Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = photocurable hydrogel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6379 KB  
Article
Ionic Conductive Hydrogels with Choline Salt for Potential Use in Electrochemical Capacitors
by Jan Malczak, Wiktoria Żyła, Piotr Gajewski, Katarzyna Szcześniak, Łukasz Popenda and Agnieszka Marcinkowska
Polymers 2025, 17(22), 3030; https://doi.org/10.3390/polym17223030 - 14 Nov 2025
Viewed by 951
Abstract
Choline salts represent sustainable and safe electrolyte systems. In this study, an aqueous 1 M choline nitrate solution was employed to prepare hydrogel polymer electrolytes (HPE) via in situ photopolymerization. To enhance compatibility between the electrolyte and polymer matrix, choline methacrylate was synthesized [...] Read more.
Choline salts represent sustainable and safe electrolyte systems. In this study, an aqueous 1 M choline nitrate solution was employed to prepare hydrogel polymer electrolytes (HPE) via in situ photopolymerization. To enhance compatibility between the electrolyte and polymer matrix, choline methacrylate was synthesized and used as a functional monomer alongside HEMA and PEGDA. The photocurable formulation contained 70 wt.% electrolyte and 30 wt.% monomer mixture. Subsequent electrolyte uptake increased the electrolyte fraction in the HPE to 87 wt.%. The use of choline methacrylate enabled the formation of transparent HPE with favorable mechanical performance, showing puncture resistance of 0.33 N and 0.28 N at elongations of 7.9 mm and 4.4 mm for samples with 70 and 87 wt.% electrolyte, respectively. High ionic conductivity was achieved, reaching ~18 mS/cm and ~34 mS/cm for HPE with 70 and 87 wt.% electrolyte. Finally, a capacitor assembled with HPE containing 87 wt.% electrolyte demonstrated good operational parameters, confirming the applicability of this system in energy storage devices. This work highlights the potential of choline-based electrolytes and polymerizable choline derivatives as functional components for the design of efficient, safe, and environmentally friendly gel polymer electrolytes. Full article
(This article belongs to the Special Issue Active Polymeric Materials for Electrochemical Applications)
Show Figures

Graphical abstract

24 pages, 10324 KB  
Article
A Versatile Platform for Designing and Fabricating Multi-Material Perfusable 3D Microvasculatures
by Nathaniel Harris, Charles Miller and Min Zou
Micromachines 2025, 16(6), 691; https://doi.org/10.3390/mi16060691 - 8 Jun 2025
Cited by 1 | Viewed by 2227
Abstract
Perfusable microvasculature is critical for advancing in vitro tissue models, particularly for neural applications where limited diffusion impairs organoid growth and fails to replicate neurovascular function. This study presents a versatile fabrication platform that integrates mesh-driven design, two-photon lithography (TPL), and modular interfacing [...] Read more.
Perfusable microvasculature is critical for advancing in vitro tissue models, particularly for neural applications where limited diffusion impairs organoid growth and fails to replicate neurovascular function. This study presents a versatile fabrication platform that integrates mesh-driven design, two-photon lithography (TPL), and modular interfacing to create multi-material, perfusable 3D microvasculatures. Various 2D and 3D capillary paths were test-printed using both polygonal and lattice support strategies. A double-layered capillary scaffold based on the Hilbert curve was used for comparative materials testing. Methods for printing rigid (OrmoComp), moderately stiff hydrogel (polyethylene glycol diacrylate, PEGDA 700), and soft elastomeric (photocurable polydimethylsiloxane, PDMS) materials were developed and evaluated. Cone support structures enabled high-fidelity printing of the softer materials. A compact heat-shrink tubing interface provided leak-free perfusion without bulky fittings. Physiologically relevant flow velocities and Dextran diffusion through the scaffold were successfully demonstrated. Cytocompatibility assays confirmed that all TPL-printed scaffold materials supported human neural stem cell viability. Among peripheral components, lids fabricated via fused deposition modeling designed to hold microfluidic needle adapters exhibited good biocompatibility, while those made using liquid crystal display-based photopolymerization showed significant cytotoxicity despite indirect exposure. Overall, this platform enables creation of multi-material microvascular systems facilitated by TPL technology for complex, 3D neurovascular modeling, blood–brain barrier studies, and integration into vascularized organ-on-chip applications. Full article
(This article belongs to the Special Issue Microfluidic Chips for Biomedical Applications)
Show Figures

Figure 1

12 pages, 1151 KB  
Article
Photocurable Crosslinker from Bio-Based Non-Isocyanate Poly(hydroxyurethane) for Biocompatible Hydrogels
by Kathleen Hennig, Gabriele Vacun, Sibylle Thude and Wolfdietrich Meyer
Polymers 2025, 17(9), 1285; https://doi.org/10.3390/polym17091285 - 7 May 2025
Cited by 5 | Viewed by 1261
Abstract
This study explores the synthesis of photocurable non-isocyanate polyhydroxyethylurethanes (BPHUs) derived from renewable sources, designed for biomedical applications and the development towards advanced light curing processes. The following two pathways were developed: an aliphatic route using 1,4-butanediol-derived cyclic carbonates and an aromatic route [...] Read more.
This study explores the synthesis of photocurable non-isocyanate polyhydroxyethylurethanes (BPHUs) derived from renewable sources, designed for biomedical applications and the development towards advanced light curing processes. The following two pathways were developed: an aliphatic route using 1,4-butanediol-derived cyclic carbonates and an aromatic route with resorcinol-based carbonates. Ring-opening polymerization with dodecanediamine produced BPHU intermediates, which were methacrylated to form photoreactive derivatives (aliphatic MAs and aromatic MAs). Comprehensive characterization, including NMR, GPC, and FTIR, confirmed the successful synthesis. The UV curing of these methacrylated compounds yielded hydrogels with swelling properties. Aliphatic BPHUs achieved a gel content of 91.3% and a swelling of 1057%, demonstrating the flexibility and UV stability suitable for adaptable biomedical applications. Conversely, aromatic BPHUs displayed a gel content of 78.1% and a swelling of 3304%, indicating higher rigidity, which is advantageous for load-bearing uses. Cytotoxicity assessments adhering to the DIN EN ISO 10993-5 standard demonstrated non-cytotoxicity, with an >80% cell viability for both variants. This research underscores the potential of green chemistry in crafting biocompatible, versatile BPHUs, paving the way for eco-friendly materials in implantable medical devices. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

18 pages, 3890 KB  
Article
Polyethylene Glycol Diacrylate Adapted Photopolymerization Material for Contact Lens with Improved Elastic Modulus Properties
by Yamin Chen, Dianyang Li, Yougen Chen and Hui Fang
Materials 2025, 18(4), 827; https://doi.org/10.3390/ma18040827 - 13 Feb 2025
Cited by 6 | Viewed by 3539
Abstract
Four kinds of silicone hydrogel transparent contact lenses (CLs) with different formulations were prepared by the free radical photocuring polymerization. By mixing polyethylene glycol diacrylate (PEGDA) of 1000 Da with ethylene glycol dimethacrylate (EGDMA) and adding other silicone monomers and hydrophilic monomers, the [...] Read more.
Four kinds of silicone hydrogel transparent contact lenses (CLs) with different formulations were prepared by the free radical photocuring polymerization. By mixing polyethylene glycol diacrylate (PEGDA) of 1000 Da with ethylene glycol dimethacrylate (EGDMA) and adding other silicone monomers and hydrophilic monomers, the transparency and flexibility of the material were successfully achieved. By optimizing the weight percentage of each component, the best balance of optical performance can be achieved. The photocuring properties of the materials were characterized by electronic universal test, double-beam UV-visible spectrophotometer, Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The results showed that the addition of higher PEGDA content reduces the elastic modulus, improves curing efficiency, improves equilibrium water content (EWC), and enhances light transmission. Hydrogels containing only high PEGDA but no EGDMA showed similar curing rates, water content, and elastic modulus, but had the worst optical transparency, far inferior to the materials mixed with PEGDA and EGDMA. Additionally, imaging performance of the CLs was further evaluated through simulation analysis using Ansys Zemax OpticStudio2024 software. This research provides a new choice of material consideration to improve the performance and wearing comfort of CLs. Full article
Show Figures

Graphical abstract

14 pages, 7992 KB  
Article
Preparation and Performance Study of Dual-Network Photo-Curable Conductive Silk Fibroin Composite Hydrogel
by Liangduo Li, Xujing Zhang, Yan Xu, Zongheng Shao, Jiahao Ma and Tao Zhu
Materials 2025, 18(4), 779; https://doi.org/10.3390/ma18040779 - 11 Feb 2025
Viewed by 1437
Abstract
The printing precision of hydrogels directly determines the mechanical and electrical performance of scaffolds. In this study, poly(3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) was directly compounded with glycidyl methacrylate-modified silk fibroin (Sil-MA) through a one-pot method to increase the solid content of the printing ink, enhancing [...] Read more.
The printing precision of hydrogels directly determines the mechanical and electrical performance of scaffolds. In this study, poly(3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) was directly compounded with glycidyl methacrylate-modified silk fibroin (Sil-MA) through a one-pot method to increase the solid content of the printing ink, enhancing its mechanical, electrical, and printability properties. A dual-network photo-curable conductive silk fibroin composite hydrogel (CDMA) was successfully prepared. The results show that the introduction of PEDOT:PSS significantly improved the conductivity of the hydrogel. (The bandgap decreased from 2.36 eV to 1.125 eV, and the maximum conductivity reached 0.534 S/m.) It also enhanced the microscopic 3D network density and mechanical properties of the hydrogel (compressive modulus up to 192 kPa). Moreover, the hydrogel demonstrated good stability during cyclic stability testing, providing a new approach to developing materials capable of high-precision printing with stable electrical performance. Full article
Show Figures

Figure 1

24 pages, 19333 KB  
Article
Development of Thermosensitive Hydrogels with Tailor-Made Geometries to Modulate Cell Harvesting of Non-Flat Cell Cultures
by Rubén García-Sobrino, Enrique Martínez-Campos, Daniel Marcos-Ríos, Zenen Zepeda-Rodríguez, Juan L. Valentín, Raúl Sanz-Horta, Marina León-Calero, Helmut Reinecke, Carlos Elvira, Alberto Gallardo and Juan Rodríguez-Hernández
Gels 2024, 10(12), 802; https://doi.org/10.3390/gels10120802 - 6 Dec 2024
Cited by 1 | Viewed by 1588
Abstract
Considering the complexity in terms of design that characterizes the different tissues of the human body, it is necessary to study and develop more precise therapies. In this sense, this article presents the possibility of fabricating photocurable thermosensitive hydrogels with free geometry and [...] Read more.
Considering the complexity in terms of design that characterizes the different tissues of the human body, it is necessary to study and develop more precise therapies. In this sense, this article presents the possibility of fabricating photocurable thermosensitive hydrogels with free geometry and based on N-Vinyl Caprolactam (VCL) with the aim of modulating the adhesion of non-planar cell cultures. The fabrication process is based on the use as a mold of two-layer thick water-soluble polyvinyl alcohol (PVA) previously printed by Extrusion Material (MatEx). From this technology it has been possible to obtain hydrogels with different 3D geometries and different crosslinking percentages (2, 4 and 6 mol%). Studies have shown that networks reduce their thermosensitivity not only when the percentage of crosslinking in the formulation increases, but also when the thickness of the hydrogel obtained increases. Based on this reduction in thermosensitivity, the less crosslinked (2 mol%) hydrogels have been evaluated to carry out a novel direct application in which hydrogels with curved geometry have allowed cell adhesion and proliferation at 37 °C with the endothelial cell line C166-GFP; likewise, non-aggressive cell detachment was observed when the hydrogel temperature was reduced to values of 20 °C. Therefore, the present manuscript shows a novel application for the synthesis of free-form thermosensitive hydrogels that allows modulation of non-planar cell cultures. Full article
(This article belongs to the Special Issue Advances in Hydrogels for 3D Printing)
Show Figures

Graphical abstract

9 pages, 2815 KB  
Brief Report
An Adhesive Hydrogel Technology for Enhanced Cartilage Repair: A Preliminary Proof of Concept
by Peyman Karami, Robin Martin, Alexis Laurent, Hui Yin Nam, Virginie Philippe, Lee Ann Applegate and Dominique P. Pioletti
Gels 2024, 10(10), 657; https://doi.org/10.3390/gels10100657 - 14 Oct 2024
Cited by 5 | Viewed by 6663
Abstract
Knee cartilage has limited natural healing capacity, complicating the development of effective treatment plans. Current non-cell-based therapies (e.g., microfracture) result in poor repair cartilage mechanical properties, low durability, and suboptimal tissue integration. Advanced treatments, such as autologous chondrocyte implantation, face challenges including cell [...] Read more.
Knee cartilage has limited natural healing capacity, complicating the development of effective treatment plans. Current non-cell-based therapies (e.g., microfracture) result in poor repair cartilage mechanical properties, low durability, and suboptimal tissue integration. Advanced treatments, such as autologous chondrocyte implantation, face challenges including cell leakage and inhomogeneous distribution. Successful cell therapy relies on prolonged retention of therapeutic biologicals at the implantation site, yet the optimal integration of implanted material into the surrounding healthy tissue remains an unmet need. This study evaluated the effectiveness of a newly developed photo-curable adhesive hydrogel for cartilage repair, focusing on adhesion properties, integration performance, and ability to support tissue regeneration. The proposed hydrogel design exhibited significant adhesion strength, outperforming commercial adhesives such as fibrin-based glues. An in vivo goat model was used to evaluate the hydrogels’ adhesion properties and long-term integration into full-thickness cartilage defects over six months. Results showed that cell-free hydrogel-treated defects achieved superior integration with surrounding tissue and enhanced cartilage repair, with notable lateral integration. In vitro results further demonstrated high cell viability, robust matrix production, and successful cell encapsulation within the hydrogel matrix. These findings highlight the potential of adhesive hydrogel formulations to improve the efficacy of cell-based therapies, offering a potentially superior treatment for knee cartilage defects. Full article
(This article belongs to the Special Issue Recent Advances in Biopolymer Gels)
Show Figures

Graphical abstract

13 pages, 6005 KB  
Article
Facile One-Pot Preparation of Polypyrrole-Incorporated Conductive Hydrogels for Human Motion Sensing
by Zunhui Zhao, Jiahao Liu, Jun Lv, Bo Liu, Na Li and Hangyu Zhang
Sensors 2024, 24(17), 5814; https://doi.org/10.3390/s24175814 - 7 Sep 2024
Cited by 4 | Viewed by 2602
Abstract
Conductive hydrogels have been widely used in soft robotics, as well as skin-attached and implantable bioelectronic devices. Among the candidates of conductive fillers, conductive polymers have become popular due to their intrinsic conductivity, high biocompatibility, and mechanical flexibility. However, it is still a [...] Read more.
Conductive hydrogels have been widely used in soft robotics, as well as skin-attached and implantable bioelectronic devices. Among the candidates of conductive fillers, conductive polymers have become popular due to their intrinsic conductivity, high biocompatibility, and mechanical flexibility. However, it is still a challenge to construct conductive polymer-incorporated hydrogels with a good performance using a facile method. Herein, we present a simple method for the one-pot preparation of conductive polymer-incorporated hydrogels involving rapid photocuring of the hydrogel template followed by slow in situ polymerization of pyrrole. Due to the use of a milder oxidant, hydrogen peroxide, for polypyrrole synthesis, the photocuring of the hydrogel template and the growing of polypyrrole proceeded in an orderly manner, making it possible to prepare conductive polymer-incorporated hydrogels in one pot. The preparation process is facile and extensible. Moreover, the obtained hydrogels exhibit a series of properties suitable for biomedical strain sensors, including good conductivity (2.49 mS/cm), high stretchability (>200%), and a low Young’s modulus (~30 kPa) that is compatible with human skin. Full article
Show Figures

Figure 1

13 pages, 2977 KB  
Article
3D-Printed Phenylboronic Acid-Bearing Hydrogels for Glucose-Triggered Drug Release
by Jérémy Odent, Nicolas Baleine, Serena Maria Torcasio, Sarah Gautier, Olivier Coulembier and Jean-Marie Raquez
Polymers 2024, 16(17), 2502; https://doi.org/10.3390/polym16172502 - 3 Sep 2024
Cited by 3 | Viewed by 3149
Abstract
Diabetes is a major health concern that the next-generation of on-demand insulin releasing implants may overcome via personalized therapy. Therein, 3D-printed phenylboronic acid-containing implants with on-demand glucose-triggered drug release abilities are produced using high resolution stereolithography technology. To that end, the methacrylation of [...] Read more.
Diabetes is a major health concern that the next-generation of on-demand insulin releasing implants may overcome via personalized therapy. Therein, 3D-printed phenylboronic acid-containing implants with on-demand glucose-triggered drug release abilities are produced using high resolution stereolithography technology. To that end, the methacrylation of phenylboronic acid is targeted following a two-step reaction. The resulting photocurable phenylboronic acid derivative is accordingly incorporated within bioinert polyhydroxyethyl methacrylate-based hydrogels at varying loadings. The end result is a sub-centimeter scaled 3D-printed bioinert implant that can be remotely activated with 1,2-diols and 1,3-diols such as glucose for on-demand drug administration such as insulin. As a proof of concept, varying glucose concentration from hypoglycemic to hyperglycemic levels readily allow the release of pinacol, i.e., a 1,2-diol-containing model molecule, at respectively low and high rates. In addition, the results demonstrated that adjusting the geometry and size of the 3D-printed part is a simple and suitable method for tailoring the release behavior and dosage. Full article
(This article belongs to the Special Issue Progress in 3D Printing II)
Show Figures

Figure 1

17 pages, 5735 KB  
Article
Coated Microneedle System for Delivery of Clotrimazole in Deep-Skin Mycoses
by Barbara Jadach, Agata Nowak, Jolanta Długaszewska, Oliwia Kordyl, Irena Budnik and Tomasz Osmałek
Gels 2024, 10(4), 264; https://doi.org/10.3390/gels10040264 - 15 Apr 2024
Cited by 12 | Viewed by 4393
Abstract
Mycoses of the skin are infectious diseases caused by fungal microorganisms that are generally treated with topical agents. However, such therapy is often ineffective and has to be supported by oral use of active substances, which, in turn, can cause many side effects. [...] Read more.
Mycoses of the skin are infectious diseases caused by fungal microorganisms that are generally treated with topical agents. However, such therapy is often ineffective and has to be supported by oral use of active substances, which, in turn, can cause many side effects. A good alternative for the treatment of deep-skin mycoses seems to be microneedles (MNs). The aim of this research was to fabricate and evaluate the properties of innovative MNs coated with a hydrogel as potential carriers for clotrimazole (CLO) in the treatment of deep fungal skin infections. A 3D printing technique using a photo-curable resin was employed to produce MNs, which were coated with hydrogels using a dip-coating method. Hydrogels were prepared with carbopol EZ-3 Polymer (Lubrizol) in addition to glycerol and triisopropanolamine. Clotrimazole was introduced into the gel as the solution in ethanol or was suspended. In the first step of the investigation, a texture analysis of hydrogels was prepared with a texture analyzer, and the drug release studies were conducted with the use of automatic Franz diffusion cells. Next, the release profiles of CLO for coated MNs were checked. The last part of the investigation was the evaluation of the antifungal activity of the prepared systems, and the inhibition of the growth of Candida albicans was checked with the diffusion and suspended-plate methods. The texture profile analysis (TPA) for the tested hydrogels showed that the addition of ethanol significantly affects the following studied parameters: hardness, adhesiveness and gumminess, causing a decrease in their values. On the other hand, for the gels with suspended CLO, better spreadability was seen compared to gels with dissolved CLO. The presence of the active substance did not significantly affect the values of the tested parameters. In the dissolution study, the results showed that higher amounts of CLO were released for MNs coated with a hydrogel containing dissolved CLO. Also, microbiological tests proved its efficacy against fungal cultures. Qualitative tests carried out using the diffusion method showed that circular zones of inhibition of fungal growth on the plate were obtained, confirming the hypothesis of effectiveness. The suspension-plate technique confirmed the inhibitory effect of applied CLO on the growth of Candida albicans. From the analysis of the data, the MNs coated with CLO dissolved in hydrogel showed better antifungal activity. All received results seem to be helpful in developing further studies for MNs as carriers of antifungal substances. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Engineering and Biomedical Therapeutics)
Show Figures

Graphical abstract

20 pages, 6732 KB  
Article
Development of Biphasic Injectable Hydrogels for Meniscus Scaffold from Photocrosslinked Glycidyl Methacrylate-Modified Poly(Vinyl Alcohol)/Glycidyl Methacrylate-Modified Silk Fibroin
by Rachasit Jeencham, Jiraporn Sinna, Chaiwat Ruksakulpiwat, Tulyapruek Tawonsawatruk, Piya-on Numpaisal and Yupaporn Ruksakulpiwat
Polymers 2024, 16(8), 1093; https://doi.org/10.3390/polym16081093 - 14 Apr 2024
Cited by 10 | Viewed by 2744
Abstract
The development of a hydrogel material with a modified chemical structure of poly(vinyl alcohol) (PVA) and silk fibroin (SF) using glycidyl methacrylate (GMA) (denoted as PVA-g-GMA and SF-g-GMA) is an innovative approach in the field of biomaterials and meniscus tissue engineering in this [...] Read more.
The development of a hydrogel material with a modified chemical structure of poly(vinyl alcohol) (PVA) and silk fibroin (SF) using glycidyl methacrylate (GMA) (denoted as PVA-g-GMA and SF-g-GMA) is an innovative approach in the field of biomaterials and meniscus tissue engineering in this study. The PVA-g-GMA/SF-g-GMA hydrogel was fabricated using different ratios of PVA-g-GMA to SF-g-GMA: 100/0, 75/25, 50/50, 25/75, and 0/100 (w/w of dry substances), using lithium phenyl (2,4,6-trimethylbenzoyl)phosphinate (LAP) as a free radical photoinitiator, for 10 min at a low ultraviolet (UV) intensity (365 nm, 6 mW/cm2). The mechanical properties, morphology, pore size, and biodegradability of the PVA-g-GMA/SF-g-GMA hydrogel were investigated. Finally, for clinical application, human chondrocyte cell lines (HCPCs) were mixed into PVA-g-GMA/SF-g-GMA solutions and fabricated into hydrogel to study the viability of live and dead cells and gene expression. The results indicate that as the SF-g-GMA content increased, the compressive modulus of the PVA-g-GMA/SF-g-GMA hydrogel dropped from approximately 173 to 11 kPa. The degradation rates of PVA-g-GMA/SF-g-GMA 100/0, 75/25, and 50/50 reached up to 15.61%, 17.23%, and 18.93% in 4 months, respectively. In all PVA-g-GMA/SF-g-GMA conditions on day 7, chondrocyte cell vitality exceeded 80%. The PVA-g-GMA/SF-g-GMA 75:25 and 50:50 hydrogels hold promise as a biomimetic biphasic injectable hydrogel for encapsulated augmentation, offering advantages in terms of rapid photocurability, tunable mechanical properties, favorable biological responses, and controlled degradation. Full article
(This article belongs to the Special Issue Advances in Poly(Vinyl Alcohol)-Based Materials)
Show Figures

Figure 1

17 pages, 5245 KB  
Article
Evaluation of Various Types of Alginate Inks for Light-Mediated Extrusion 3D Printing
by Aitana Zoco de la Fuente, Ane García-García, Leyre Pérez-Álvarez, Isabel Moreno-Benítez, Asier Larrea-Sebal, Cesar Martin and Jose Luis Vilas-Vilela
Polymers 2024, 16(7), 986; https://doi.org/10.3390/polym16070986 - 4 Apr 2024
Cited by 2 | Viewed by 2988
Abstract
Naturally derived biopolymers modifying or combining with other components are excellent candidates to promote the full potential of additive manufacturing in biomedicine, cosmetics, and the food industry. This work aims to develop new photo-cross-linkable alginate-based inks for extrusion 3D printing. Specifically, this work [...] Read more.
Naturally derived biopolymers modifying or combining with other components are excellent candidates to promote the full potential of additive manufacturing in biomedicine, cosmetics, and the food industry. This work aims to develop new photo-cross-linkable alginate-based inks for extrusion 3D printing. Specifically, this work is focused on the effect of the addition of cross-linkers with different chemical structures (polyethylene glycol diacrylate (PEGDA), N,N′-methylenebisacrylamide (NMBA), and acrylic acid (AA)) in the potential printability and physical properties of methacrylated alginate (AlgMe) hydrogels. Although all inks showed maximum photo-curing conversions and gelation times less than 2 min, only those structures printed with the inks incorporating cross-linking agents with flexible and long chain structure (PEGDA and AA) displayed acceptable size accuracy (~0.4–0.5) and printing index (Pr ~1.00). The addition of these cross-linking agents leads to higher Young’s moduli (from 1.6 to 2.0–2.6 KPa) in the hydrogels, and their different chemical structures results in variations in their mechanical and rheological properties. However, similar swelling ability (~15 swelling factor), degradability (~45 days 100% weight loss), and cytocompatibility (~100%) were assessed in all the systems, which is of great importance for the final applicability of these hydrogels. Full article
(This article belongs to the Special Issue Cross-Linked Polymers II)
Show Figures

Figure 1

17 pages, 4773 KB  
Article
Nonwoven Reinforced Photocurable Poly(glycerol sebacate)-Based Hydrogels
by Michael Phillips, Giuseppe Tronci, Christopher M. Pask and Stephen J. Russell
Polymers 2024, 16(7), 869; https://doi.org/10.3390/polym16070869 - 22 Mar 2024
Cited by 4 | Viewed by 2115
Abstract
Implantable hydrogels should ideally possess mechanical properties matched to the surrounding tissues to enable adequate mechanical function while regeneration occurs. This can be challenging, especially when degradable systems with a high water content and hydrolysable chemical bonds are required in anatomical sites under [...] Read more.
Implantable hydrogels should ideally possess mechanical properties matched to the surrounding tissues to enable adequate mechanical function while regeneration occurs. This can be challenging, especially when degradable systems with a high water content and hydrolysable chemical bonds are required in anatomical sites under constant mechanical stimulation, e.g., a foot ulcer cavity. In these circumstances, the design of hydrogel composites is a promising strategy for providing controlled structural features and macroscopic properties over time. To explore this strategy, the synthesis of a new photocurable elastomeric polymer, poly(glycerol-co-sebacic acid-co-lactic acid-co-polyethylene glycol) acrylate (PGSLPA), is investigated, along with its processing into UV-cured hydrogels, electrospun nonwovens and fibre-reinforced variants, without the need for a high temperature curing step or the use of hazardous solvents. The mechanical properties of bioresorbable PGSLPA hydrogels were studied with and without electrospun nonwoven reinforcement and with varied layered configurations, aiming to determine the effects of the microstructure on the bulk compressive strength and elasticity. The nonwoven reinforced PGSLPA hydrogels exhibited a 60% increase in compressive strength and an 80% increase in elastic moduli compared to the fibre-free PGSLPA samples. The mechanical properties of the fibre-reinforced hydrogels could also be modulated by altering the layering arrangement of the nonwoven and hydrogel phase. The nanofibre-reinforced PGSLPA hydrogels also exhibited good elastic recovery, as evidenced by the hysteresis in compression fatigue stress–strain evaluations showing a return to the original dimensions. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

13 pages, 3343 KB  
Article
Antiadhesive Hyaluronic Acid-Based Wound Dressings Promote Wound Healing by Preventing Re-Injury: An In Vivo Investigation
by Da Som Kim, Keum-Yong Seong, Hyeseon Lee, Min Jae Kim, Sung-Min An, Jea Sic Jeong, So Young Kim, Hyeon-Gu Kang, Sangsoo Jang, Dae-Youn Hwang, Sung-Baek Seo, Seong-Min Jo, Seung Yun Yang and Beum-Soo An
Biomedicines 2024, 12(3), 510; https://doi.org/10.3390/biomedicines12030510 - 23 Feb 2024
Cited by 9 | Viewed by 4938
Abstract
Wound dressings are widely used to protect wounds and promote healing. The water absorption and antifriction properties of dressings are important for regulating the moisture balance and reducing secondary damages during dressing changes. Herein, we developed a hyaluronic acid (HA)-based foam dressing prepared [...] Read more.
Wound dressings are widely used to protect wounds and promote healing. The water absorption and antifriction properties of dressings are important for regulating the moisture balance and reducing secondary damages during dressing changes. Herein, we developed a hyaluronic acid (HA)-based foam dressing prepared via the lyophilization of photocrosslinked HA hydrogels with high water absorption and antiadhesion properties. To fabricate the HA-based foam dressing (HA foam), the hydroxyl groups of the HA were modified with methacrylate groups, enabling rapid photocuring. The resulting photocured HA solution was freeze-dried to form a porous structure, enhancing its exudate absorption capacity. Compared with conventional biopolymer-based foam dressings, this HA foam exhibited superior water absorption and antifriction properties. To assess the wound-healing potential of HA foam, animal experiments involving SD rats were conducted. Full-thickness defects measuring 2 × 2 cm2 were created on the skin of 36 rats, divided into four groups with 9 individuals each. The groups were treated with gauze, HA foam, CollaDerm®, and CollaHeal® Plus, respectively. The rats were closely monitored for a period of 24 days. In vivo testing demonstrated that the HA foam facilitated wound healing without causing inflammatory reactions and minimized secondary damages during dressing changes. This research presents a promising biocompatible foam wound dressing based on modified HA, which offers enhanced wound-healing capabilities and improved patient comfort and addresses the challenges associated with conventional dressings. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

16 pages, 3735 KB  
Article
Extrusion-Based 3D Printing of Photocrosslinkable Chitosan Inks
by Ane García-García, Leyre Pérez-Álvarez, Leire Ruiz-Rubio, Asier Larrea-Sebal, Cesar Martin and José Luis Vilas-Vilela
Gels 2024, 10(2), 126; https://doi.org/10.3390/gels10020126 - 4 Feb 2024
Cited by 10 | Viewed by 4219
Abstract
Photocuring of chitosan has shown great promise in the extrusion-based 3D printing of scaffolds for advanced biomedical and tissue engineering applications. However, the poor mechanical stability of methacrylated chitosan photocuring ink restricts its applicability. The inclusion of co-networks by means of simultaneous polycomplex [...] Read more.
Photocuring of chitosan has shown great promise in the extrusion-based 3D printing of scaffolds for advanced biomedical and tissue engineering applications. However, the poor mechanical stability of methacrylated chitosan photocuring ink restricts its applicability. The inclusion of co-networks by means of simultaneous polycomplex formation is an effective method by which to solve this drawback, but the formed hydrogel inks are not printable. This work aims to develop new photocurable chitosan inks based on the simultaneous photocrosslinking of methacrylated chitosan (CHIMe) with N,N′-methylenebisacrylamide, polyethylene glycol diacrylate, and acrylic acid to be applied in extrusion 3D printing. Interestingly, the polycomplex co-network corresponding to the acrylic-acid-based ink could be successfully printed by the here-presented simultaneous photocuring strategy. Further, the conversion of photocrosslinking was studied via photo-DSC analyses that revealed a clear dependence on the chemical structure of the employed crosslinking agents (from 40 to ~100%). In addition, the mechanical and rheological properties of the photocured hydrogels were comparatively studied, as well as the printing quality of the extruded scaffolds. The newly developed chitosan photocurable inks demonstrated extrusion printability (squareness ~0.90; uniformity factor ~0.95) and tunable mechanical properties (Young modulus 14–1068 Pa) by means of different crosslinking approaches according to the chemical architecture of the reactive molecules employed. This work shows the great potential of photocrosslinkable chitosan inks. Full article
(This article belongs to the Special Issue Advances in Chitin- and Chitosan-Based Hydrogels)
Show Figures

Graphical abstract

Back to TopTop