Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = phosphate cleavage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 16505 KiB  
Article
Delayed Starch Degradation Triggers Chromoplast Structural Aberration to Inhibit Carotenoid Cleavage: A Novel Mechanism for Flower Color Deepening in Osmanthus fragrans
by Xiangling Zeng, Yunfei Tan, Xin Wen, Qiang He, Hui Wu, Jingjing Zou, Jie Yang, Xuan Cai and Hongguo Chen
Horticulturae 2025, 11(7), 864; https://doi.org/10.3390/horticulturae11070864 - 21 Jul 2025
Viewed by 276
Abstract
The color of flowers in Osmanthus fragrans is regulated by carotenoid metabolism. The orange-red variety, Dangui, is believed to have evolved from the yellow variety, Jingui, through a natural bud mutation. This study uses the Jingui cultivar ‘Jinqiu Gui’ (JQG) and its bud [...] Read more.
The color of flowers in Osmanthus fragrans is regulated by carotenoid metabolism. The orange-red variety, Dangui, is believed to have evolved from the yellow variety, Jingui, through a natural bud mutation. This study uses the Jingui cultivar ‘Jinqiu Gui’ (JQG) and its bud mutation cultivar ‘Huolian Jindan’ (HLJD) as materials, combining genome resequencing, ultrastructural observation, targeted metabolomics, and transcriptomic analysis to elucidate the molecular and cellular mechanisms underlying flower color variation. Phylogenetic analysis confirms that HLJD is a natural bud mutation of JQG. Ultrastructural observations reveal that during petal development, chromoplasts are transformed from proplastids. In HLJD petals, starch granules degrade more slowly and exhibit abnormal morphology, resulting in chromoplasts displaying crystalline, tubular, and fibrous composite structures, in contrast to the typical spherical plastoglobuli found in JQG. Targeted metabolomics identified 34 carotenoids, showing significant increases in the levels of ε-carotene, γ-carotene, α-carotene, and β-carotene in HLJD petals compared to JQG, with these levels continuing to accumulate throughout the flowering process, while the levels of the cleavage products α-ionone and β-ionone decrease. Transcriptomic analysis indicates that carotenoid metabolic pathway genes do not correlate directly with the phenotype; however, 49 candidate genes significantly associated with pigment accumulation were identified. Among these, the expression of genes such as glycoside hydrolases (LYG036752, etc.), sucrose synthase (LYG010191), and glucose-1-phosphate adenylyltransferase (LYG003610) are downregulated in HLJD. This study proposes for the first time the pathway of “starch degradation delay → chromoplast structural abnormalities → carotenoid cleavage inhibition” for deepening flower color, providing a new theoretical model for the metabolic regulation of carotenoids in non-photosynthetic tissues of plants. This research not only identifies key target genes (such as glycoside hydrolases) for the color breeding of O. fragrans but also establishes a theoretical foundation for the color enhancement of other ornamental plants. Full article
Show Figures

Figure 1

15 pages, 3421 KiB  
Article
CRISPR-Cas12a/Aurora Deoxyribozyme Cascade: A Label-Free Ultrasensitive Platform for Rapid Salmonella Detection
by Cong Shi, Huimin Tan, Zhou Yu, Weilin Li, Yan Man and Qinghai Zhang
Foods 2025, 14(11), 1892; https://doi.org/10.3390/foods14111892 - 26 May 2025
Viewed by 675
Abstract
The rapid and ultrasensitive detection of Salmonella holds strategic significance for food safety surveillance and public health protection systems. This study innovatively developed a label-free biosensing platform based on the synergistic integration of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas12a and the fluorescent [...] Read more.
The rapid and ultrasensitive detection of Salmonella holds strategic significance for food safety surveillance and public health protection systems. This study innovatively developed a label-free biosensing platform based on the synergistic integration of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas12a and the fluorescent deoxyribozyme Aurora for the efficient detection of foodborne Salmonella. The detection mechanism operates through a molecular cascade reaction: target-activated Cas12a protein specifically degrades Aurora deoxyribozyme via its trans-cleavage activity, thereby abolishing the enzyme’s catalytic capability to convert 4-methylumbelliferyl phosphate (4-MUP) into the highly fluorescent product 4-methylumbelliferone (4-MU). This cascade ultimately enables quantitative target analysis through fluorescence signal attenuation. Following systematic optimization of critical reaction parameters, the biosensing system demonstrated exceptional analytical performance: a detection limit of 1.29 CFU/mL with excellent linearity (R2 = 0.992) spanning six orders of magnitude (1.65 × 101–106 CFU/mL), along with high specificity against multiple interfering bacterial strains. Spike-and-recovery tests in complex food matrices (milk, chicken, and lettuce) yielded recoveries of 90.91–99.40% (RSD = 3.55–4.72%), confirming robust practical applicability. Notably, the platform design allows flexible detection of other pathogens through simple replacement of CRISPR guide sequences. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

13 pages, 4493 KiB  
Article
Excessive Existence of Positively Charged Amino Acids Caused Off-Target Recognition in the Seed Region of Clostridium butyricum Argonaute
by Wenzhuo Ma, Wenping Lyu and Lizhe Zhu
Int. J. Mol. Sci. 2025, 26(10), 4738; https://doi.org/10.3390/ijms26104738 - 15 May 2025
Viewed by 422
Abstract
Clostridium butyricum Argonaute (CbAgo) can achieve DNA-guided DNA recognition and cleavage at physiological temperatures (~37 °C), making it a promising tool for gene editing. However, its significant off-target effects, particularly associated with the seed region (sites 2–8), pose challenges for precise [...] Read more.
Clostridium butyricum Argonaute (CbAgo) can achieve DNA-guided DNA recognition and cleavage at physiological temperatures (~37 °C), making it a promising tool for gene editing. However, its significant off-target effects, particularly associated with the seed region (sites 2–8), pose challenges for precise gene therapy. This study focuses on enhancing the specificity of the seed region recognition to mitigate these off-target effects. We investigated the molecular recognition process between the CbAgo-gDNA complex and the seed region of the target DNA using molecular dynamics simulations and automated path searching. Our findings reveal that positively charged residues located in an α-helix domain at the DNA–protein interface (R279, H285, K287, K288, K291, K298) facilitate rapid binding to the DNA phosphate backbone. Such interaction enhances the pre-formation of the DNA double helix, reducing the reliance on base complementarity during duplex pairing. Further simulations showed that alanine replacement of these positively charged residues led to significantly improved sequence specificity for the target DNA seed region. Collectively, these results offered critical insights into the origin of off-target recognition by CbAgo in its seed region, shedding lights on its fidelity enhancement. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

24 pages, 12903 KiB  
Article
Advances in Glendonite Understanding and Its Potential for Carbon Capture
by Bo Pagh Schultz and Jennifer Huggett
Minerals 2025, 15(4), 410; https://doi.org/10.3390/min15040410 - 13 Apr 2025
Cited by 1 | Viewed by 946
Abstract
This article reviews recent advances made by the authors through evaluation of samples in museum collections, in the context of our recent advances in novel observations, of cleavage in a recrystallising ikaite crystal, that may guide future research in understanding the morphology of [...] Read more.
This article reviews recent advances made by the authors through evaluation of samples in museum collections, in the context of our recent advances in novel observations, of cleavage in a recrystallising ikaite crystal, that may guide future research in understanding the morphology of ikaite, which traditional crystallography has so far not achieved, as traditional crystallography cannot be applied to the morphology of ikaite. Having reviewed over 1100 samples in museum collections, using a combination of morphology and petrology, we are able to define how samples can be classified as glendonite. The topics covered include: (1) a historical review of ikaite and glendonite; (2) evidence supporting ikaite as the precursor mineral of glendonite; (3) the discovery of mega-sized Danish glendonites; and (4) Holocene glendonite coastal sites. Our reassessment of existing knowledge of ikaite shows that when ikaite forms in marine settings, it forms in specific zones before other carbonate phases, and that in sedimentary environments, pressure and pH are not the primary factors controlling its precipitation. Instead, the availability of magnesium (Mg2⁺) and phosphate (PO43−) ions appear to play a more significant role. Furthermore, the conditions required for ikaite precipitation in laboratory experiments differ from those observed in natural ikaite or glendonite formation. Ikaite’s ability to capture carbon at low temperatures and its rapid recrystallisation into its more stable calcite pseudomorph, glendonite, suggest a potential application in carbon capture strategies. Full article
Show Figures

Figure 1

17 pages, 6988 KiB  
Article
Structural and Energetic Evidence Supports the Non-Covalent Phosphate Cyclization by the Class II Phospholipase D from Loxosceles intermedia
by Carolina Gismene, José Fernando Ruggiero Bachega, Daniel Z. Doherty, Silvio Sanches Veiga, Raghuvir K. Arni and Jorge Enrique Hernández González
Toxins 2025, 17(3), 111; https://doi.org/10.3390/toxins17030111 - 27 Feb 2025
Viewed by 868
Abstract
Phospholipase D (PLD) enzymes from Loxosceles spider venom mediate envenomation pathology by cleaving phospholipid headgroups. We revisited the crystal structure of Loxosceles intermedia PLD (PDB: 3RLH) to evaluate two alternative mechanisms—covalent and non-covalent—for headgroup cleavage. The covalent mechanism involves a nucleophilic attack on [...] Read more.
Phospholipase D (PLD) enzymes from Loxosceles spider venom mediate envenomation pathology by cleaving phospholipid headgroups. We revisited the crystal structure of Loxosceles intermedia PLD (PDB: 3RLH) to evaluate two alternative mechanisms—covalent and non-covalent—for headgroup cleavage. The covalent mechanism involves a nucleophilic attack on the substrate’s P atom by catalytic histidine, forming a phosphohistidine intermediate. It was originally suggested that this intermediate hydrolyzes, leading to linear phosphates. The non-covalent mechanism relies on the substrate’s hydroxyl group performing an intramolecular attack on the P atom, thereby generating a cyclic phosphate. Structural refinement of the crystal structure revealed a cyclic phosphate bound at the active site, replacing previously assigned PEG molecules. This cyclic product, stabilized by His12, His47, and Mg2+, provides structural evidence that supports phosphate cyclization. The results of computational analyses, including molecular dynamics and quantum mechanics/molecular mechanics simulations, further support the non-covalent mechanism as the energetically preferred pathway, with a significantly lower activation barrier. Our findings highlight the role of substrate orientation and of the catalytic His residues in transphosphatidylation, advancing our understanding of PLD enzymology and providing insights for the design of inhibitors against Loxosceles envenomation. Full article
Show Figures

Figure 1

19 pages, 3960 KiB  
Article
How Do Gepotidacin and Zoliflodacin Stabilize DNA-Cleavage Complexes with Bacterial Type IIA Topoisomerases? 2. A Single Moving Metal Mechanism
by Robert A. Nicholls, Harry Morgan, Anna J. Warren, Simon E. Ward, Fei Long, Garib N. Murshudov, Dmitry Sutormin and Benjamin D. Bax
Int. J. Mol. Sci. 2025, 26(1), 33; https://doi.org/10.3390/ijms26010033 - 24 Dec 2024
Cited by 1 | Viewed by 1357
Abstract
DNA gyrase is a bacterial type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology and an archetypical target of antibiotics. The widely used quinolone class of drugs use a water–metal ion bridge in interacting with the GyrA subunit [...] Read more.
DNA gyrase is a bacterial type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology and an archetypical target of antibiotics. The widely used quinolone class of drugs use a water–metal ion bridge in interacting with the GyrA subunit of DNA gyrase. Zoliflodacin sits in the same pocket as quinolones but interacts with the GyrB subunit and also stabilizes lethal double-stranded DNA breaks. Gepotidacin has been observed to sit on the twofold axis of the complex, midway between the two four-base-pair separated DNA-cleavage sites and has been observed to stabilize singe-stranded DNA breaks. Here, we use information from three crystal structures of complexes of Staphlococcus aureus DNA gyrase (one with a precursor of gepotidacin and one with the progenitor of zoliflodacin) to propose a simple single moving metal-ion-catalyzed DNA-cleavage mechanism. Our model explains why the catalytic tyrosine is in the tyrosinate (negatively charged) form for DNA cleavage. Movement of a single catalytic metal-ion (Mg2+ or Mn2+) guides water-mediated protonation and cleavage of the scissile phosphate, which is then accepted by the catalytic tyrosinate. Type IIA topoisomerases need to be able to rapidly cut the DNA when it becomes positively supercoiled (in front of replication forks and transcription bubbles) and we propose that the original purpose of the small Greek Key domain, common to all type IIA topoisomerases, was to allow access of the catalytic metal to the DNA-cleavage site. Although the proposed mechanism is consistent with published data, it is not proven and other mechanisms have been proposed. Finally, how such mechanisms can be experimentally distinguished is considered. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

14 pages, 3239 KiB  
Article
An Innovative Inhibitor with a New Chemical Moiety Aimed at Biliverdin IXβ Reductase for Thrombocytopenia and Resilient against Cellular Degradation
by Hoe-Myung Jung, Jung-Hye Ha, Mark Vincent C. dela Cerna, Joseph A. Burlison, Joonhyeok Choi, Bo-Ram Kim, Jeong Kyu Bang, Kyoung-Seok Ryu and Donghan Lee
Pharmaceutics 2024, 16(9), 1148; https://doi.org/10.3390/pharmaceutics16091148 - 30 Aug 2024
Viewed by 1741
Abstract
Biliverdin IXβ reductase (BLVRB) has emerged as a promising therapeutic target for thrombocytopenia due to its involvement in reactive oxygen species (ROS) mechanisms. During the pursuit of inhibitors targeting BLVRB, olsalazine (OSA) became apparent as one of the most potent candidates. However, the [...] Read more.
Biliverdin IXβ reductase (BLVRB) has emerged as a promising therapeutic target for thrombocytopenia due to its involvement in reactive oxygen species (ROS) mechanisms. During the pursuit of inhibitors targeting BLVRB, olsalazine (OSA) became apparent as one of the most potent candidates. However, the direct application of OSA as a BLVRB inhibitor faces challenges, as it is prone to degradation into 5-aminosalicylic acid through cleavage of the diazenyl bond by abundant azoreductase (AzoR) enzymes in gut microbiota and eukaryotic cells. To overcome this obstacle, we devised olsalkene (OSK), an inhibitor where the diazenyl bond in OSA has been substituted with an alkene bond. OSK not only matches the efficacy of OSA but also demonstrates improved stability against degradation by AzoR, presenting a promising solution to this limitation. Furthermore, we have found that both OSK and OSA inhibit BLVRB, regardless of the presence of nicotinamide adenine dinucleotide phosphate, unlike other known inhibitors. This discovery opens new avenues for investigating the roles of BLVRB in blood disorders, including thrombocytopenia. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

59 pages, 2461 KiB  
Review
From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling
by Fabienne Briand-Mésange, Isabelle Gennero, Juliette Salles, Stéphanie Trudel, Lionel Dahan, Jérôme Ausseil, Bernard Payrastre, Jean-Pierre Salles and Hugues Chap
Molecules 2024, 29(15), 3694; https://doi.org/10.3390/molecules29153694 - 4 Aug 2024
Cited by 2 | Viewed by 4030
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing [...] Read more.
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6–7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders. Full article
(This article belongs to the Special Issue Bioactive Lipids in Inflammatory Diseases)
Show Figures

Figure 1

13 pages, 2279 KiB  
Article
Zinc N,N-bis(2-picolyl)amine Chelates Show Substitution-Dependent Cleavage of Phosphodiesters in Models as Well as of PNAzyme-RNA Bulges
by Søren W. Svenningsen, Olivia Luige, Zeyed Abdulkarim, Roger Strömberg and Nicholas H. Williams
Molecules 2024, 29(9), 2123; https://doi.org/10.3390/molecules29092123 - 3 May 2024
Cited by 1 | Viewed by 1636
Abstract
PNAzymes are a group of artificial enzymes which show promising results in selective and efficient cleavage of RNA targets. In the present study, we introduce a series of metal chelating groups based on N,N-bis(2-picolyl) groups (parent, 6-methyl and 6-amino substituted) [...] Read more.
PNAzymes are a group of artificial enzymes which show promising results in selective and efficient cleavage of RNA targets. In the present study, we introduce a series of metal chelating groups based on N,N-bis(2-picolyl) groups (parent, 6-methyl and 6-amino substituted) as the active sites of novel PNAzymes. An improved synthetic route for the 6-amino analogues is described. The catalytic activity of the chelating groups for cleaving phosphodiesters were assessed with the model substrate 2-hydroxypropyl p-nitrophenyl phosphate (HPNPP), confirming that the zinc complexes have the reactivity order of parent < 2-methyl < 2-amino. The three ligands were conjugated to a PNA oligomer to form three PNAzymes which showed the same order of reactivity and some sensitivity to the size of the RNA bulge designed into the catalyst–substrate complex. This work demonstrates that the kinetic activity observed for the model substrate HPNPP could be translated onto the PNAzymes, but that more reactive Zn complexes are required for such PNAzymes to be viable therapeutic agents. Full article
Show Figures

Figure 1

14 pages, 3918 KiB  
Article
Structural and Dynamic Features of the Recognition of 8-oxoguanosine Paired with an 8-oxoG-clamp by Human 8-oxoguanine-DNA Glycosylase
by Maria V. Lukina, Polina V. Zhdanova and Vladimir V. Koval
Curr. Issues Mol. Biol. 2024, 46(5), 4119-4132; https://doi.org/10.3390/cimb46050253 - 29 Apr 2024
Viewed by 1712
Abstract
8-oxoguanine (oxoG) is formed in DNA by the action of reactive oxygen species. As a highly mutagenic and the most common oxidative DNA lesion, it is an important marker of oxidative stress. Human 8-oxoguanine-DNA glycosylase (OGG1) is responsible for its prompt removal in [...] Read more.
8-oxoguanine (oxoG) is formed in DNA by the action of reactive oxygen species. As a highly mutagenic and the most common oxidative DNA lesion, it is an important marker of oxidative stress. Human 8-oxoguanine-DNA glycosylase (OGG1) is responsible for its prompt removal in human cells. OGG1 is a bifunctional DNA glycosylase with N-glycosylase and AP lyase activities. Aspects of the detailed mechanism underlying the recognition of 8-oxoguanine among numerous intact bases and its subsequent interaction with the enzyme’s active site amino acid residues are still debated. The main objective of our work was to determine the effect (structural and thermodynamic) of introducing an oxoG-clamp in model DNA substrates on the process of 8-oxoG excision by OGG1. Towards that end, we used DNA duplexes modeling OGG1-specific lesions: 8-oxoguanine or an apurinic/apyrimidinic site with either cytidine or the oxoG-clamp in the complementary strand opposite to the lesion. It was revealed that there was neither hydrolysis of the N-glycosidic bond at oxoG nor cleavage of the sugar–phosphate backbone during the reaction between OGG1 and oxoG-clamp-containing duplexes. Possible structural reasons for the absence of OGG1 enzymatic activity were studied via the stopped-flow kinetic approach and molecular dynamics simulations. The base opposite the damage was found to have a critical effect on the formation of the enzyme–substrate complex and the initiation of DNA cleavage. The oxoG-clamp residue prevented the eversion of the oxoG base into the OGG1 active site pocket and impeded the correct convergence of the apurinic/apyrimidinic site of DNA and the attacking nucleophilic group of the enzyme. An obtained three-dimensional model of the OGG1 complex with DNA containing the oxoG-clamp, together with kinetic data, allowed us to clarify the role of the contact of amino acid residues with DNA in the formation of (and rearrangements in) the enzyme–substrate complex. Full article
(This article belongs to the Special Issue DNA Damage and Repair in Health and Diseases)
Show Figures

Figure 1

20 pages, 3423 KiB  
Article
pH-Sensitive Amphiphilic Diblock Polyphosphoesters with Lactate Units: Synthesis and Application as Drug Carriers
by Kasumi Mochizuki, Violeta Mitova, Kimiko Makino, Hiroshi Terada, Issei Takeuchi and Kolio Troev
Int. J. Mol. Sci. 2024, 25(8), 4518; https://doi.org/10.3390/ijms25084518 - 20 Apr 2024
Cited by 2 | Viewed by 1287
Abstract
pH-sensitive amphiphilic diblock polyphosphoesters containing lactic acid units were synthesized by multistep one-pot polycondensation reactions. They comprise acid-labile P(O)-O-C and C(O)-O-C bonds, the cleavage of which depends on the pH of the medium. The structure of these copolymers was characterized by 1H, [...] Read more.
pH-sensitive amphiphilic diblock polyphosphoesters containing lactic acid units were synthesized by multistep one-pot polycondensation reactions. They comprise acid-labile P(O)-O-C and C(O)-O-C bonds, the cleavage of which depends on the pH of the medium. The structure of these copolymers was characterized by 1H, 13C {H}, 31P NMR, and size exclusion chromatography (SEC). The newly synthesized polymers self-assembled into the micellar structure in an aqueous solution. The effects of the molecular weight of the copolymer and the length of the hydrophobic chain on micelle formation and stabilityand micelle size were studied via dynamic light scattering (DLS). Drug loading and encapsulation efficiency tests using doxorubicin revealed that hydrophobic drugs can be delivered by copolymers. It was established that the molecular weight of the copolymer, length of the hydrophobic chain and content of lactate units affects the size of the micelles, drug loading, and efficiency of encapsulation. A copolymer with 10.7% lactate content has drug loading (3.2 ± 0.3) and efficiency of encapsulation (57.4 ± 3.2), compared to the same copolymer with 41.8% lactate content (1.63%) and (45.8%), respectively. It was demonstrated that the poly[alkylpoly(ethylene glycol) phosphate-b-alkylpoly(ethylene glycol)lactate phosphate] DOX system has a pH-sensitive response capability in the result in which DOX was selectively accumulated into the tumor, where pH is acidic. The results obtained indicate that amphiphilic diblock polyphosphoesters have potential as drug carriers. Full article
Show Figures

Graphical abstract

13 pages, 1454 KiB  
Article
Jasmonates and Ethylene Shape Floridoside Synthesis during Carposporogenesis in the Red Seaweed Grateloupia imbricata
by Pilar Garcia-Jimenez, Diana del Rosario-Santana and Rafael R. Robaina
Mar. Drugs 2024, 22(3), 115; https://doi.org/10.3390/md22030115 - 28 Feb 2024
Cited by 2 | Viewed by 2335
Abstract
Floridoside is a galactosyl–glycerol compound that acts to supply UDP-galactose and functions as an organic osmolyte in response to salinity in Rhodophyta. Significantly, the UDP-galactose pool is shared for sulfated cell wall galactan synthesis, and, in turn, affected by thallus development alongside carposporogenesis [...] Read more.
Floridoside is a galactosyl–glycerol compound that acts to supply UDP-galactose and functions as an organic osmolyte in response to salinity in Rhodophyta. Significantly, the UDP-galactose pool is shared for sulfated cell wall galactan synthesis, and, in turn, affected by thallus development alongside carposporogenesis induced by volatile growth regulators, such as ethylene and methyl jasmonate, in the red seaweed Grateloupia imbricata. In this study, we monitored changes in the floridoside reservoir through gene expression controlling both the galactose pool and glyceride pool under different reproductive stages of G. imbricata and we considered changing salinity conditions. Floridoside synthesis was followed by expression analysis of galactose-1-phosphate uridyltransferase (GALT) as UDP-galactose is obtained from UDP-glucose and glucose-1P, and through α-galactosidase gene expression as degradation of floridoside occurs through the cleavage of galactosyl residues. Meanwhile, glycerol 3-phosphate is connected with the galactoglyceride biosynthetic pathway by glycerol 3-phosphate dehydrogenase (G3PD), monogalactosyl diacylglyceride synthase (MGDGS), and digalactosyl diacylglyceride synthase (DGDGS). The results of our study confirm that low GALT transcripts are correlated with thalli softness to locate reproductive structures, as well as constricting the synthesis of UDP-hexoses for galactan backbone synthesis in the presence of two volatile regulators and methionine. Meanwhile, α-galactosidase modulates expression according to cystocarp maturation, and we found high transcripts in late development stages, as occurred in the presence of methyljasmonate, compared to early stages in ethylene. Regarding the acylglyceride pool, the upregulation of G3PD, MGDGS, and DGDGS gene expression in G. imbricata treated with MEJA supports lipid remodeling, as high levels of transcripts for MGDGS and DGDGS provide membrane stability during late development stages of cystocarps. Similar behavior is assumed in three naturally collected thalli development stages—namely, fertile, fertilized, and fertile—under 65 psu salinity conditions. Low transcripts for α-galactosidase and high for G3PD are reported in infertile and fertilized thalli, which is the opposite to high transcripts for α-galactosidase and low for G3PD encountered in fertile thalli within visible cystocarps compared to each of their corresponding stages in 35 psu. No significant changes are reported for MGDGS and DGDGS. It is concluded that cystocarp and thallus development stages affect galactose and glycerides pools with interwoven effects on cell wall polysaccharides. Full article
(This article belongs to the Special Issue Characterization of Bioactive Components in Edible Algae 3rd Edition)
Show Figures

Figure 1

14 pages, 6790 KiB  
Article
The Effect of 8,5′-Cyclo 2′-deoxyadenosine on the Activity of 10-23 DNAzyme: Experimental and Theoretical Study
by Marcin Cieślak and Bolesław T. Karwowski
Int. J. Mol. Sci. 2024, 25(5), 2519; https://doi.org/10.3390/ijms25052519 - 21 Feb 2024
Viewed by 1480
Abstract
The in vivo effectiveness of DNAzymes 10-23 (Dz10-23) is limited due to the low concentration of divalent cations. Modifications of the catalytic loop are being sought to increase the activity of Dz10-23 in physiological conditions. We investigated the effect of 5′S or 5′R [...] Read more.
The in vivo effectiveness of DNAzymes 10-23 (Dz10-23) is limited due to the low concentration of divalent cations. Modifications of the catalytic loop are being sought to increase the activity of Dz10-23 in physiological conditions. We investigated the effect of 5′S or 5′R 5′,8-cyclo-2′deoxyadenosine (cdA) on the activity of Dz10-23. The activity of Dz10-23 was measured in a cleavage assay using radiolabeled RNA. The Density Functional Tight Binding methodology with the self-consistent redistribution of Mulliken charge modification was used to explain different activities of DNAzymes. The substitution of 2′-deoxyadenosine with cdA in the catalytic loop decreased the activity of DNAzymes. Inhibition was dependent on the position of cdA and its absolute configuration. The order of activity of DNAzymes was as follows: wt-Dz > ScdA5-Dz ≈ RcdA15-Dz ≈ ScdA15-Dz > RcdA5-Dz. Theoretical studies revealed that the distance between phosphate groups at position 5 in RcdA5-Dz was significantly increased compared to wt-Dz, while the distance between O4 of dT4 and nonbonding oxygen of PO2 attached to 3′O of dG2 was much shorter. The strong inhibitory effect of RcdA5 may result from hampering the flexibility of the catalytic loop (increased rigidity), which is required for the proper positioning of Me2+ and optimal activity. Full article
(This article belongs to the Special Issue Latest Advances in Enzymology)
Show Figures

Figure 1

15 pages, 3777 KiB  
Article
Evidence for Involvement of ADP-Ribosylation Factor 6 in Intracellular Trafficking and Release of Murine Leukemia Virus Gag
by Hyokyun Kang, Taekwon Kang, Lauryn Jackson, Amaiya Murphy and Takayuki Nitta
Cells 2024, 13(3), 270; https://doi.org/10.3390/cells13030270 - 31 Jan 2024
Viewed by 1846
Abstract
Murine leukemia viruses (MuLVs) are simple retroviruses that cause several diseases in mice. Retroviruses encode three basic genes: gag, pol, and env. Gag is translated as a polyprotein and moves to assembly sites where viral particles are shaped by cleavage of [...] Read more.
Murine leukemia viruses (MuLVs) are simple retroviruses that cause several diseases in mice. Retroviruses encode three basic genes: gag, pol, and env. Gag is translated as a polyprotein and moves to assembly sites where viral particles are shaped by cleavage of poly-Gag. Viral release depends on the intracellular trafficking of viral proteins, which is determined by both viral and cellular factors. ADP-ribosylation factor 6 (Arf6) is a small GTPase that regulates vesicular trafficking and recycling of different types of cargo in cells. Arf6 also activates phospholipase D (PLD) and phosphatidylinositol-4-phosphate 5-kinase (PIP5K) and produces phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). We investigated how Arf6 affected MuLV release with a constitutively active form of Arf6, Arf6Q67L. Expression of Arf6Q67L impaired Gag release by accumulating Gag at PI(4,5)P2-enriched compartments in the cytoplasm. Treatment of the inhibitors for PLD and PIP5K impaired or recovered MuLV Gag release in the cells expressing GFP (control) and Arf6Q67L, implying that regulation of PI(4,5)P2 through PLD and PIP5K affected MuLV release. Interference with the phosphoinositide 3-kinases, mammalian target of rapamycin (mTOR) pathway, and vacuolar-type ATPase activities showed further impairment of Gag release from the cells expressing Arf6Q67L. In contrast, mTOR inhibition increased Gag release in the control cells. The proteasome inhibitors reduced viral release in the cells regardless of Arf6Q67L expression. These data outline the differences in MuLV release under the controlled and overactivated Arf6 conditions and provide new insight into pathways for MuLV release. Full article
Show Figures

Figure 1

11 pages, 3644 KiB  
Article
Sphingosine-1-Phosphate Receptor 3 Induces Endothelial Barrier Loss via ADAM10-Mediated Vascular Endothelial-Cadherin Cleavage
by Jialin Wu, Ying Liang, Panfeng Fu, Anlin Feng, Qing Lu, Hoshang J. Unwalla, David P. Marciano, Stephen M. Black and Ting Wang
Int. J. Mol. Sci. 2023, 24(22), 16083; https://doi.org/10.3390/ijms242216083 - 8 Nov 2023
Cited by 4 | Viewed by 2186
Abstract
Mechanical ventilation (MV) is a life-supporting strategy employed in the Intensive Care Unit (ICU). However, MV-associated mechanical stress exacerbates existing lung inflammation in ICU patients, resulting in limited improvement in mortality and a condition known as Ventilator-Induced Lung Injury (VILI). Sphingosine-1-phosphate (S1P) is [...] Read more.
Mechanical ventilation (MV) is a life-supporting strategy employed in the Intensive Care Unit (ICU). However, MV-associated mechanical stress exacerbates existing lung inflammation in ICU patients, resulting in limited improvement in mortality and a condition known as Ventilator-Induced Lung Injury (VILI). Sphingosine-1-phosphate (S1P) is a circulating bioactive lipid that maintains endothelial integrity primarily through S1P receptor 1 (S1PR1). During VILI, mechanical stress upregulates endothelial S1PR3 levels. Unlike S1PR1, S1PR3 mediates endothelial barrier disruption through Rho-dependent pathways. However, the specific impact of elevated S1PR3 on lung endothelial function, apart from Rho activation, remains poorly understood. In this study, we investigated the effects of S1PR3 in endothelial pathobiology during VILI using an S1PR3 overexpression adenovirus. S1PR3 overexpression caused cytoskeleton rearrangement, formation of paracellular gaps, and a modified endothelial response towards S1P. It resulted in a shift from S1PR1-dependent barrier enhancement to S1PR3-dependent barrier disruption. Moreover, S1PR3 overexpression induced an ADAM10-dependent cleavage of Vascular Endothelial (VE)-cadherin, which hindered endothelial barrier recovery. S1PR3-induced cleavage of VE-cadherin was at least partially regulated by S1PR3-mediated NFκB activation. Additionally, we employed an S1PR3 inhibitor TY-52156 in a murine model of VILI. TY-52156 effectively attenuated VILI-induced increases in bronchoalveolar lavage cell counts and protein concentration, suppressed the release of pro-inflammatory cytokines, and inhibited lung inflammation as assessed via a histological evaluation. These findings confirm that mechanical stress associated with VILI increases S1PR3 levels, thereby altering the pulmonary endothelial response towards S1P and impairing barrier recovery. Inhibiting S1PR3 is validated as an effective therapeutic strategy for VILI. Full article
Show Figures

Figure 1

Back to TopTop