Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = photo dynamic therapy (PDT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 1965 KiB  
Review
Photon-Based Innovations in Oncology: Precise Diagnostic Techniques and Advanced Therapies
by Emilia Kamizela, Jakub Oberda, Albert Chomątowski, Angelika Masiarz, Kacper Ponikowski, Monika Lejman and Joanna Zawitkowska
Photonics 2024, 11(12), 1201; https://doi.org/10.3390/photonics11121201 - 20 Dec 2024
Viewed by 1679
Abstract
In diagnostics, photons are used in basic methods such as computed tomography (CT) and positron emission tomography (PET), which are pivotal tools for high-resolution, non-invasive tumor detection, offering insights into tumor staging and progression. Mentioned techniques facilitate early diagnosis and the planning of [...] Read more.
In diagnostics, photons are used in basic methods such as computed tomography (CT) and positron emission tomography (PET), which are pivotal tools for high-resolution, non-invasive tumor detection, offering insights into tumor staging and progression. Mentioned techniques facilitate early diagnosis and the planning of therapeutic strategies. However, new methods are emerging, enhancing the precision and detail of diagnostics, such as ultra-weak photon emission (UPE) imagining, two-photon fluorescence imaging, photo acoustic imaging, and others. Therapeutically, external beam radiation therapy (EBRT) uses photons to target cancer cells while minimizing harm to healthy tissue. Photodynamic therapy (PDT), which uses light-sensitive compounds activated by specific wavelengths, represents a photon-based treatment applicable to certain malignancies. Other treatments include photo thermal therapy (PTT), radio dynamic therapy (RDT), intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), and more. These constantly evolving photon-driven technologies can be used to treat a broad spectrum of cancers, such as pancreatic, prostate, breast, and skin cancers. This review article discusses the latest photon-based methods in oncology, focusing on new possibilities, solutions, perspectives, and the potential disadvantages of these approaches. Full article
Show Figures

Figure 1

16 pages, 5222 KiB  
Review
Application and Challenge of Metalloporphyrin Sensitizers in Noninvasive Dynamic Tumor Therapy
by Jiacheng Ouyang, Dan Li, Lizhen Zhu, Xiaoyuan Cai, Lanlan Liu, Hong Pan and Aiqing Ma
Molecules 2024, 29(20), 4828; https://doi.org/10.3390/molecules29204828 - 11 Oct 2024
Cited by 2 | Viewed by 1762
Abstract
Dynamic tumor therapies (mainly including photodynamic therapy (PDT) and sonodynamic therapy (SDT)) offer new approaches to cancer treatment. They are often characterized by their noninvasive nature, high selectivity, and low toxicity. Sensitizers are crucial for dynamic therapy. Developing efficient sensitizers with good biocompatibility [...] Read more.
Dynamic tumor therapies (mainly including photodynamic therapy (PDT) and sonodynamic therapy (SDT)) offer new approaches to cancer treatment. They are often characterized by their noninvasive nature, high selectivity, and low toxicity. Sensitizers are crucial for dynamic therapy. Developing efficient sensitizers with good biocompatibility and controllability is an important aim in dynamic therapy. Porphyrins and metalloporphyrins attract great attention due to their excellent photophysical properties and low cytotoxicity under non-light. Compared to porphyrins, metalloporphyrins show greater potential for dynamic therapy due to their enhanced photochemical and photophysical properties after metal ions coordinate with porphyrin rings. This paper reviews some metalloporphyrin-based sensitizers used in photo/sonodynamic therapy and combined therapy. In addition, the probable challenges and bottlenecks in clinical translation are also discussed. Full article
(This article belongs to the Special Issue Study on Synthesis and Photochemistry of Dyes)
Show Figures

Figure 1

24 pages, 7433 KiB  
Article
Cellular Imaging and Time-Domain FLIM Studies of Meso-Tetraphenylporphine Disulfonate as a Photosensitising Agent in 2D and 3D Models
by Andrea Balukova, Kalliopi Bokea, Paul R. Barber, Simon M. Ameer-Beg, Alexander J. MacRobert and Elnaz Yaghini
Int. J. Mol. Sci. 2024, 25(8), 4222; https://doi.org/10.3390/ijms25084222 - 11 Apr 2024
Cited by 1 | Viewed by 4501
Abstract
Fluorescence lifetime imaging (FLIM) and confocal fluorescence studies of a porphyrin-based photosensitiser (meso-tetraphenylporphine disulfonate: TPPS2a) were evaluated in 2D monolayer cultures and 3D compressed collagen constructs of a human ovarian cancer cell line (HEY). TPPS2a is known to be an [...] Read more.
Fluorescence lifetime imaging (FLIM) and confocal fluorescence studies of a porphyrin-based photosensitiser (meso-tetraphenylporphine disulfonate: TPPS2a) were evaluated in 2D monolayer cultures and 3D compressed collagen constructs of a human ovarian cancer cell line (HEY). TPPS2a is known to be an effective model photosensitiser for both Photodynamic Therapy (PDT) and Photochemical Internalisation (PCI). This microspectrofluorimetric study aimed firstly to investigate the uptake and subcellular localisation of TPPS2a, and evaluate the photo-oxidative mechanism using reactive oxygen species (ROS) and lipid peroxidation probes combined with appropriate ROS scavengers. Light-induced intracellular redistribution of TPPS2a was observed, consistent with rupture of endolysosomes where the porphyrin localises. Using the same range of light doses, time-lapse confocal imaging permitted observation of PDT-induced generation of ROS in both 2D and 3D cancer models using fluorescence-based ROS together with specific ROS inhibitors. In addition, the use of red light excitation of the photosensitiser to minimise auto-oxidation of the probes was investigated. In the second part of the study, the photophysical properties of TPPS2a in cells were studied using a time-domain FLIM system with time-correlated single photon counting detection. Owing to the high sensitivity and spatial resolution of this system, we acquired FLIM images that enabled the fluorescence lifetime determination of the porphyrin within the endolysosomal vesicles. Changes in the lifetime dynamics upon prolonged illumination were revealed as the vesicles degraded within the cells. Full article
(This article belongs to the Special Issue Molecular Advances in Oncologic Photodynamic Therapy)
Show Figures

Figure 1

13 pages, 5704 KiB  
Article
Formylation as a Chemical Tool to Modulate the Performance of Photosensitizers Based on Boron Dipyrromethene Dimers
by Carolina Díaz-Norambuena, Edurne Avellanal-Zaballa, Alejandro Prieto-Castañeda, Jorge Bañuelos, Santiago de la Moya, Antonia R. Agarrabeitia and María J. Ortiz
Int. J. Mol. Sci. 2023, 24(14), 11837; https://doi.org/10.3390/ijms241411837 - 23 Jul 2023
Cited by 2 | Viewed by 1751
Abstract
Heavy-atom-free photosensitizers are envisioned as the next generation of photoactive molecules for photo-theragnosis. In this approach, and after suitable irradiation, a single molecular scaffold is able to visualize and kill tumour cells by fluorescence signalling and photodynamic therapy (PDT), respectively, with minimal side [...] Read more.
Heavy-atom-free photosensitizers are envisioned as the next generation of photoactive molecules for photo-theragnosis. In this approach, and after suitable irradiation, a single molecular scaffold is able to visualize and kill tumour cells by fluorescence signalling and photodynamic therapy (PDT), respectively, with minimal side effects. In this regard, BODIPY-based orthogonal dimers have irrupted as suitable candidates for this aim. Herein, we analyse the photophysical properties of a set of formyl-functionalized BODIPY dimers to ascertain their suitability as fluorescent photosensitizers. The conducted computationally aided spectroscopic study determined that the fluorescence/singlet oxygen generation dual performance of these valuable BODIPY dimers not only depends on the BODIPY-BODIPY linkage and the steric hindrance around it, but also can be modulated by proper formyl functionalization at specific chromophoric positions. Thus, we propose regioselective formylation as an effective tool to modulate such a delicate photonic balance in BODIPY-based dimeric photosensitizers. The taming of the excited-state dynamics, in particular intramolecular charge transfer as the key underlying process mediating fluorescence deactivation vs. intersystem crossing increasing, could serve to increase fluorescence for brighter bioimaging, enhance the generation of singlet oxygen for killing activity, or balance both for photo-theragnosis. Full article
Show Figures

Graphical abstract

15 pages, 4801 KiB  
Article
Dissecting the Interactions between Chlorin e6 and Human Serum Albumin
by Alessia Marconi, Edoardo Jun Mattioli, Filippo Ingargiola, Giulia Giugliano, Tainah Dorina Marforio, Luca Prodi, Matteo Di Giosia and Matteo Calvaresi
Molecules 2023, 28(5), 2348; https://doi.org/10.3390/molecules28052348 - 3 Mar 2023
Cited by 13 | Viewed by 2806
Abstract
Chlorin e6 (Ce6) is among the most used sensitizers in photodynamic (PDT) and sonodynamic (SDT) therapy; its low solubility in water, however, hampers its clinical exploitation. Ce6 has a strong tendency to aggregate in physiological environments, reducing its performance as a photo/sono-sensitizer, as [...] Read more.
Chlorin e6 (Ce6) is among the most used sensitizers in photodynamic (PDT) and sonodynamic (SDT) therapy; its low solubility in water, however, hampers its clinical exploitation. Ce6 has a strong tendency to aggregate in physiological environments, reducing its performance as a photo/sono-sensitizer, as well as yielding poor pharmacokinetic and pharmacodynamic properties. The interaction of Ce6 with human serum albumin (HSA) (i) governs its biodistribution and (ii) can be used to improve its water solubility by encapsulation. Here, using ensemble docking and microsecond molecular dynamics simulations, we identified the two Ce6 binding pockets in HSA, i.e., the Sudlow I site and the heme binding pocket, providing an atomistic description of the binding. Comparing the photophysical and photosensitizing properties of Ce6@HSA with respect to the same properties regarding the free Ce6, it was observed that (i) a red-shift occurred in both the absorption and emission spectra, (ii) a maintaining of the fluorescence quantum yield and an increase of the excited state lifetime was detected, and (iii) a switch from the type II to the type I mechanism in a reactive oxygen species (ROS) production, upon irradiation, took place. Full article
(This article belongs to the Special Issue Novel Agents in Photodynamic Therapy)
Show Figures

Figure 1

11 pages, 4398 KiB  
Article
Multifaceted Elevation of ROS Generation for Effective Cancer Suppression
by Huizhe Wang, Mengyuan Cui, Yanqi Xu, Tianguang Liu, Yueqing Gu, Peng Wang and Hui Tang
Nanomaterials 2022, 12(18), 3150; https://doi.org/10.3390/nano12183150 - 11 Sep 2022
Cited by 4 | Viewed by 2567
Abstract
The in situ lactate oxidase (LOx) catalysis is highly efficient in reducing oxygen to H2O2 due to the abundant lactate substrate in the hypoxia tumor microenvironment. Dynamic therapy, including chemodynamic therapy (CDT), photodynamic therapy (PDT), and enzyme dynamic therapy (EDT), [...] Read more.
The in situ lactate oxidase (LOx) catalysis is highly efficient in reducing oxygen to H2O2 due to the abundant lactate substrate in the hypoxia tumor microenvironment. Dynamic therapy, including chemodynamic therapy (CDT), photodynamic therapy (PDT), and enzyme dynamic therapy (EDT), could generate reactive oxygen species (ROS) including ·OH and 1O2 through the disproportionate or cascade biocatalytic reaction of H2O2 in the tumor region. Here, we demonstrate a ROS-based tumor therapy by integrating LOx and the antiglycolytic drug Mito-LND into Fe3O4/g-C3N4 nanoparticles coated with CaCO3 (denoted as FGLMC). The LOx can catalyze endogenous lactate to produce H2O2, which decomposes cascades into ·OH and 1O2 through Fenton reaction-induced CDT and photo-triggered PDT. Meanwhile, the released Mito-LND contributes to metabolic therapy by cutting off the source of lactate and increasing ROS generation in mitochondria for further improvement in CDT and PDT. The results showed that the FGLMC nanoplatform can multifacetedly elevate ROS generation and cause fatal damage to cancer cells, leading to effective cancer suppression. This multidirectional ROS regulation strategy has therapeutic potential for different types of tumors. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

20 pages, 5651 KiB  
Article
Poly(styrene-co-maleic acid) Micelle of Photosensitizers for Targeted Photodynamic Therapy, Exhibits Prolonged Singlet Oxygen Generating Capacity and Superior Intracellular Uptake
by Gahininath Yadavrao Bharate, Haibo Qin and Jun Fang
J. Pers. Med. 2022, 12(3), 493; https://doi.org/10.3390/jpm12030493 - 18 Mar 2022
Cited by 6 | Viewed by 3275
Abstract
Targeted therapy by using nanomedicines based on the enhanced permeability and retention (EPR) effect is becoming a promising anticancer strategy. Many nano-designed photosensitizers (PSs) for photodynamic therapy (PDT) have been developed which show superior therapeutic potentials than free PS. To further understand the [...] Read more.
Targeted therapy by using nanomedicines based on the enhanced permeability and retention (EPR) effect is becoming a promising anticancer strategy. Many nano-designed photosensitizers (PSs) for photodynamic therapy (PDT) have been developed which show superior therapeutic potentials than free PS. To further understand the advantages of nano-designed PS, in this study, we used styrene-co-maleyl telomer (SMA) as a polymer platform to prepare a micellar type of PS with two well-characterized PSs—rose bengal (RB) and methylene blue (MB)—and evaluated the outmatching benefits of SMA-PS micelles, especially focusing on the singlet oxygen (1O2) generation capacity and intracellular uptake profiles. In aqueous solutions, SMA-PS self-assembles to form micelles by non-covalent interactions between PS and SMA. SMA-PS micelles showed discrete distributions by dynamic light scattering having a mean particle size of 18–30 nm depending on the types of SMA and different PSs. The hydrodynamic size of SMA-PS was evaluated by Sephadex chromatography and it found to be 30–50 kDa. In the presence of human serum albumin, the sizes of SMA-PS remarkably increased, suggesting the albumin-binding property. 1O2 generation from the SMA-PS micelle was determined by electron spin resonance, in which the SMA-PS micelle showed comparatively more photo-stable, and consequently a more durable and constant, 1O2 generation capability than free PS. Moreover, intracellular uptake of SMA-PS micelles was extensively faster and higher than free PS, especially in tumor cells. Taken together, SMA-PS micelles appear highly advantageous for photodynamic therapy in addition to its capacity in utilizing the EPR effect for tumor targeted delivery. Full article
Show Figures

Figure 1

10 pages, 1040 KiB  
Article
Photodynamic Inactivation of Antibiotic-Resistant and Sensitive Aeromonas hydrophila with Peripheral Pd(II)- vs. Zn(II)-Phthalocyanines
by Vanya N. Mantareva, Vesselin Kussovski, Petya Orozova, Lyudmila Dimitrova, Irem Kulu, Ivan Angelov, Mahmut Durmus and Hristo Najdenski
Biomedicines 2022, 10(2), 384; https://doi.org/10.3390/biomedicines10020384 - 5 Feb 2022
Cited by 15 | Viewed by 2688
Abstract
The antimicrobial multidrug resistance (AMR) of pathogenic bacteria towards currently used antibiotics has a remarkable impact on the quality and prolongation of human lives. An effective strategy to fight AMR is the method PhotoDynamic Therapy (PDT). PDT is based on a joint action [...] Read more.
The antimicrobial multidrug resistance (AMR) of pathogenic bacteria towards currently used antibiotics has a remarkable impact on the quality and prolongation of human lives. An effective strategy to fight AMR is the method PhotoDynamic Therapy (PDT). PDT is based on a joint action of a photosensitizer, oxygen, and light within a specific spectrum. This results in the generation of singlet oxygen and other reactive oxygen species that can inactivate the pathogenic cells without further regrowth. This study presents the efficacy of a new Pd(II)- versus Zn(II)-phthalocyanine complexes with peripheral positions of methylpyridiloxy substitution groups (pPdPc and ZnPcMe) towards Gram-negative bacteria Aeromonas hydrophila (A.hydrophila). Zn(II)-phthalocyanine, ZnPcMe was used as a reference compound for in vitro studies, bacause it is well-known with a high photodynamic inactivation ability for different pathogenic microorganisms. The studied new isolates of A.hydrophila were antibiotic-resistant (R) and sensitive (S) strains. The photoinactivation results showed a full effect with 8 µM pPdPc for S strain and with 5 µM ZnPcMe for both R and S strains. Comparison between both new isolates of A.hydrophila (S and R) suggests that the uptakes and more likely photoinactivation efficacy of the applied phthalocyanines are independent of the drug sensitivity of the studied strains. Full article
(This article belongs to the Topic Photodynamic Therapy)
Show Figures

Figure 1

7 pages, 751 KiB  
Communication
Fluorescence Lifetime Imaging Microscopy of Porphyrins in Helicobacter pylori Biofilms
by Antonella Battisti, Paola Morici and Antonella Sgarbossa
Pharmaceutics 2021, 13(10), 1674; https://doi.org/10.3390/pharmaceutics13101674 - 13 Oct 2021
Cited by 8 | Viewed by 2998
Abstract
Bacterial biofilm constitutes a strong barrier against the penetration of drugs and against the action of the host immune system causing persistent infections hardly treatable by antibiotic therapy. Helicobacter pylori (Hp), the main causative agent for gastritis, peptic ulcer and gastric adenocarcinoma, can [...] Read more.
Bacterial biofilm constitutes a strong barrier against the penetration of drugs and against the action of the host immune system causing persistent infections hardly treatable by antibiotic therapy. Helicobacter pylori (Hp), the main causative agent for gastritis, peptic ulcer and gastric adenocarcinoma, can form a biofilm composed by an exopolysaccharide matrix layer covering the gastric surface where the bacterial cells become resistant and tolerant to the commonly used antibiotics clarithromycin, amoxicillin and metronidazole. Antimicrobial PhotoDynamic Therapy (aPDT) was proposed as an alternative treatment strategy for eradicating bacterial infections, particularly effective for Hp since this microorganism produces and stores up photosensitizing porphyrins. The knowledge of the photophysical characteristics of Hp porphyrins in their physiological biofilm microenvironment is crucial to implement and optimize the photodynamic treatment. Fluorescence lifetime imaging microscopy (FLIM) of intrinsic bacterial porphyrins was performed and data were analyzed by the ‘fit-free’ phasor approach in order to map the distribution of the different fluorescent species within Hp biofilm. Porphyrins inside bacteria were easily distinguished from those dispersed in the matrix suggesting FLIM-phasor technique as a sensitive and rapid tool to monitor the photosensitizer distribution inside bacterial biofilms and to better orientate the phototherapeutic strategy. Full article
Show Figures

Graphical abstract

13 pages, 2576 KiB  
Article
Photoproducts of the Photodynamic Therapy Agent Verteporfin Identified via Laser Interfaced Mass Spectrometry
by Chris Furlan, Jacob A. Berenbeim and Caroline E. H. Dessent
Molecules 2020, 25(22), 5280; https://doi.org/10.3390/molecules25225280 - 12 Nov 2020
Cited by 7 | Viewed by 3509
Abstract
Verteporfin, a free base benzoporphyrin derivative monoacid ring A, is a photosensitizing drug for photodynamic therapy (PDT) used in the treatment of the wet form of macular degeneration and activated by red light of 689 nm. Here, we present the first direct study [...] Read more.
Verteporfin, a free base benzoporphyrin derivative monoacid ring A, is a photosensitizing drug for photodynamic therapy (PDT) used in the treatment of the wet form of macular degeneration and activated by red light of 689 nm. Here, we present the first direct study of its photofragmentation channels in the gas phase, conducted using a laser interfaced mass spectrometer across a broad photoexcitation range from 250 to 790 nm. The photofragmentation channels are compared with the collision-induced dissociation (CID) products revealing similar dissociation pathways characterized by the loss of the carboxyl and ester groups. Complementary solution-phase photolysis experiments indicate that photobleaching occurs in verteporfin in acetonitrile; a notable conclusion, as photoinduced activity in Verteporfin was not thought to occur in homogenous solvent conditions. These results provide unique new information on the thermal break-down products and photoproducts of this light-triggered drug. Full article
Show Figures

Graphical abstract

15 pages, 1903 KiB  
Article
Influence of Polymer Charge on the Localization and Dark- and Photo-Induced Toxicity of a Potential Type I Photosensitizer in Cancer Cell Models
by Mikael Lindgren, Odrun A. Gederaas, Monica Siksjø, Tom A. Hansen, Lena Chen, Bastien Mettra, Chantal Andraud and Cyrille Monnereau
Molecules 2020, 25(5), 1127; https://doi.org/10.3390/molecules25051127 - 3 Mar 2020
Cited by 4 | Viewed by 3951
Abstract
A current trend within photo-dynamic therapy (PDT) is the development of molecular systems targeting hypoxic tumors. Thus, type I PDT sensitizers could here overcome traditional type II molecular systems that rely on the photo-initiated production of toxic singlet oxygen. Here, we investigate the [...] Read more.
A current trend within photo-dynamic therapy (PDT) is the development of molecular systems targeting hypoxic tumors. Thus, type I PDT sensitizers could here overcome traditional type II molecular systems that rely on the photo-initiated production of toxic singlet oxygen. Here, we investigate the cell localization properties and toxicity of two polymeric anthracene-based fluorescent probes (neutral Ant-PHEA and cationic Ant-PIm). The cell death and DNA damage of Chinese hamster ovary cancer cells (CHO-K1) were characterized as combining PDT, cell survival studies (MTT-assay), and comet assay. Confocal microscopy was utilized on samples incubated together with either DRAQ5, Lyso Tracker Red, or Mito Tracker Deep Red in order to map the localization of the sensitizer into the nucleus and other cell compartments. While Ant-PHEA did not cause significant damage to the cell, Ant-PIm showed increased cell death upon illumination, at the cost of a significant dark toxicity. Both anthracene chromophores localized in cell compartments of the cytosol. Ant-PIm showed a markedly improved selectivity toward lysosomes and mitochondria, two important biological compartments for the cell’s survival. None of the two anthracene chromophores showed singlet oxygen formation upon excitation in solvents such as deuterium oxide or methanol. Conclusively, the significant photo-induced cell death that could be observed with Ant-PIm suggests a possible type I PDT mechanism rather than the usual type II mechanism. Full article
(This article belongs to the Special Issue Photodynamic Therapy in Cancer Treatment)
Show Figures

Graphical abstract

14 pages, 1734 KiB  
Review
Near-Infrared-Responsive Cancer Photothermal and Photodynamic Therapy Using Gold Nanoparticles
by Hyung Shik Kim and Dong Yun Lee
Polymers 2018, 10(9), 961; https://doi.org/10.3390/polym10090961 - 30 Aug 2018
Cited by 221 | Viewed by 24375
Abstract
Rapid growth of nanotechnology is one of the most quickly emerging tendencies in cancer therapy. Gold nanoparticles roused a distinctive interest in the field, due to their incomparable light-to-thermal energy conversion efficiency, and their ability to load and deliver a variety of anticancer [...] Read more.
Rapid growth of nanotechnology is one of the most quickly emerging tendencies in cancer therapy. Gold nanoparticles roused a distinctive interest in the field, due to their incomparable light-to-thermal energy conversion efficiency, and their ability to load and deliver a variety of anticancer drugs. Therefore, simultaneous photothermal (PTT) and photodynamic (PDT) cancer therapy is available by the role of the thermal agent of the gold nanoparticle itself and the drug delivery carrier for photosensitizer (PS) transport. In this review, the physical, chemical, and biological properties of gold nanoparticle, which can promote PTT and PDT efficiency, are briefly demonstrated, and we highlight recent progression in the development of PS-containing gold nanocomposites for effective cancer therapy. Full article
(This article belongs to the Special Issue Polymeric Micro/Nanoparticles for Bio-Medical Applications)
Show Figures

Figure 1

28 pages, 582 KiB  
Review
Autophagy Contributes to the Death/Survival Balance in Cancer PhotoDynamic Therapy
by Valentina Inguscio, Elisa Panzarini and Luciana Dini
Cells 2012, 1(3), 464-491; https://doi.org/10.3390/cells1030464 - 3 Aug 2012
Cited by 59 | Viewed by 13055
Abstract
Autophagy is an important cellular program with a “double face” role, since it promotes either cell survival or cell death, also in cancer therapies. Its survival role occurs by recycling cell components during starvation or removing stressed organelles; when damage becomes extensive, autophagy [...] Read more.
Autophagy is an important cellular program with a “double face” role, since it promotes either cell survival or cell death, also in cancer therapies. Its survival role occurs by recycling cell components during starvation or removing stressed organelles; when damage becomes extensive, autophagy provides another programmed cell death pathway, known as Autophagic Cell Death (ACD). The induction of autophagy is a common outcome in PhotoDynamic Therapy (PDT), a two-step process involving the irradiation of photosensitizer (PS)-loaded cancer cells. Upon tissue oxygen interaction, PS provokes immediate and direct Reactive Oxygen Species (ROS)-induced damage to Endoplasmic Reticulum (ER), mitochondria, plasma membrane, and/or lysosomes. The main biological effects carried out in cancer PDT are direct cytotoxicity to tumor cells, vasculature damage and induction of inflammatory reactions stimulating immunological responses. The question about the role of autophagy in PDT and its putative immunological impact is hotly controversial and largely studied in recent times. This review deals with the induction of autophagy in PDT protocols and its dual role, also considering its interrelationship with apoptosis, the preferential cell death program triggered in the photodynamic process. Full article
(This article belongs to the Special Issue Autophagy)
Show Figures

Graphical abstract

Back to TopTop