipole moments, and radiative lifetimes. Overall, cam-B3LYP and ωB97X-D provided the best agreement with experiments for the photophysical data across all solvents. The photophysical behavior of DPBF upon interaction with 1O2 can be explained by a small-barrier, two-step reaction pathway that goes through a zwitterionic intermediate, resulting in the formation of 2,5-endoperoxide. This work explains the photophysical properties and reactivity of DPBF, therefore providing a solid basis for future studies involving singlet oxygen. Full article
Show Figures

Figure 1

11 pages, 1964 KiB  
Article
pH-Responsive Nanophotosensitizer Boosting Antibacterial Photodynamic Therapy by Hydroxyl Radical Generation
by Peilin Tian, Xianyue Bai, Jing Feng, Luyao Xu, Shihao Xu, Xiaoya Yu, Caiju Fan, Qian Su, Jiaxing Song and Cuixia Lu
Nanomaterials 2025, 15(14), 1075; https://doi.org/10.3390/nano15141075 - 10 Jul 2025
Viewed by 341
Abstract
In this study, a pH-responsive nanophotosensitizer (MT@Ce6) was rationally developed by strategic integration of MIL-101 (Fe)-NH2 metal–organic framework with tannic acid (TA) and chlorin e6. This nanocomposite exhibits pH-responsive degradation in acidic microenvironments, facilitating Fe3+ release and subsequent reduction to Fe [...] Read more.
In this study, a pH-responsive nanophotosensitizer (MT@Ce6) was rationally developed by strategic integration of MIL-101 (Fe)-NH2 metal–organic framework with tannic acid (TA) and chlorin e6. This nanocomposite exhibits pH-responsive degradation in acidic microenvironments, facilitating Fe3+ release and subsequent reduction to Fe2+ that catalyzes Fenton reaction-mediated hydroxyl radical (•OH) generation. This cascade reaction shifts reactive oxygen species (ROS) predominance from transient singlet oxygen (1O2) to the long-range penetrative •OH, achieving robust biofilm disruption and over 90% eradication of methicillin-resistant Staphylococcus aureus (MRSA) under 660 nm irradiation. In vivo evaluations revealed accelerated wound healing with 95% wound closure within 7 days, while species-selective antibacterial studies demonstrated a 2.3-fold enhanced potency against Gram-positive bacteria due to their unique peptidoglycan-rich cell wall architecture. These findings collectively establish a microenvironment-adaptive nanoplatform for precision antimicrobial interventions, providing a translational strategy to address drug-resistant infections. Full article
Show Figures

Figure 1

16 pages, 2632 KiB  
Article
Rose Bengal Conjugated to Lectins for Targeted Antibacterial Photodynamic Treatment
by Melad Atrash, Iryna Hovor, Marina Nisnevitch and Faina Nakonechny
Molecules 2025, 30(11), 2381; https://doi.org/10.3390/molecules30112381 - 29 May 2025
Viewed by 590
Abstract
Due to rising antibiotic resistance, it is necessary to develop alternative ways to combat pathogenic bacteria. One alternative is photodynamic antibacterial chemotherapy (PACT). This work presents the conjugation of the photosensitizer Rose Bengal (RB) to lectins to improve its efficacy against Gram-positive and [...] Read more.
Due to rising antibiotic resistance, it is necessary to develop alternative ways to combat pathogenic bacteria. One alternative is photodynamic antibacterial chemotherapy (PACT). This work presents the conjugation of the photosensitizer Rose Bengal (RB) to lectins to improve its efficacy against Gram-positive and Gram-negative bacteria. Two lectins, concanavalin A (ConA) and wheat germ agglutinin (WGA), were covalently linked to RB. Spectroscopic and chromatographic data confirmed successful conjugation. Microscopic examination demonstrated that both lectins agglutinate cells of Gram-positive S. aureus, including clinical multidrug-resistant MRSA strains, and Gram-negative E. coli, P. aeruginosa, and S. paratyphi B, although ConA showed a more pronounced reaction. Photodynamic assays showed that ConA-RB achieved complete eradication of S. aureus at significantly lower concentrations and light doses than free RB or WGA-RB. ConA-RB also exhibited higher efficacy against Gram-negative bacteria compared to free RB at lower concentrations and shorter illumination periods. WGA-RB was less effective, showing preferential activity against S. aureus. Our findings suggest that lectin–RB conjugates offer a promising approach for selective antibacterial treatment under illumination. Full article
Show Figures

Figure 1

23 pages, 2395 KiB  
Review
Oxidative Stress and Skin Diseases: The Role of Lipid Peroxidation
by Federica Li Pomi, Luca Gammeri, Francesco Borgia, Mario Di Gioacchino and Sebastiano Gangemi
Antioxidants 2025, 14(5), 555; https://doi.org/10.3390/antiox14050555 - 7 May 2025
Cited by 3 | Viewed by 2251
Abstract
Lipid peroxidation (LPO) is a biochemical process through which lipids are subjected to a peroxidation reaction in the presence of free radicals. The process can cause alterations in biological membranes and the formation of substances harmful to the body that can form aggregates [...] Read more.
Lipid peroxidation (LPO) is a biochemical process through which lipids are subjected to a peroxidation reaction in the presence of free radicals. The process can cause alterations in biological membranes and the formation of substances harmful to the body that can form aggregates with proteins and nucleic acids. Malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) are the main products of LPO. These compounds have cytotoxic and genotoxic properties and contribute to the pathogenesis of various diseases. This research focuses on the correlation between LPO and skin diseases. For some skin diseases, such as psoriasis, vitiligo, and alopecia, LPO products have been shown to have a clear role in the pathogenesis of the disease. Lipid aldehydic products like MDA and 4-HNE can enhance inflammation by stimulating pro-inflammatory genes and producing cytokines. Furthermore, these products can stimulate cell death and increase oxidative stress. For other diseases (atopic dermatitis, urticaria, pemphigus, and melanoma), the role of LPO is unclear, even if the levels of LPO biomarkers are elevated in proportion to the severity of the disease. LPO can also be exploited to counteract the proliferation of neoplastic cells. Therefore, enhancing LPO would play an adjuvant role in the therapy of neoplastic diseases such as melanoma. In particular, the therapeutic implication resulting from the role of LPO products in the cytotoxicity induced by photodynamic therapy used for the adjuvant treatment of melanoma could be of interest in the future. Full article
(This article belongs to the Special Issue Lipid Peroxidation in Physiology and Chronic Inflammatory Diseases)
Show Figures

Graphical abstract

22 pages, 5623 KiB  
Article
Lanthanides-Based Nanoparticles Conjugated with Rose Bengal for FRET-Mediated X-Ray-Induced PDT
by Batoul Dhaini, Joël Daouk, Hervé Schohn, Philippe Arnoux, Valérie Jouan-Hureaux, Albert Moussaron, Agnès Hagege, Mathilde Achard, Samir Acherar, Tayssir Hamieh and Céline Frochot
Pharmaceuticals 2025, 18(5), 672; https://doi.org/10.3390/ph18050672 - 1 May 2025
Viewed by 703
Abstract
In order to find a good candidate for Förster Resonance Energy Transfer (FRET)-mediated X-ray-induced photodynamic therapy (X-PDT) for the treatment of cancer, lanthanide (Ln)-based AGuIX nanoparticles (NPs) conjugated with Rose Bengal (RB) as a photosensitizer (PS) were synthesized. X-PDT overcomes the problem of [...] Read more.
In order to find a good candidate for Förster Resonance Energy Transfer (FRET)-mediated X-ray-induced photodynamic therapy (X-PDT) for the treatment of cancer, lanthanide (Ln)-based AGuIX nanoparticles (NPs) conjugated with Rose Bengal (RB) as a photosensitizer (PS) were synthesized. X-PDT overcomes the problem of the poor penetration of visible light into tissues, which limits the efficacy of PDT in the treatment of deep-seated tumors. It is essential to optimize FRET efficiency by maximizing the overlap integral between donor emission and acceptor absorption and lengthening the duration of the donor emission. In this study, we optimized energy transfer between a scintillator (Sc) as a donor and a PS as an acceptor. Terbium (Tb) and Gadolinium (Gd) as Scs and Rose RB as a PS were chosen. The study of energy transfer between Tb, Gd and RB in solution and chelated on AGuIX NPs proved to be FRET-like. RB was conjugated directly onto AGuIX NPs (i.e., AGuIX Ln@RB), and the use of a spacer arm (i.e., AGuIX Ln@spacer arm-RB) increased FRET efficiency. Singlet oxygen production by these NPs was observed under UV–visible illumination and X-ray irradiation. The in vitro bioassay demonstrated 52% cell death of U-251MG derived from human malignant glioblastoma multiforme at a concentration of 1 μM RB after illumination and irradiation (2 Gy, 320 kV, 10 mA, 3 Gy/min at 47 cm). In addition, the RB-coupled NRP-1-targeting peptide (i.e., K(RB)DKPPR) was conjugated onto AGuIX NPs by a thiol-maleimide click chemistry reaction, and an affinity in the nM range was observed. Full article
(This article belongs to the Special Issue Photodynamic Therapy: 3rd Edition)
Show Figures

Graphical abstract

14 pages, 7525 KiB  
Article
Novel Molecular Weight Gradient Hyaluronate Dissolving Microneedles for Sustained Intralesional Delivery and Photodynamic Activation of Hematoporphyrin in Port-Wine Stain Therapy
by Xueli Peng, Chenxin Yan, Nengquan Fan, Chaoguo Sun, Suohui Zhang and Yunhua Gao
Polymers 2025, 17(9), 1238; https://doi.org/10.3390/polym17091238 - 1 May 2025
Viewed by 545
Abstract
Port-wine stain (PWS), a progressive congenital vascular malformation characterized by ectatic dermal capillaries, demonstrates age-dependent lesion expansion and chromatic intensification, resulting in significant psychosocial comorbidity. While systemic hematoporphyrin (HP) administration remains the clinical paradigm for photodynamic therapy (PDT), its therapeutic utility is severely [...] Read more.
Port-wine stain (PWS), a progressive congenital vascular malformation characterized by ectatic dermal capillaries, demonstrates age-dependent lesion expansion and chromatic intensification, resulting in significant psychosocial comorbidity. While systemic hematoporphyrin (HP) administration remains the clinical paradigm for photodynamic therapy (PDT), its therapeutic utility is severely constrained by non-targeted biodistribution. Pharmacokinetic analyses reveal prolonged dermal retention and suboptimal lesion accumulation, predisposing 42% of patients to phototoxic reactions. To address these limitations, this work creatively suggested a local targeted drug delivery method based on soluble microneedles in response to the difficulties mentioned above. The rational design of a molecular weight (MW) HA gradient system enabled the engineering of ternary nanocomposite microneedles with enhanced biomechanical integrity (0.49 N/needle) and superior HP loading capacity, which collectively facilitated spatiotemporally controlled transdermal delivery of hematoporphyrin with complete dissolution within 30 min. The release performance, skin permeability, and storage stability of hematoporphyrin dissolving microneedles (HP-DMNs) have all been demonstrated in vitro. This study applies soluble microneedle technology to the delivery of HP in PWS for the first time. It avoids the risk of systemic exposure through precise local administration. It uses the rapid dissolution properties of microneedles to achieve high concentration and rapid release of drugs in skin lesions. This study provides a new strategy for sustained intralesional release and rapid drug delivery treatment of PWS and provides novel ideas for the development of new formulations of HP and related photosensitizers. Full article
(This article belongs to the Special Issue Polymers and Their Role in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

30 pages, 17823 KiB  
Review
Emerging Piezoelectric Sonosensitizer for ROS-Driven Sonodynamic Cancer Therapy
by Guiyun Wang, Yanxia Qi, Zhuang Liu and Ruowei Wang
Inorganics 2025, 13(3), 71; https://doi.org/10.3390/inorganics13030071 - 26 Feb 2025
Cited by 3 | Viewed by 1211
Abstract
As a non-invasive modality, sonodynamic therapy (SDT) offers several advantages in cancer treatment, including deep tissue penetration and precise spatiotemporal control, resulting from the interplay between low-intensity ultrasound and sonosensitizers. Piezoelectric materials, known for their remarkable capacity of interconversion of mechanical and electrical [...] Read more.
As a non-invasive modality, sonodynamic therapy (SDT) offers several advantages in cancer treatment, including deep tissue penetration and precise spatiotemporal control, resulting from the interplay between low-intensity ultrasound and sonosensitizers. Piezoelectric materials, known for their remarkable capacity of interconversion of mechanical and electrical energy, have garnered considerable attention in biomedical applications, which can serve as pivotal sonosensitizers in SDT. These materials can generate internal electric fields via ultrasound-induced mechanical deformation, which modulates the alteration of charge carriers, thereby initiating surface redox reactions to generate reactive oxygen species (ROS) and realizing the therapeutic efficacy of SDT. This review provides an in-depth exploration of piezoelectric materials utilized in SDT, with a particular emphasis on recent innovations, elucidation of underlying mechanisms, and optimization strategies for advanced biomedical piezoelectric materials. Furthermore, the incorporation of piezoelectric sonosensitizers with immunotherapy, photodynamic, chemodynamic, and chemotherapy is explored, emphasizing their potential to enhance cancer therapy outcomes. By examining the basic principles of the piezoelectric effect and its contributions to SDT, this review sheds light on the promising applications of piezoelectric materials in oncology. It also highlights future directions for improving these materials and expanding their clinical utility in tumor sonodynamic therapy. Full article
Show Figures

Figure 1

13 pages, 1752 KiB  
Article
Diode Laser and Red-Laser Photodynamic Therapy with Toluidine Blue Gel for the Treatment of Onychomycosis: A Case Series
by Sara García-Oreja, Francisco Javier Álvaro-Afonso, Aroa Tardáguila-García, David Navarro-Pérez, Esther Alicia García-Morales and José Luis Lázaro-Martínez
Microbiol. Res. 2025, 16(2), 51; https://doi.org/10.3390/microbiolres16020051 - 19 Feb 2025
Cited by 2 | Viewed by 2229
Abstract
Background: Onychomycosis is the most prevalent nail disease, posing a challenge for health professionals in terms of treatment. Conventional topical antifungal treatments can often prove insufficient, and the use of oral antifungal drugs carries a high frequency of adverse events and drug–drug interactions. [...] Read more.
Background: Onychomycosis is the most prevalent nail disease, posing a challenge for health professionals in terms of treatment. Conventional topical antifungal treatments can often prove insufficient, and the use of oral antifungal drugs carries a high frequency of adverse events and drug–drug interactions. Objective: The primary aim of this study was to determine the cure rate of onychomycosis using a combined treatment of diode laser and photodynamic therapy with red-laser photodynamic therapy (PDT) and toluidine blue gel. Methods: A series of onychomycosis cases were treated and monitored for 6 months with eight applications of diode laser therapy. This treatment was combined with three applications of red-laser PDT paired with toluidine blue gel. Clinical cure was evaluated one week after the treatment’s conclusion, while mycological cure was assessed via microbiological culture. Results: The study included 12 patients and a total of 17 nails. At the end of treatment, clinical, mycological, and complete cure rates were 100% for all patients and nails. No adverse reactions were reported during or after the PDT application. However, all patients experienced pain during laser application, and two patients experienced hematoma and subungual blistering post-treatment. Two patients (2/12) experienced recurrence in three nails (3/17; recurrence rate: 17.6%) within 6 months following treatment. Conclusions: The combination of diode laser therapy and red-laser PDT with toluidine blue gel seems effective and safe for the treatment of mild, moderate, and severe onychomycosis. Full article
Show Figures

Figure 1

25 pages, 5167 KiB  
Article
Optimizing Thermoresponsive and Bioadhesive Systems for Local Application of Erythrosine
by Igor Alves Endrice, Sandy Aline Forastieri Gerarduzzi, Mariana Carla de Oliveira, Marcos Luciano Bruschi and Jéssica Bassi da Silva
Colorants 2025, 4(1), 5; https://doi.org/10.3390/colorants4010005 - 5 Feb 2025
Viewed by 2864
Abstract
Photodynamic therapy (PDT) is a light-activated chemical reaction used for the selective destruction of tissue. For this, various colorants may be applied, such as erythrosine (ERI), a dye already approved by the Food and Drug Administration (FDA) for various purposes. Although promising for [...] Read more.
Photodynamic therapy (PDT) is a light-activated chemical reaction used for the selective destruction of tissue. For this, various colorants may be applied, such as erythrosine (ERI), a dye already approved by the Food and Drug Administration (FDA) for various purposes. Although promising for PDT, ERI has a high hydrophilic profile that impacts its activity. To solve this, the combination of ERI with thermoresponsive and bioadhesive polymers may prove effective. Bio/mucoadhesive and thermoresponsive systems have attracted increasing interest in the development of novel pharmaceutical formulations for topical applications due to their ability to improve adhesion to the mucosa and prolong the residence time at the application site. In this study, systems based on poloxamer 407 (P407) in combination with cellulose derivatives (HPMC and NaCMC) were optimized, aiming at the topical release of ERI for PDT. The results demonstrated that the formulations containing low concentrations of cellulose derivatives exhibited greater adhesiveness and consistency at physiological temperature (37 °C), favoring the maintenance of the system at the application site. Regarding the gelation temperature (Tsol/gel), the formulations displayed values close to body temperature. The formulations with NaCMC showed a slightly higher Tsol/gel compared to HPMC ones, but it was adjustable by the polymer concentration. The addition of ERI influenced the mechanical and adhesive properties of the systems. In formulations containing HPMC, high concentrations of ERI increased bio/mucoadhesiveness, while in systems with NaCMC, the presence of ERI reduced this property. In both cases, the formulations maintained high consistency at 37 °C, contributing to the control of the active release at the application site. Rheological analysis revealed non-Newtonian behavior in all formulations, with greater consistency and elasticity at high temperatures. P407 was mainly responsible for the thermoresponsive transition from sol to gel, conferring desirable characteristics for topical application. Photodynamic activity was relevant in both formulations containing NaCMC and HPMC, which demonstrated greater capacity for degrading uric acid under light exposure. These systems are promising for the controlled release of drugs in photodynamic therapy, providing prolonged retention in the target tissue and maximizing the therapeutic efficacy of ERI. Full article
Show Figures

Figure 1

17 pages, 2142 KiB  
Review
Exploring Anti-Aging Effects of Topical Treatments for Actinic Keratosis
by Federica Li Pomi, Andrea d’Aloja, Dario Valguarnera, Mario Vaccaro and Francesco Borgia
Medicina 2025, 61(2), 207; https://doi.org/10.3390/medicina61020207 - 24 Jan 2025
Cited by 1 | Viewed by 2339
Abstract
Background and Objectives: Actinic keratosis (AK) is a precancerous cutaneous lesion driven by chronic ultraviolet (UV) exposure, often coexisting with features of photoaging, such as wrinkles and pigmentary irregularities. Recent evidence suggests that treatments for AK may also counteract photoaging through shared [...] Read more.
Background and Objectives: Actinic keratosis (AK) is a precancerous cutaneous lesion driven by chronic ultraviolet (UV) exposure, often coexisting with features of photoaging, such as wrinkles and pigmentary irregularities. Recent evidence suggests that treatments for AK may also counteract photoaging through shared molecular pathways, including oxidative stress and inflammation. This narrative review explores the dual benefits of AK therapies, highlighting their potential anti-aging and skin-lightening effects, and implications for improving skin appearance alongside lesion clearance. Materials and Methods: The literature was analyzed to assess the efficacy, mechanisms, and cosmetic outcomes of commonly used AK treatments, including topical agents (5-fluorouracil (5-FU), imiquimod, diclofenac, and tirbanibulin), and photodynamic therapy (PDT). Studies highlighting their effects on photoaged skin, collagen remodeling, pigmentation, and patient satisfaction were reviewed. Results: PDT emerged as the most validated treatment, demonstrating improved collagen synthesis, skin texture, and pigmentation. 5-FU showed remodeling of the dermal matrix and increased procollagen levels, but local skin reactions represent a major limitation. Imiquimod enhanced dermal fibroplasia and reduced solar elastosis, while diclofenac provided mild photodamage improvements with minimal adverse effects. Tirbanibulin showed promising aesthetic outcomes, including skin lightening and a reduction in mottled pigmentation, with favorable tolerability. Conclusions: AK therapies offer a dual-purpose strategy, addressing both precancerous lesions and cosmetic concerns associated with photoaging. While PDT remains the gold standard, emerging agents like tirbanibulin ointment exhibit substantial potential. Future research should focus on optimizing treatment protocols and evaluating long-term cosmetic outcomes to enhance patient satisfaction and compliance. Full article
(This article belongs to the Section Dermatology)
Show Figures

Figure 1

20 pages, 4046 KiB  
Review
Application of Light-Responsive Nanomaterials in Bone Tissue Engineering
by Aiguo Liu, Chenxu Wang, Shuang Deng, Sitong Zhang, Ziwen Zhao, Han Xiao, Ting Ying, Chengqing Yi and Dejian Li
Pharmaceutics 2025, 17(1), 98; https://doi.org/10.3390/pharmaceutics17010098 - 13 Jan 2025
Cited by 1 | Viewed by 1136
Abstract
The application of light-responsive nanomaterials (LRNs) in bone tissue engineering shows broad prospects, especially in promoting bone healing and regeneration. With a deeper understanding of the mechanisms of bone defects and healing disorders, LRNs are receiving increasing attention due to their non-invasive, controllable, [...] Read more.
The application of light-responsive nanomaterials (LRNs) in bone tissue engineering shows broad prospects, especially in promoting bone healing and regeneration. With a deeper understanding of the mechanisms of bone defects and healing disorders, LRNs are receiving increasing attention due to their non-invasive, controllable, and efficient properties. These materials can regulate cellular biological reactions and promote bone cell adhesion, proliferation, and differentiation by absorbing specific wavelengths of light and converting them into physical and chemical signals. In addition, the unique surface morphology and biocompatibility of LRNs enable them to effectively load drugs in bone tissue engineering, achieve precise release, and optimize the bone regeneration process. Through photothermal and photodynamic therapy, these materials also possess antibacterial properties and can play an important role in the repair of infectious bone defects. Although LRNs have shown significant advantages in bone tissue regeneration, a series of challenges still need to be overcome to achieve their widespread and effective clinical applications. This article summarizes the basic principles, classification, and potential applications of LRNs in bone tissue regeneration, aiming to provide reference for future research and clinical applications. Full article
Show Figures

Figure 1

22 pages, 12235 KiB  
Article
The Focal Induction of Reactive Oxygen Species in Rats as a Trigger of Aortic Valve Degeneration
by Jessica Isabel Selig, Yukiharu Sugimura, Shintaro Katahira, Marco Polidori, Laura Alida Jacobi, Olga Medovoj, Sarah Betke, Mareike Barth, Artur Lichtenberg, Payam Akhyari and Jan-Philipp Minol
Antioxidants 2024, 13(12), 1570; https://doi.org/10.3390/antiox13121570 - 20 Dec 2024
Viewed by 4485
Abstract
Background: Degenerative aortic valve disease (DAVD) is a multifactorial process. We developed an animal model to analyze the isolated, local effect of reactive oxygen species (ROS) on its pathophysiology. Methods: We utilized a photodynamic reaction (PDR) as a source of ROS in the [...] Read more.
Background: Degenerative aortic valve disease (DAVD) is a multifactorial process. We developed an animal model to analyze the isolated, local effect of reactive oxygen species (ROS) on its pathophysiology. Methods: We utilized a photodynamic reaction (PDR) as a source of ROS in the aortic valve by aiming a laser at the aortic valve for 60 min after the administration of a photosensitizer 24 h prior. ROS, laser, and sham groups (n = 7 each) for every observation period (t = 0; t = 8 d; t = 84 d; t = 168 d) were established. The amount of ROS generation; morphological changes; inflammatory, immune, and apoptotic reactions; and hemodynamic changes in the aortic valves were assessed using appropriate histological, immunohistological, immunohistochemical, and echocardiographic methods. Results: The ROS group displayed an increased amount of ROS (p < 0.01) and increased inflammatory activation of the endothelium (p < 0.05) at t = 0. In the ROS group, aortic valves were calcified (p < 0.05) and the transvalvular gradient was increased (p < 0.01) at t = 168 d. Conclusion: The small animal model employed here may serve as a platform for analyzing ROS’s isolated role in the DAVD context. Full article
(This article belongs to the Special Issue Redox Regulation in Cardiovascular Diseases)
Show Figures

Figure 1

29 pages, 5370 KiB  
Review
Gels in Heterogeneous Photocatalysis: Past, Present, and Future
by Fitri Rizki Amalia, Lei Wang, Zuzanna Bielan, Agata Markowska-Szczupak, Zhishun Wei and Ewa Kowalska
Gels 2024, 10(12), 810; https://doi.org/10.3390/gels10120810 - 9 Dec 2024
Cited by 1 | Viewed by 1450
Abstract
Photocatalysis has attracted more and more attention as a possible solution to environmental, water, and energy crises. Although some photocatalytic materials have already proven to perform well, there are still some problems that should be solved for the broad commercialization of photocatalysis-based technologies. [...] Read more.
Photocatalysis has attracted more and more attention as a possible solution to environmental, water, and energy crises. Although some photocatalytic materials have already proven to perform well, there are still some problems that should be solved for the broad commercialization of photocatalysis-based technologies. Among them, cheap and easy recycling, as well as stability issues, should be addressed. Accordingly, the application of gels, either as a photocatalytic material or as its support, might be a good solution. In this review, various propositions of gel-based photocatalysts have been presented and discussed. Moreover, an easy nanoarchitecture design of gel-based structures enables fundamental studies, e.g., on mechanism clarifications. It might be concluded that gels with their unique properties, i.e., low density, high specific surface area, great porosity, and low-cost preparation, are highly prospective for solar-energy-based reactions, water treatment, photodynamic cancer therapies, and fundamental research. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Figure 1

20 pages, 7883 KiB  
Article
A Comprehensive Study of Reactive Oxygen Species Explicit Dosimetry for Pleural Photodynamic Therapy
by Hongjing Sun, Yihong Ong, Michele M. Kim, Andreea Dimofte, Sunil Singhal, Keith A. Cengel, Arjun G. Yodh and Timothy C. Zhu
Antioxidants 2024, 13(12), 1436; https://doi.org/10.3390/antiox13121436 - 22 Nov 2024
Viewed by 1568
Abstract
Photodynamic therapy (PDT) relies on the interactions between light, photosensitizers, and tissue oxygen to produce cytotoxic reactive oxygen species (ROS), primarily singlet oxygen (1O2) through Type II photochemical reactions, along with superoxide anion radicals (O2•−), hydrogen [...] Read more.
Photodynamic therapy (PDT) relies on the interactions between light, photosensitizers, and tissue oxygen to produce cytotoxic reactive oxygen species (ROS), primarily singlet oxygen (1O2) through Type II photochemical reactions, along with superoxide anion radicals (O2•−), hydrogen peroxide (H2O2), and hydroxyl radicals (OH) through Type I mechanisms. Accurate dosimetry, accounting for all three components, is crucial for predicting and optimizing PDT outcomes. Conventional dosimetry tracks only light fluence rate and photosensitizer concentration, neglecting the role of tissue oxygenation. Reactive oxygen species explicit dosimetry (ROSED) quantifies the reacted oxygen species concentration ([ROS]rx) by explicit measurements of light fluence (rate), photosensitizer concentration, and tissue oxygen concentration. Here we determine tissue oxygenation from non-invasive diffuse correlation spectroscopy (DCS) measurement of tumor blood flow using a conversion factor established preclinically. In this study, we have enrolled 24 pleural PDT patients into the study. Of these patients, we are able to obtain data on 20. Explicit dosimetry of light fluence, Photofrin concentration, and tissue oxygenation concentrations were integrated into the ROSED model to calculate [ROS]rx across multiple sites inside the pleural cavity and among different patients. Large inter- and intra-patient heterogeneities in [ROS]rx were observed, despite identical 60 J/cm2 light doses, with mean [ROS]rx,meas of 0.56 ± 0.26 mM for 13 patients with 21 sites, and [ROS]rx,calc1 of 0.48 ± 0.23 mM for 20 patients with 76 sites. This study presented the first comprehensive analysis of clinical ROSED in pleural mesothelioma patients, providing valuable data on future ROSED based pleural PDT that can potentially produce uniform ROS and thus improve the PDT efficacy for Photofrin-mediated pleural PDT. Full article
Show Figures

Figure 1

Back to TopTop