Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = photochromic compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1628 KiB  
Communication
Synthesis and Photochromic Properties of Diarylethene Derivatives with Aggregation-Induced Emission (AIE) Behavior
by Jiaxin Guo, Haoyuan Yu and Yuhua Jin
Materials 2025, 18(11), 2520; https://doi.org/10.3390/ma18112520 - 27 May 2025
Viewed by 633
Abstract
Photochromic materials have attracted widespread attention due to their potential applications in optical information storage, optoelectronic devices, and fluorescence probes. As a typical photochromic system, diarylethene derivatives are considered one of the most promising photochromic materials due to their outstanding photostability and significant [...] Read more.
Photochromic materials have attracted widespread attention due to their potential applications in optical information storage, optoelectronic devices, and fluorescence probes. As a typical photochromic system, diarylethene derivatives are considered one of the most promising photochromic materials due to their outstanding photostability and significant bistable properties. Based on an aggregation-induced emission (AIE) mechanism, this study employed a molecular structural engineering strategy to design and synthesize a series of diarylethene derivatives containing ethyl benzoate substituents. A systematic investigation of the structure–activity relationship between their photochromic behavior and AIE characteristics revealed a dual-state light response mechanism in the solid and solution states. This study demonstrates that the target compounds exhibited significant photochromic responses under UV–visible light irradiation, with enhanced emission in the solid state compared to the solution state, confirming the remarkable enhancement effect of AIE on aggregation. Structural characterization techniques such as nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectrometry (H RMS) were employed to elucidate the correlation between molecular conformation and photophysical properties. Furthermore, these materials demonstrated potential for multi-level anti-counterfeiting, high-density optical storage, and bioimaging applications, providing experimental foundations for the development of novel multifunctional photochromic materials. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

20 pages, 4879 KiB  
Article
Design, Characterization, and Preparation of New Smart Photoactive Polymers and Their Capacity for Photodynamic Antimicrobial Action in Organic Film
by Oscar G. Marambio, Franco I. Barrera, Rudy Martin-Trasancos, Julio Sánchez, Christian Erick Palavecino and Guadalupe del C. Pizarro
Polymers 2025, 17(9), 1247; https://doi.org/10.3390/polym17091247 - 3 May 2025
Viewed by 373
Abstract
The photosensitive properties of smart photoactive polymers give them a wide range of potential applications across various fields. This study focuses on designing polymeric systems that incorporate hydrophilic polymers, with the primary goal of adapting these materials for biological applications. Specifically, it aims [...] Read more.
The photosensitive properties of smart photoactive polymers give them a wide range of potential applications across various fields. This study focuses on designing polymeric systems that incorporate hydrophilic polymers, with the primary goal of adapting these materials for biological applications. Specifically, it aims to contribute to the development of photochromic materials for optical processing, utilizing both molecular and macromolecular components. Additionally, this study evaluates the effectiveness of photoactive polymers in photodynamic therapy (PDT). It details the synthesis and characterization of photoactive copolymers derived from maleic anhydride (MAn) combined with vinyl monomers such as 2-methyl-2-butene (MB) and 1-octadecene (OD), as well as the organic compound 1-(2-hydroxyethyl)-3,3-dimethylindoline-6-nitrobenzopyran (SP). The two novel optically active alternating polymeric systems, poly(maleic anhydride-alt-octadecene) and poly(maleic anhydride-alt-2-methyl-2-butene), were functionalized with SP through an esterification process in a 1:1 monomer feed ratio, using pyridine as a catalyst. This methodology incorporated approximately 100% of the photoactive molecules into the main acrylic chain to prepare the alternating copolymers. These copolymers were characterized by UV-visible, FTIR, and 1H-NMR spectroscopy and analysis of their optical and thermal properties. When exposed to UV light, the photoactive polymer films can develop a deep blue color (566 nm in the absorption spectra). Finally, the study also assesses their capacity for photodynamic antimicrobial action in organic film. Notably, the photoactive P(MAn-alt-2MB)-PS significantly enhances the photodynamic antimicrobial activity of the photosensitizer Ru(bpy) against two bacterial strains of Staphylococcus aureus, reducing the minimum inhibitory concentration (MIC) from 2 µg/mL to 0.5 µg/mL. Therefore, 4 times less photosensitizer is required when mixed with the photoactive polymer to inhibit the growth of antibiotic-sensitive and -resistant bacteria. Full article
(This article belongs to the Special Issue Smart and Bio-Medical Polymers: 2nd Edition)
Show Figures

Graphical abstract

14 pages, 5415 KiB  
Article
Amphiphilic Styrene-Based Pyrene Derivatives: Tunable Aggregation Luminescence and Their Photo-Induced Dimerization Behavior
by Junying Zhang, Xingwei Luo and Juan Qiu
Molecules 2025, 30(8), 1719; https://doi.org/10.3390/molecules30081719 - 11 Apr 2025
Viewed by 509
Abstract
Since the discovery of the aggregation-induced emission (AIE) phenomenon, various stimuli-responsive materials have been rapidly developed. However, how to achieve the transition between aggregation-caused quenching (ACQ) and AIE through molecular design is an urgent problem to be solved. In this work, we synthesized [...] Read more.
Since the discovery of the aggregation-induced emission (AIE) phenomenon, various stimuli-responsive materials have been rapidly developed. However, how to achieve the transition between aggregation-caused quenching (ACQ) and AIE through molecular design is an urgent problem to be solved. In this work, we synthesized and studied the aggregation luminescence behavior and photochromism of two different substituted pyrene ethylene derivatives, 1-H and 1-CN. Due to the different substituents attached to the ethylene unit, 1-H exhibits ACQ luminescence behavior. When the substituent is a cyanide group, it exhibits AIE behavior. In addition, the ordered nanoparticles formed by self-assembly in aqueous solution exhibit interesting photo-induced cyclization behavior, which leads to fluorescence quenching under ultraviolet light irradiation (λ = 365 nm). Therefore, due to their amphiphilicity and photo-responsiveness, these compounds can be used as anticounterfeiting inks in information encryption. This work contributes new members to the family of amphiphilic photo-responsive materials and demonstrates their potential applications in optical information storage and multi-color luminescence. Full article
(This article belongs to the Special Issue Advances in Functional Organic Dye Chemistry)
Show Figures

Graphical abstract

22 pages, 8725 KiB  
Article
Schiff Base Compounds Derived from 5-Methyl Salicylaldehyde as Turn-On Fluorescent Probes for Al3+ Detection: Experimental and DFT Calculations
by Huan-Qing Li, Shi-Hang Yang, Yun Li, Wan-Xin Ye, Zi-Yu Liao, Jia-Qian Lu and Zhao-Yang Wang
Molecules 2025, 30(5), 1128; https://doi.org/10.3390/molecules30051128 - 28 Feb 2025
Cited by 2 | Viewed by 883
Abstract
Using 5-methyl salicylaldehyde (2) as a reactant to react with different amines, 2-aminobenzimidazole (1a), 2-aminobenzothiazole (1b), and 2-aminopyridine (1c), respectively, three types of Schiff base fluorescent probes 3a3c were designed and synthesized for [...] Read more.
Using 5-methyl salicylaldehyde (2) as a reactant to react with different amines, 2-aminobenzimidazole (1a), 2-aminobenzothiazole (1b), and 2-aminopyridine (1c), respectively, three types of Schiff base fluorescent probes 3a3c were designed and synthesized for selective detection of Al3+ in aqueous media. The structure of the compounds was acquired by 1H NMR, 13C NMR, and X-ray single-crystal diffraction. Furthermore, their photochromic and fluorescent behaviors have been investigated systematically by fluorescence spectra. Compounds 3a3c can exhibit high selectivity, sensitivity, and anti-interference properties towards Al3+ in aqueous media. Among them, the limit of detection (LOD) of probe 3b for Al3+ is 2.81 × 10−7 M. Notably, the response times of probes 3a3c for Al3+ are 90 s, 80 s, and 80 s, respectively, which are much faster than most previously reported probes. The coordination stoichiometry between compounds 3a3c and Al3+ has been verified to be 1:1 through the Job’s plot. After coordination with Al3+, the C=N isomerization of compounds 3a3c is inhibited, leading to the closure of the excited state intramolecular proton transfer (ESIPT) effect. At the same time, the fluorescence intensity is significantly increased through chelation-enhanced fluorescence mechanism (CHEF), which is confirmed by density functional theory (DFT) calculations. In addition, probes 3a3c can be potentially applied in the selective and high-precision detection of Al3+ in environmental systems. Full article
(This article belongs to the Special Issue Theoretical Study on Luminescent Properties of Organic Materials)
Show Figures

Figure 1

17 pages, 4795 KiB  
Article
Aggregation-Induced Emission-Active Cyanostilbene-Based Liquid Crystals: Self-Assembly, Photophysical Property, and Multiresponsive Behavior
by Bian Li, Junde Zhang, Juan Wang and Xiaofang Chen
Molecules 2024, 29(23), 5811; https://doi.org/10.3390/molecules29235811 - 9 Dec 2024
Cited by 2 | Viewed by 1287
Abstract
Cyanostilbene (CS)-related conjugated groups can be considered as dual functional groups of AIEgen and mesogen to construct photoluminescent liquid crystals, and it is essential to study the relationship between their molecular structures and compound properties systematically. In this paper, we designed and synthesized [...] Read more.
Cyanostilbene (CS)-related conjugated groups can be considered as dual functional groups of AIEgen and mesogen to construct photoluminescent liquid crystals, and it is essential to study the relationship between their molecular structures and compound properties systematically. In this paper, we designed and synthesized linear and bent-shaped CS derivatives containing ester- and amide-connecting groups and different substituted numbers of alkoxy tails. Their phase behaviors and photophysical properties were investigated in depth. The bent-shaped compounds with the mono-substituted alkoxy tail exhibit a smectic C structure, and those containing two or three alkoxy tails possess a hexagonal columnar phase structure. The compounds exhibit aggregation-induced emission (AIE) properties in tetrahydrofuran (THF)/water mixtures. When the water fraction increases to a certain threshold, a dramatic increase in emission intensity and a red-shift in the fluorescence emission peak are detected. The emission peaks of the ester-type compounds in solid states are around 480 nm, and those of the amide-type compounds are extended to 590 nm, exhibiting versatile luminescent colors. Moreover, thermochromic and photochromic fluorescence-responsive properties are witnessed in these CS derivatives. This work provides a new strategy for the design and synthesis of fluorescent liquid crystalline materials with multiple response properties. Full article
(This article belongs to the Special Issue Polymeric Liquid Crystals and Applications, 2nd Edition)
Show Figures

Graphical abstract

5 pages, 2232 KiB  
Proceeding Paper
Synthesis and Spectral Properties of a New Spirophotochromic Molecule
by Artur Khuzin and Liliya Khuzina
Chem. Proc. 2024, 16(1), 23; https://doi.org/10.3390/ecsoc-28-20103 - 14 Nov 2024
Viewed by 384
Abstract
Due to their ability to reversibly isomerize under the influence of external stimuli, spiropyrans represent the most interesting class of organic photochromic molecules. The photochromic properties of the isomeric forms of spiropyrans differ significantly from each other, which makes it possible to use [...] Read more.
Due to their ability to reversibly isomerize under the influence of external stimuli, spiropyrans represent the most interesting class of organic photochromic molecules. The photochromic properties of the isomeric forms of spiropyrans differ significantly from each other, which makes it possible to use these photochromes as sensors, optoelectronic and holographic devices, memory elements, etc. Also, an undoubted advantage of spiropyrans compared to other classes of organic photochromes is the relative ease of their preparation and chemical transformation. At the same time, modification of the structure of spiropyrans by introducing various functional groups opens up great synthetic possibilities for obtaining new photochromic molecules with various spectral-kinetic characteristics. In the development of research aimed at expanding the boundaries of the use of spirophotochromic compounds, in order to obtain new light-controlled materials with different characteristics, as well as to study the influence of functional groups in the spirophotochromic molecule on the spectral and photochromic properties, we have synthesized a new spiropyran. In this work, we synthesized a new salt of photochromic spiropyran containing various functional groups (–CHO, –NO2, –OCH3, –(CH2)5N(CH3)2*HBr), capable of reversibly responding to external influences. Photoinduced transformations and the spectral and kinetic characteristics of the synthesized compound were studied. Full article
Show Figures

Figure 1

27 pages, 5833 KiB  
Review
All-Visible-Light-Activated Diarylethene Photoswitches
by Ruiji Li, Tao Ou, Li Wen, Yehao Yan, Wei Li, Xulong Qin and Shouxin Wang
Molecules 2024, 29(21), 5202; https://doi.org/10.3390/molecules29215202 - 3 Nov 2024
Cited by 2 | Viewed by 3517
Abstract
Photochromic compounds have attracted much attention for their potential applications in photo-actuators, optoelectronic devices and optical recording techniques. This interest is driven by their key photochemical and photophysical properties, which can be reversibly modulated by light irradiation. Among them, diarylethene compounds have garnered [...] Read more.
Photochromic compounds have attracted much attention for their potential applications in photo-actuators, optoelectronic devices and optical recording techniques. This interest is driven by their key photochemical and photophysical properties, which can be reversibly modulated by light irradiation. Among them, diarylethene compounds have garnered extensive investigation due to their excellent thermal stability of both open- and closed-form isomers, robust fatigue resistance, high photocyclization quantum yield and good photochromic performance in both solution and solid phases. However, a notable limitation in expanding the utility of diarylethene compounds is the necessity for ultraviolet light to induce their photochromism. This requirement poses challenges, as ultraviolet light can be detrimental to biological tissues, and its penetration is often restricted in various media. This review provides an overview of design strategies employed in the development of visible-light-responsive diarylethene compounds. These design strategies serve as a guideline for molecular design, with the potential to significantly broaden the applications of all-visible-light-activated diarylethene compounds in the realms of materials science and biomedical science. Full article
(This article belongs to the Special Issue Materials Chemistry in China—Second Edition)
Show Figures

Figure 1

8 pages, 1581 KiB  
Communication
MoOx-Based Colorimetric Sensor for Ultraviolet Visualization
by Zhaokang Zheng, Zhen Liu, Xingying Li and Aiwu Wang
Molecules 2024, 29(7), 1486; https://doi.org/10.3390/molecules29071486 - 27 Mar 2024
Viewed by 1393
Abstract
Due to the depletion of the global ozone layer and the presence of ozone holes, humans are increasingly exposed to threats from solar ultraviolet radiation. Therefore, researching and developing a highly selective, sensitive, simple, and fast ultraviolet sensor is of significant importance for [...] Read more.
Due to the depletion of the global ozone layer and the presence of ozone holes, humans are increasingly exposed to threats from solar ultraviolet radiation. Therefore, researching and developing a highly selective, sensitive, simple, and fast ultraviolet sensor is of significant importance for personal protection. In recent years, new nanomaterials have shown good application prospects in the research of ultraviolet sensors. MoOx nanostructures were prepared by a hydrothermal method. The experimental results show that, compared to traditional photochromic compounds, the new MoOx nanostructures exhibit high uniqueness, high selectivity, and excellent stability, and can perform rapid and accurate detection under full-band light. The beam sensor can not only detect through traditional electrical signal output, but also amplify, display, and analyze the beam through visualization and visual analysis, further improving the reliability and practicality of its application. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Graphical abstract

11 pages, 2990 KiB  
Communication
New Triphenylphosphonium Salts of Spiropyrans: Synthesis and Photochromic Properties
by Artur A. Khuzin, Dim I. Galimov, Liliya L. Khuzina and Adis A. Tukhbatullin
Molecules 2024, 29(2), 368; https://doi.org/10.3390/molecules29020368 - 11 Jan 2024
Cited by 3 | Viewed by 2652
Abstract
The most important area of modern pharmacology is the targeted delivery of drugs, and one of the most promising classes of chemical compounds for creating drugs of this kind are the photochromic spiropyrans, capable of light-controlled biological activity. This work is devoted to [...] Read more.
The most important area of modern pharmacology is the targeted delivery of drugs, and one of the most promising classes of chemical compounds for creating drugs of this kind are the photochromic spiropyrans, capable of light-controlled biological activity. This work is devoted to the synthesis and study of the photochromic properties of new triphenylphosphonium salts of spiropyrans. It was found that all the synthesized cationic spiropyrans have high photosensitivity, increased resistance to photodegradation and the ability for photoluminescence. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Graphical abstract

27 pages, 5010 KiB  
Review
From Visible to Near–Infrared Light–Triggered Photochromism: Negative Photochromism
by Ruiji Li, Bingzhao Mou, Mihoko Yamada, Wei Li, Takuya Nakashima and Tsuyoshi Kawai
Molecules 2024, 29(1), 155; https://doi.org/10.3390/molecules29010155 - 26 Dec 2023
Cited by 4 | Viewed by 4167
Abstract
Photochromic compounds, whose key molecular properties can be effectively modulated by light irradiation, have attracted significant attention for their potential applications in various research fields. The restriction of photoisomerization coloration induced by ultraviolet light limits their applications in the biomedical field and some [...] Read more.
Photochromic compounds, whose key molecular properties can be effectively modulated by light irradiation, have attracted significant attention for their potential applications in various research fields. The restriction of photoisomerization coloration induced by ultraviolet light limits their applications in the biomedical field and some other fields. Negative photochromism, wherein a relatively stable colored isomer transforms to a colorless metastable isomer under low–energy light irradiation, offers advantages in applications within materials science and life science. This review provides a summary of negatively photochromic compounds based on different molecular skeletons. Their corresponding design strategies and photochromic properties are presented to provide practical guidelines for future investigations. Negatively photochromic compounds can effectively expand the range of photochromic switches for future applications, offering unique properties such as responsiveness to visible to near–infrared light. Full article
(This article belongs to the Special Issue Feature Papers in Materials Chemistry)
Show Figures

Graphical abstract

13 pages, 3521 KiB  
Article
Transparent Organogels as a Medium for the Light-Induced Conversion from Spiropyran to Merocyanine
by Demetra Giuri, Paolo Ravarino and Claudia Tomasini
Gels 2023, 9(12), 932; https://doi.org/10.3390/gels9120932 - 27 Nov 2023
Cited by 1 | Viewed by 2204
Abstract
Low-molecular-weight peptide gelators are a versatile class of compounds able to form gels under a variety of conditions, even via simple ultrasound sonication. In this paper, the ability of Boc-L-Phe-D-Oxd-L-Phe-OBn to gelate three organic solvents (toluene, tert-butyl methyl ether, and ethanol) was evaluated. [...] Read more.
Low-molecular-weight peptide gelators are a versatile class of compounds able to form gels under a variety of conditions, even via simple ultrasound sonication. In this paper, the ability of Boc-L-Phe-D-Oxd-L-Phe-OBn to gelate three organic solvents (toluene, tert-butyl methyl ether, and ethanol) was evaluated. The rheological behaviour of the materials was assessed via strain sweep analysis, while the fibrous network was analysed via optical microscopy on the wet gels. The gel obtained from toluene is a highly transparent material, and the one from ethanol appears translucent, while the one from tert-butyl methyl ether is opaque. These gels were used to study the reversible light-induced transformation from spyropiran (SP) to merocyanine (MC) and back, as a model system to check the effect of the gel medium onto the rection kinetic. We observed that the solvent used to form the organogels has a crucial effect on the reaction, as gels from aprotic solvents stabilize the SP form, while the ones from protic solvents stabilize the MC form. We thus obtained a solid support to stabilize the two photochromic species just by changing the solvent polarity. Moreover, we could demonstrate that the self-assembled gels do not interfere with the light-driven conversion process, either starting from SP or MC, thus representing a valid and economical photochromic material. Full article
(This article belongs to the Special Issue State-of-the-Art Gel Research in Italy)
Show Figures

Graphical abstract

15 pages, 4455 KiB  
Article
Synthesis and Self-Assembling Properties of Carbohydrate- and Diarylethene-Based Photoswitchable Molecular Gelators
by Pramod Aryal, Joedian Morris, Surya B. Adhikari, Jonathan Bietsch and Guijun Wang
Molecules 2023, 28(17), 6228; https://doi.org/10.3390/molecules28176228 - 24 Aug 2023
Cited by 3 | Viewed by 2147
Abstract
Carbohydrate-based low-molecular-weight gelators are interesting new materials with many potential applications. These compounds can be designed to include multiple stimuli-responsive functional groups. In this study, we designed and synthesized several chemically responsive bola-glycolipids and dimeric carbohydrate- and diarylethene-based photoswitchable derivatives. The dimeric glycolipids [...] Read more.
Carbohydrate-based low-molecular-weight gelators are interesting new materials with many potential applications. These compounds can be designed to include multiple stimuli-responsive functional groups. In this study, we designed and synthesized several chemically responsive bola-glycolipids and dimeric carbohydrate- and diarylethene-based photoswitchable derivatives. The dimeric glycolipids formed stable gels in a variety of solvent systems. The best performing gelators in this series contained decanedioic and dithienylethene (DTE) spacers, which formed gels in eight and nine of the tested solvents, respectively. The two new DTE-containing esters possessed interesting photoswitching properties and DTE derivative 7 was found to have versatile gelation properties in many solvents, including DMSO solutions at low concentrations. The gels formed by these compounds were stable under acidic conditions and tended to hydrolyze under basic conditions. Several gels were used to absorb rhodamine B and Toluidine blue from aqueous solutions. In this study, we demonstrated the rational design of molecular gelators which incorporated photoresponsive and pH responsive functions, leading to the discovery of multiple effective stimuli-responsive gelators. Full article
(This article belongs to the Special Issue ECSOC-26)
Show Figures

Figure 1

25 pages, 8411 KiB  
Article
Novel Indoline Spiropyrans Based on Human Hormones β-Estradiol and Estrone: Synthesis, Structure, Chromogenic and Cytotoxic Properties
by Ilya V. Ozhogin, Artem D. Pugachev, Nadezhda I. Makarova, Anna A. Belanova, Anastasia S. Kozlenko, Irina A. Rostovtseva, Peter V. Zolotukhin, Oleg P. Demidov, Islam M. El-Sewify, Gennady S. Borodkin, Anatoly V. Metelitsa and Boris S. Lukyanov
Molecules 2023, 28(9), 3866; https://doi.org/10.3390/molecules28093866 - 4 May 2023
Cited by 6 | Viewed by 2575
Abstract
The introduction of a switchable function into the structure of a bioactive compound can endow it with unique capabilities for regulating biological activity under the influence of various types of external stimuli, which makes such hybrid compounds promising objects for photopharmacology, targeted drug [...] Read more.
The introduction of a switchable function into the structure of a bioactive compound can endow it with unique capabilities for regulating biological activity under the influence of various types of external stimuli, which makes such hybrid compounds promising objects for photopharmacology, targeted drug delivery and bio-imaging. This work is devoted to the synthesis and study of new spirocyclic derivatives of important human hormones—β-estradiol and estrone—possessing a wide range of biological activities. The obtained hybrid compounds represent an indoline spiropyrans family, a widely known class of organic photochromic compounds. The structure of the compounds was confirmed by 1H and 13C NMR, IR, HRMS and single-crystal X-ray analysis. The intermolecular interactions in the crystals of spiropyran (3) were defined by Hirshfeld surfaces and 2D fingerprint plots, which were successfully acquired from CrystalExplorer (v21.5). All target hybrids demonstrated pronounced activity in the visible region of the spectrum. The mechanisms of thermal isomerization processes of spiropyrans and their protonated merocyanine forms were studied by DFT methods, which revealed the energetic advantage of the protonation process with the formation of a β-cisoid CCCH conformer at the first stage and its further isomerization to more stable β-transoid forms. The proposed mechanism of acidochromic transformation was confirmed by the additional NMR study data that allowed for the detecting of the intermediate CCCH isomer. The study of the short-term cytotoxicity of new spirocyclic derivatives of estrogens and their 2-formyl-precursors was performed on the HeLa cell model. The precursors and spiropyrans differed in toxicity, suggesting their variable applicability in novel anti-cancer technologies. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

13 pages, 6108 KiB  
Article
The Encapsulation of Natural Organic Dyes on TiO2 for Photochromism Control
by Hye Ju Lee, Jong Won Shim, Jung Jin Lee and Won Jun Lee
Int. J. Mol. Sci. 2023, 24(9), 7860; https://doi.org/10.3390/ijms24097860 - 26 Apr 2023
Cited by 7 | Viewed by 3614
Abstract
Titanium dioxide (TiO2) plays a pivotal role in photocatalytic reactions and holds great promise for the cosmetic and paint industries due to its white color and high refractive index. However, the original color of TiO2 changes gradually to blue or [...] Read more.
Titanium dioxide (TiO2) plays a pivotal role in photocatalytic reactions and holds great promise for the cosmetic and paint industries due to its white color and high refractive index. However, the original color of TiO2 changes gradually to blue or yellow with UV irradiation, which affects its color realization. We encapsulated TiO2 with several natural organic dye compounds, including purpurin, curcumin, and safflower, to control its photochromism and realize a range of different colors. The chemical reaction between TiO2 and dyes based on their functional group was investigated, and the light absorption was tested via FTIR and UV–Vis spectroscopy. The changes in morphology and size distribution additionally supported their successful encapsulation. The discoloration after UV irradiation was evaluated by measuring the color difference (ΔE) of control TiO2 and dye encapsulated TiO2. The unique structure utilized natural dyes to preserve photochromism based on the physical barrier and automatically controlled the electronic transition of core TiO2. In particular, the color difference values of purpurin and curcumin were 4.05 and 3.76, which is lower than the 5.36 of the control TiO2. Dye encapsulated TiO2 was manipulated into lipstick to verify its color realization and retention. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Graphical abstract

12 pages, 5412 KiB  
Article
Schiff Base Compounds as Fluorescent Probes for the Highly Sensitive and Selective Detection of Al3+ Ions
by Yanling Pang, Desu Meng, Jian Liu, Shengxia Duan, Jingru Fan, Longyu Gao and Xinshu Long
Molecules 2023, 28(7), 3090; https://doi.org/10.3390/molecules28073090 - 30 Mar 2023
Cited by 12 | Viewed by 3467
Abstract
Two new Schiff base fluorescent probes (L and S) were designed for selectively detecting Al3+ ions in aqueous medium. Structural characterization of the purely synthesized compounds was acquired by IR, 1H NMR and 13C NMR. Moreover, their photochromic and fluorescent [...] Read more.
Two new Schiff base fluorescent probes (L and S) were designed for selectively detecting Al3+ ions in aqueous medium. Structural characterization of the purely synthesized compounds was acquired by IR, 1H NMR and 13C NMR. Moreover, their photochromic and fluorescent behaviors have been investigated systematically by UV–Vis absorption and fluorescence spectra. The two probes have both high selectivity and sensitivity toward Al3+ ions in aqueous medium. The 2:1 stoichiometry between the Al3+ and probes was verified by Job’s plot. Moreover, the limits of detection (LOD) for Al3+ by L and S were 1.98 × 10−8 and 4.79 × 10−8 mol/L, respectively, which was much lower than most previously reported probes. The possible recognition mechanism was that the metal ions would complex with Schiff base probes because of the prevalence of the species optimal for complex formation, inhibiting the structural isomerization of conjugated double bonds (-C=N-), inhibiting the proton transfer process in the excited state of the molecules and resulting in changes of its color and fluorescence behavior. Furthermore, the probes will have potential applications for selectively, detecting Al3+ ions in the environmental system with high accuracy and providing a new strategy for the design and synthesis of multi-functional sensors. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Figure 1

Back to TopTop