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Abstract: Two new Schiff base fluorescent probes (L and S) were designed for selectively detecting
Al3+ ions in aqueous medium. Structural characterization of the purely synthesized compounds was
acquired by IR, 1H NMR and 13C NMR. Moreover, their photochromic and fluorescent behaviors have
been investigated systematically by UV–Vis absorption and fluorescence spectra. The two probes
have both high selectivity and sensitivity toward Al3+ ions in aqueous medium. The 2:1 stoichiometry
between the Al3+ and probes was verified by Job’s plot. Moreover, the limits of detection (LOD)
for Al3+ by L and S were 1.98 × 10−8 and 4.79 × 10−8 mol/L, respectively, which was much lower
than most previously reported probes. The possible recognition mechanism was that the metal ions
would complex with Schiff base probes because of the prevalence of the species optimal for complex
formation, inhibiting the structural isomerization of conjugated double bonds (-C=N-), inhibiting
the proton transfer process in the excited state of the molecules and resulting in changes of its color
and fluorescence behavior. Furthermore, the probes will have potential applications for selectively,
detecting Al3+ ions in the environmental system with high accuracy and providing a new strategy for
the design and synthesis of multi-functional sensors.

Keywords: Schiff base; Al3+; fluorescent probe; content detection

1. Introduction

Aluminum, as one of the most abundant metal elements in the Earth’s crust, has
been widely applied in day-to-day life in various sectors, such as food additives, water
purification, pharmaceuticals, environmental, building construction, clinical drugs, au-
tomobiles, and so on [1–3]. However, the extensive use of aluminum products in the
above industries might lead to high amounts of aluminum ions (Al3+) in water, soil and
even in the atmosphere, resulting in serious environmental problems [4–6]. The excess
accumulation of aluminum ion in the human body may lead to serious health problems,
such as Alzheimer’s, Parkinson’s, Menkes, and Wilson’s diseases [7–9]. Moreover, the daily
intake of aluminum is specified to be 3–10 mg/day per kg body mass, and the limits of
Al3+ concentration in drinking water is 7.41 mM, according to the World Health Organiza-
tion’s assessment [10]. Therefore, it is of great practical significance to study the efficient
and sensitive detection method for detecting Al3+ ions in consideration of environmental
protection and human health.

At present, there are some reported techniques for detecting Al3+ ions, such as in-
ductively coupled plasma atomic emission spectrometry, atomic absorption spectroscopy,
inductively coupled plasma mass spectrometry, selective electrode method, and voltam-
metry [11–13]. However, these technologies require expensive instruments and time-
consuming procedures, which increase the workload of inspection to a certain extent.
Therefore, it is necessary to develop a direct and simple method for detecting Al3+ ions
with excellent selectivity and high sensitivity. In recent years, the fluorescent probe method
has been paid great attention because of its good selectivity, rapid detection, high sensitivity,

Molecules 2023, 28, 3090. https://doi.org/10.3390/molecules28073090 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28073090
https://doi.org/10.3390/molecules28073090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules28073090
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28073090?type=check_update&version=1


Molecules 2023, 28, 3090 2 of 12

simple synthesis and convenient operation [14–18]. As a result, various types of fluores-
cent probes have been designed and prepared to detect Al3+ ions, including hydrazone
compounds [19], rhodamine B [20], quinolinecarboxamide-coumarin [21], naphthalimide
(CDs) [22], quinoline [23], and Schiff base compounds [24–26]. Among these fluorescent
probes, Schiff base compounds have gained great attention because of their huge number
of positives, such as convenient synthesis, adjustable electronic properties, and excellent
chelating ability [27]. For instance, Kaya et al. synthesized a carbazole-based Schiff base
chemosensor through one-pot synthesis using 2-hydroxy-1-naphtaldehyde for fluorescent
sensing of Al3+ ions, and the LOD was found to be 2.59 × 10−7 M [25]. Das and co-workers
also prepared a simple Schiff base as an effective fluorescent sensor for Al3+ ions, and
this Schiff base could achieve selective detection of Al3+ over other metal ions, such as
Zn2+, Hg2+, Cd2+, Pb2+, Mn2+ and so on [28]. Qi et al. also synthesized two Schiff base
fluorescent-colorimetric probes for selectively detecting Al3+ ions [29].

Furthermore, Schiff bases have some outstanding advantages, such as higher yield,
more stable structure, strong photo-physical properties and stronger fluorescence activity.
Schiff base fluorescence probes, owing to hard-base donor sites with nitrogen–oxygen-rich
coordination environments, not only have a more stable structure but also have properties of
naked-eye recognition and fluorescence detection. Moreover, the conjugated double bonds
(-C=N-) in Schiff base fluorescent probes can obtain structural isomerization, which would
accelerate the non-radiative transition of the Schiff base in the excited state, further leading
to the weak fluorescence of the Schiff base. After adding metal ions, the metal ions would
complex with the Schiff base probes, and the protons of the donor will be removed, thereby
preventing the structural isomerization of conjugated double bonds (-C=N-), inhibiting
the proton transfer process in the excited state of the molecules and resulting in changes
of its color and fluorescence behavior. Herein, two Schiff base fluorescent probes were
successfully prepared through the one-step method. Synthesized fluorescent probes L
and S can effectively recognize Al3+ in the DMSO/H2O mixed system with advantages
of short recognition time, low cost and low detection limit. The synthesized procedure
of probes L and S are shown in Scheme 1. Moreover, a potential light-induced electron
transfer mechanism was proposed according to Job’s analysis. Thus, it is promising to
prepare new chemo-sensors for detecting Al3+ ions by using Schiff bases.
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2. Results and Discussion
2.1. Fluorescence Emission Spectral Responses of Probes L and S

The fluorescence emission spectra of solutions for probes L and S (5.0 × 10−5 mol/L)
were investigated at room temperature with the following several kinds of metal ions
(2.5 × 10−4 mol/L), including Al3+, Mg2+, Pb2+, Zn2+, Cu2+, Mn2+, Co2+, Cr3+, Hg2+,
Cd2+, Ni2+ and Fe3+ in DMSO/H2O (v/v = 8:2), as shown in Figure 1a,b. It could be
observed that the additions of Al3+ ions to the solutions containing probes L/S brought
about the high fluorescence emission peak at 516 and 518 nm, which can be ascribed
to coordination of probes to Al3+, further increasing its structure rigidity and inhibiting
the proton transfer process in the excited state of the molecules and C=N isomerization
process [30]. Additionally, the fluorescence response of L/S to other metal ions was almost
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neglected, which was similar to that of the blank probe, indicating that L/S was a specific
“turn-on” probe toward Al3+ ions with high sensitivity. Furthermore, the color of the
L/S solution changed from colorless to bright cyan fluorescence after adding Al3+ ions
under irradiation of a 430/420 nm lamp, while other metal ions brought about no naked-
eye fluorescence, further demonstrating the high selectivity of probes [31]. Furthermore,
UV–Vis absorption spectra of probes L and S were also illustrated in Figure 1c,d. The
aqueous solution of free L and S exhibited the absorption band located at 345 and 350
nm, respectively. However, two new absorption peaks were presented at 302, 430 and 303,
420 nm for probes L and S, respectively, with the disappearing of absorption peaks at 345
and 350 nm after the addition of Al3+ ions. Hence, it could be concluded that both probes L
and S possessed excellent sensitivity and complexation ability for detecting Al3+ ions.
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(Al3+, Mg2+, Pb2+, Zn2+, Cu2+, Mn2+, Co2+, Cr3+, Hg2+, Cd2+, Ni2+ and Fe3+, 2.5 × 10−4 mol/L) in
DMSO/H2O solution, UV spectrum of L (c) and S (d) solutions after adding Al3+ ions.

To further confirm the selectivity of fluorescent probes L and S for detecting Al3+ ions,
investigations on the influence of general coexistence ions were also carried out by adding
Al3+ ions (2.5 × 10−4 mol/L) into probe L and S (5.0 × 10−5 mol/L) solutions containing
Mg2+, Pb2+, Zn2+, Cu2+, Mn2+, Co2+, Cr3+, Hg2+, Cd2+, Ni2+ and Fe3+ (2.5 × 10−4 mol/L),
separately, shown in Figure 2. It can be seen that the other measured metal ions made no
great difference to the fluorescence intensity and UV absorbance of probes L (Figure 2a,c)
and S (Figure 2b,d) with Al3+, suggesting that the other coexistent metal ions have little
effect on probes L and S as good fluorescent probes for the selective detection of Al3+ ions.

2.2. Quantitative Identification of Al3+ by Probes L and S

In order to investigate the effect of Al3+ addition on the fluorescence and ultraviolet
absorption spectra of probes L and S, fluorescence and ultraviolet absorption experiments
were carried out in DMSO/H2O (v:v = 8:2) solution. As illustrated in Figure 3a,b, flu-
orescence intensities of L and S gradually increased with increasing Al3+ concentration
(0–150 µM). Moreover, the fluorescence intensity of both probes L and S had a good linear
relation between fluorescence intensity and the Al3+ concentrations from 0 to 150 µM, as
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shown in Figure 3c,d. This fitting result clearly indicated that both probes L and S can be
realized in fluorescence quantitative detection of trace Al3+ ions. Furthermore, detection
limits of L and S were calculated to be 1.98 × 10−8 and 4.79 × 10−8 mol/L, respectively, by
the formula of LOD = 3σ/K, according to the fluorescence intensity results, which were
much lower than most previously reported probes for Al3+ detection [32–40], as shown
in Table 1. This result clearly demonstrated that both probes L and S could be applied as
fluorescent probes for detecting Al3+ ions with high sensitivity and specificity.
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Table 1. Comparison of some fluorescent probes for Al3+ detection.

Structure of Probes Tested Media LOD Modes (Probe: Al) Ref.
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Table 1. Cont.

Structure of Probes Tested Media LOD Modes (Probe: Al) Ref.
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Additionally, the UV spectra of both L and S were illustrated in Figure 4a,b with the
addition of various Al3+ ions concentration. The absorption peak of probe L at 345 nm
gradually disappeared with the increase in Al3+ concentration, and two new absorption
peaks appeared at 430 and 302 nm, and absorption intensity at 430 and 302 nm constantly
increased with the increase in Al3+ concentration, accompanied with no position change
of the peak. The absorbance ratio (y) of probe L at 430 and 302 nm has a good linear
relationship with the concentration of Al3+ in the range of 1.0 × 10−6~5.5 × 10−5 mol/L
with the detection limit of 3.65 × 10−8 mol/L, as shown in Figure 4c. For probe S, the
UV absorption peak experienced similar changes in comparison to that of probe L. The
absorption peak at 350 nm gradually disappeared with the increase in Al3+ concentration,
and two new absorption peaks appeared at 420 and 303 nm, respectively. The absorption
intensity at 420 and 303 nm constantly increased with the increase in Al3+ concentration,
accompanied with no position change of the peak. The absorbance ratio (y) of probe S at
420 and 303 nm has a good linear relationship with the concentration of Al3+ in the range
of 1.0 × 10−6~6.0 × 10−5 mol/L with a detection limit of 5.26 × 10−8 mol/L, as shown in
Figure 4d. Hence, a ratio absorption method can be established to determine the content of
Al3+, with high sensitivity and strong anti-interference ability based on the analysis of UV
absorption spectra.
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2.3. Complexation Mechanism of Probes L and S with Al3+

The combination mode between L/S with Al3+ ions was investigated by utilizing Job’s
plot, which was obtained by plotting the molar fraction vs. the changes in the emission
intensity at 430 (L) and 420 nm (S), respectively. As shown in Figure 5, the fluorescent
intensity reached the maximum value at the mole fraction of about 0.67 (Al3+/Al3+ + L/S),
suggesting the formation of 2:1 stoichiometric complexations between Al3+ and L/S.
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solution.

Moreover, the complexation mechanism and plausible explanation of changes in
absorption and fluorescence intensity are illustrated in Scheme 2. As mentioned above,
fluorescence intensities of L and S gradually increased with increasing Al3+ concentration,
and UV absorption peak of probe L/S at 345/350 nm gradually disappeared with the
increase in Al3+concentration, and two new absorption peaks appeared at 430/420 and
302/303 nm, respectively. This phenomenon can be explained as follows. The conjugated
double bonds (-C=N-) in Schiff base fluorescent probes can obtain structural isomerization,
which would accelerate the non-radiative transition of the Schiff base in the excited state,
further leading to a weak fluorescence of the Schiff base. After adding Al3+ ions, the
metal ions would complex with the Schiff base probes, and the protons of the donor
will be removed because of the prevalence of the species optimal for complex formation,
preventing structural isomerization of conjugated double bonds (-C=N-), inhibiting the
proton transfer process in the excited state of the molecules and resulting in changes of its
color and fluorescence behavior [42–44]. Simultaneously, previous investigations have also
certified that non-bonded electrons of N atoms from C=N took part in coordination with
the Al3+ ion to inhibit the isomerization process. The coordination of L/S with Al3+ ions
hindered the rotation around the C=N bond and prevented C=N isomerization, resulting
in absorption and fluorescence enhancement [25,41]. Furthermore, there are differences
in both fluorescence intensities and UV–Vis absorption of the two probes, which can be
explained by the variation in the molecular structure. From the molecular structure, it can
be observed that there is a methoxy on the phenyl ring in the L molecule, while no methoxy
exists in the S molecule. The existence of methoxy in the L probe would lead to a decrease
in both the planarity of the benzene ring and the degree of conjugation of the system, in
comparison to that of probe S with no methoxy, further leading to an increase in system
energy. This phenomenon resulted in a blue-shift of the emission wavelength from 518 to
516 nm and enhancement of fluorescence intensities and UV–Vis absorption.
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2.4. Reversibility Experiments

The selective recognition of metal ions by probes mainly depends on the binding dy-
namics between metal ions and N, O atoms with lone pair electrons in the probe molecules.
Herein, reversibility experiments were conducted to study the circulation of the probes.
The reversibility of the recognition process of probes L/S was performed by adding an Al3+

bonding agent—EDTA. As shown in Figure 6, fluorescence of L/S itself was very weak
before the addition of Al3+ ions. However, the fluorescence of L/S was greatly enhanced
with the addition of Al3+ ions, which can be ascribed to the coordination between L/S
and Al3+ ions, thus emitting bright yellow-green fluorescence. Subsequently, EDTA was
added to the system, which resulted in a diminution of the fluorescence intensity at 516
and 518 nm for probes L and S, respectively, indicating regeneration of the free probe L/S.
This phenomenon can be attributed to the stronger coordination reaction between Al3+

and EDTA, destroying the complexation between Al3+ and L/S. All these results could
clearly indicate that both probes L and S have good reversibility in the detection of Al3+

ions, which is also important for the fabrication of devices to sense the Al3+ ions.
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2.5. Filter Paper Strip Experiments

Filter paper strip experiments were performed to establish another potential applica-
tion of the probes. Firstly, some thin-layer chromatography (TLC) plates were prepared
and coated with probe L/S solution (1 mmol/L) and then dried in air. The prepared TLC
strips interacted with various concentrations of Al3+, i.e., 0, 0.1, 0.2, 0.3, 0.5 and 1.0 mmol/L.
For probe L/S, the color of the strips was observed to change from ginger/yellow to
bright yellow-green under a UV chamber by the naked eye, illustrated in Figure 7. These
observations clearly indicate that the probe L/S immobilized test strips can also be used
for monitoring Al3+ in a simple and effective way.
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0.5 and 1.0 mmol/L) under a UV lamp.

3. Experimental Procedure
3.1. Reagents and Apparatus

o-Vanillin was purchased from Thain Chemical Technology Shanghai Co., Ltd. (Shang-
hai, China). Salicylaldehyde, o-aminophenol and p-aminoacetophenone were purchased
from Shanghai McLean Biochemical Technology Co., Ltd. (Shanghai, China). Dimethyl
sulfoxide was purchased from Tianjin Damao Chemical Reagent Factory (Tianjin, China). All
reagents and solvents used in this study were of AR grade. All fluorescence spectra were
performed on the F-380 fluorescence spectrometer (Tianjin Gangdong Technology Co., Ltd.,
Tianjin, China). FT-IR spectra were obtained on avater-370 Fourier infrared spectrometer
using KBr plates (American NICO-LET Company, Madison, WI, USA). The 1H NMR and 13C
NMR spectra were tested on a Bruker 400 MHz NMR instrument with TMS as an internal
standard (Romanshorn, Switzerland). Ultraviolet spectra were obtained using TU-1901 Dou-
ble beam UV–Visible spectrophotometer (Beijing Puxi General Instrument Co., Ltd., Beijing,
China). Melting points were obtained on WRX-4 micro melting point instrument (Shanghai
Yimenshan Instrument and Equipment Co., Ltd., Shanghai, China).

3.2. Synthesis
3.2.1. Synthesis of o-Vanillin-p-aminoacetophenone Schiff Base (L)

Firstly, p-aminoacetophenone (0.2703 g, 2 mmol) was dissolved in 25 mL ethanol
(EtOH), which were stirred until soluble. Secondly, o-vanillin (0.3043 g, 2 mmol) was
added into the above solution, and the mixture was refluxed for 8 h at 80 ◦C with con-
tinuous stirring, which then stewed for 24 h. The resulting reaction suspension was
filtrated and washed by EtOH to obtain 0.4217 g (78.3%) of orange product (o-vanillin-p-
aminoacetophenone Schiff base, m.p.: 118.2~119.1 ◦C). RMM: 270.1125 (Figure S1). FT-IR
(KBr): 3436 cm−1, 1625 cm−1, 1537 cm−1, 1509 cm−1, 1457 cm−1, 741 cm−1; 1H NMR (500
MHz, DMSO-d6), δ: 12.80 (s, 1H), 8.99 (s, 1H), 8.04 (d, J = 8.2 Hz, 2H), 7.53–7.48 (m, 2H),
7.32–7.26 (m, 1H), 7.19–7.13 (m, 1H), 6.93 (t, J = 7.9 Hz, 1H), 3.84 (s, 3H), 2.60 (s, 3H), see
Figure S2. 13C NMR (126 MHz, DMSO-d6), δ: 197.43, 165.39, 152.58, 151.06, 148.42, 135.38,
130.19, 124.33, 122.03, 119.72, 119.26, 116.44, 56.36, 27.17, Figure S3.

3.2.2. Synthesis of Salicylaldehyde-p-aminoacetophenone Schiff Base (S)

The synthesis of salicylaldehyde-p-aminoacetophenone Schiff base was similar to that
of o-vanillin-p-aminoacetophenone Schiff base, except that o-vanillin (0.3043 g, 2 mmol)
was substituted for salicylaldehyde (0.2442 g, 2 mmol). The resulting reaction suspension
was filtered and washed with EtOH to obtain 0.3474 g (72.6%) of golden yellow product
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(salicylaldehyde-p-aminoacetophenone Schiff base, m.p.: 112.4~113.2 ◦C). RMM: 240.1019
(Figure S4). FT-IR(KBr): 3420 cm−1, 1630 cm−1, 1592 cm−1, 1529 cm−1, 1487 cm−1, 1460
cm−1, 1411 cm−1; 1H NMR (500 MHz, DMSO-d6), δ: 12.73 (d, J = 3.0 Hz, 1H), 8.97 (d, J = 3.3
Hz, 1H), 8.02 (dd, J = 8.1, 2.5 Hz, 2H), 7.69 (d, J = 7.7 Hz, 1H), 7.51–7.41 (m, 3H), 6.99 (dd,
J = 8.4, 4.8 Hz, 2H), 2.58 (s, 3H), see Figure S5. 13C NMR (126 MHz, DMSO-d6) δ: 197.36,
197.34, 165.22, 160.83, 152.72, 152.70, 135.35, 134.29, 133.11, 130.16, 122.02, 119.76, 119.73,
117.16, 27.13, 27.11, see Figure S6. The synthesized procedure is illustrated in Scheme 1.

3.3. Spectrophotometric Experiments

An analytical solution of the probe L/S was prepared as 5.0 × 10−5 mol/L in 100 mL
solution of DMSO/H2O (v/v = 8:2). The metal nitrate solutions were prepared as 5.0× 10−3

mol/L in 50 mL double distilled water (Al3+, Mg2+, Pb2+, Zn2+, Cu2+, Mn2+, Co2+, Cr3+,
Hg2+, Cd2+, Ni2+, Fe3+). Fluorescence and UV experiments were performed by gradually
increasing the concentration of targeted metal ions to the probes solution to evaluate sensi-
tivity. Moreover, the excitation wavelength for L and S was 430 and 420 nm, respectively, in
the fluorescence measurements. The slit widths of both the excitation and emission were
5.0 nm. All the experiments were performed under room temperature.

4. Conclusions

Two new types of Schiff base probes L (o-vanillin-p-aminoacetophenone) and S
(salicylaldehyde-p-aminoacetophenone) were successfully prepared by using heating reflux
method with its simplicity and high yield. The probe L/S could complex with Al3+ ions
at a 1:2 ratio in DMSO/H2O (v:v = 8:2) solution, which could identify Al3+ by ultraviolet
visible spectrophotometry and fluorescence with good selectivity, high sensitivity and
good reversibility. The LOD of L and S for Al3+ was 1.98 × 10−8 and 4.79 × 10−8 mol/L,
respectively, which was lower than most reported studies. The interaction mechanism
between L/S and Al3+ was explored by Job’s plot, certifying that the protons of the donor
will be removed after its coordination with Al3+ ions, thereby preventing the structural
isomerization of conjugated double bonds (-C=N-), inhibiting the proton transfer process
in the excited state of the molecules and resulting in changes in its color and fluorescence
behavior. All of the results clearly indicated that the probes have potential applications for
the detection of Al3+ ions in the environmental system and provide a new strategy for the
design and synthesis of multi-functional sensors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28073090/s1. Figure S1: HRMS spectrum of L; Figure S2:
1H NMR spectrum of L; Figure S3: 13C NMR spectrum of L; Figure S4: HRMS spectrum of S; Figure
S5: 1H NMR spectrum of S; Figure S6: 13C NMR spectrum of S.
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