Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,369)

Search Parameters:
Keywords = phenotypic features

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 462 KiB  
Article
Genetic Landscape of Congenital Cataracts in a Swiss Cohort: Addressing Diagnostic Oversights in Nance–Horan Syndrome
by Flora Delas, Jiradet Gloggnitzer, Alessandro Maspoli, Lisa Kurmann, Beatrice E. Frueh, Ivanka Dacheva, Darius Hildebrand, Wolfgang Berger and Christina Gerth-Kahlert
Biomedicines 2025, 13(8), 1883; https://doi.org/10.3390/biomedicines13081883 (registering DOI) - 2 Aug 2025
Abstract
Congenital cataracts (CCs) are a leading cause of preventable childhood blindness, with genetic factors playing a crucial role in their etiology. Nance–Horan syndrome (NHS) is a rare X-linked dominant disorder associated with CCs but is often underdiagnosed due to variable expressivity, particularly in [...] Read more.
Congenital cataracts (CCs) are a leading cause of preventable childhood blindness, with genetic factors playing a crucial role in their etiology. Nance–Horan syndrome (NHS) is a rare X-linked dominant disorder associated with CCs but is often underdiagnosed due to variable expressivity, particularly in female carriers. Objective: This study aimed to explore the genetic landscape of CCs in a Swiss cohort, focusing on two novel NHS and one novel GJA8 variants and their phenotypic presentation. Methods: Whole-exome sequencing (WES) was conducted on 20 unrelated Swiss families diagnosed with CCs. Variants were analyzed for pathogenicity using genetic databases, and segregation analysis was performed. Clinical data, including cataract phenotype and associated systemic anomalies, were assessed to establish genotype–phenotype correlations. Results: Potentially pathogenic DNA sequence variants were identified in 10 families, including three novel variants, one in GJA8 (c.584T>C) and two NHS variants (c.250_252insA and c.484del). Additional previously reported variants were detected in CRYBA1, CRYGC, CRYAA, MIP, EPHA2, and MAF, reflecting genetic heterogeneity in the cohort. Notably, NHS variants displayed significant phenotypic variability, suggesting dose-dependent effects and X-chromosome inactivation in female carriers. Conclusions: NHS remains underdiagnosed due to its variable expressivity and the late manifestation of systemic features, often leading to misclassification as isolated CC. This study highlights the importance of genetic testing in unexplained CC cases to improve early detection of syndromic forms. The identification of novel NHS and GJA8 variants provides new insights into the genetic complexity of CCs, emphasizing the need for further research on genotype–phenotype correlations. Full article
(This article belongs to the Special Issue Ophthalmic Genetics: Unraveling the Genomics of Eye Disorders)
Show Figures

Figure 1

20 pages, 4847 KiB  
Article
FCA-STNet: Spatiotemporal Growth Prediction and Phenotype Extraction from Image Sequences for Cotton Seedlings
by Yiping Wan, Bo Han, Pengyu Chu, Qiang Guo and Jingjing Zhang
Plants 2025, 14(15), 2394; https://doi.org/10.3390/plants14152394 (registering DOI) - 2 Aug 2025
Abstract
To address the limitations of the existing cotton seedling growth prediction methods in field environments, specifically, poor representation of spatiotemporal features and low visual fidelity in texture rendering, this paper proposes an algorithm for the prediction of cotton seedling growth from images based [...] Read more.
To address the limitations of the existing cotton seedling growth prediction methods in field environments, specifically, poor representation of spatiotemporal features and low visual fidelity in texture rendering, this paper proposes an algorithm for the prediction of cotton seedling growth from images based on FCA-STNet. The model leverages historical sequences of cotton seedling RGB images to generate an image of the predicted growth at time t + 1 and extracts 37 phenotypic traits from the predicted image. A novel STNet structure is designed to enhance the representation of spatiotemporal dependencies, while an Adaptive Fine-Grained Channel Attention (FCA) module is integrated to capture both global and local feature information. This attention mechanism focuses on individual cotton plants and their textural characteristics, effectively reducing the interference from common field-related challenges such as insufficient lighting, leaf fluttering, and wind disturbances. The experimental results demonstrate that the predicted images achieved an MSE of 0.0086, MAE of 0.0321, SSIM of 0.8339, and PSNR of 20.7011 on the test set, representing improvements of 2.27%, 0.31%, 4.73%, and 11.20%, respectively, over the baseline STNet. The method outperforms several mainstream spatiotemporal prediction models. Furthermore, the majority of the predicted phenotypic traits exhibited correlations with actual measurements with coefficients above 0.8, indicating high prediction accuracy. The proposed FCA-STNet model enables visually realistic prediction of cotton seedling growth in open-field conditions, offering a new perspective for research in growth prediction. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

21 pages, 4314 KiB  
Article
Panoptic Plant Recognition in 3D Point Clouds: A Dual-Representation Learning Approach with the PP3D Dataset
by Lin Zhao, Sheng Wu, Jiahao Fu, Shilin Fang, Shan Liu and Tengping Jiang
Remote Sens. 2025, 17(15), 2673; https://doi.org/10.3390/rs17152673 (registering DOI) - 2 Aug 2025
Abstract
The advancement of Artificial Intelligence (AI) has significantly accelerated progress across various research domains, with growing interest in plant science due to its substantial economic potential. However, the integration of AI with digital vegetation analysis remains underexplored, largely due to the absence of [...] Read more.
The advancement of Artificial Intelligence (AI) has significantly accelerated progress across various research domains, with growing interest in plant science due to its substantial economic potential. However, the integration of AI with digital vegetation analysis remains underexplored, largely due to the absence of large-scale, real-world plant datasets, which are crucial for advancing this field. To address this gap, we introduce the PP3D dataset—a meticulously labeled collection of about 500 potted plants represented as 3D point clouds, featuring fine-grained annotations for approximately 20 species. The PP3D dataset provides 3D phenotypic data for about 20 plant species spanning model organisms (e.g., Arabidopsis thaliana), potted plants (e.g., Foliage plants, Flowering plants), and horticultural plants (e.g., Solanum lycopersicum), covering most of the common important plant species. Leveraging this dataset, we propose the panoptic plant recognition task, which combines semantic segmentation (stems and leaves) with leaf instance segmentation. To tackle this challenge, we present SCNet, a novel dual-representation learning network designed specifically for plant point cloud segmentation. SCNet integrates two key branches: a cylindrical feature extraction branch for robust spatial encoding and a sequential slice feature extraction branch for detailed structural analysis. By efficiently propagating features between these representations, SCNet achieves superior flexibility and computational efficiency, establishing a new baseline for panoptic plant recognition and paving the way for future AI-driven research in plant science. Full article
Show Figures

Figure 1

23 pages, 3297 KiB  
Article
Phenotypic Changes and Oxidative Stress in THP-1 Macrophages in Response to Vanilloids Following Stimulation with Allergen Act d 1 and LPS
by Milena Zlatanova, Jovana Grubač, Jovana Trbojević-Ivić and Marija Gavrović-Jankulović
Antioxidants 2025, 14(8), 949; https://doi.org/10.3390/antiox14080949 (registering DOI) - 1 Aug 2025
Abstract
Activation of macrophages plays a key role in both inflammation and oxidative stress, key features of many chronic diseases. Pro-inflammatory M1-like macrophages, in particular, contribute to pro-oxidative environments and are a frequent focus of immunological research. This research examined the effects of kiwifruit [...] Read more.
Activation of macrophages plays a key role in both inflammation and oxidative stress, key features of many chronic diseases. Pro-inflammatory M1-like macrophages, in particular, contribute to pro-oxidative environments and are a frequent focus of immunological research. This research examined the effects of kiwifruit allergen Act d 1, in comparison to LPS, on THP-1 macrophages in vitro differentiated under optimized conditions, both in the presence and in the absence of selected vanilloids. THP-1 monocyte differentiation was optimized by varying PMA exposure and resting time. Act d 1 induced M1-like phenotypic changes comparable to LPS, including upregulation of CD80, IL-1β and IL-6 secretion, gene expression of iNOS and NF-κB activation, in addition to increased reactive oxygen species (ROS) and catalase activity. Treatment with specific vanilloids mitigated these responses, primarily through reduced oxidative stress and NF-κB activation. Notably, vanillin (VN) was the most effective, also reducing CD80 expression and IL-1β levels. These results suggest that vanilloids can affect pro-inflammatory signaling and oxidative stress in THP-1 macrophages and highlight their potential to alter inflammatory conditions characterized by similar immune responses. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

24 pages, 6639 KiB  
Article
CNS Axon Regeneration in the Long Primary Afferent System in E15/E16 Hypoxic-Conditioned Fetal Rats: A Thrust-Driven Concept
by Frits C. de Beer and Harry W. M. Steinbusch
Anatomia 2025, 4(3), 12; https://doi.org/10.3390/anatomia4030012 - 1 Aug 2025
Abstract
Background: Lower phylogenetic species are known to rebuild cut-off caudal parts with regeneration of the central nervous system (CNS). In contrast, CNS regeneration in higher vertebrates is often attributed to immaturity, although this has never been conclusively demonstrated. The emergence of stem cells [...] Read more.
Background: Lower phylogenetic species are known to rebuild cut-off caudal parts with regeneration of the central nervous system (CNS). In contrast, CNS regeneration in higher vertebrates is often attributed to immaturity, although this has never been conclusively demonstrated. The emergence of stem cells and their effective medical applications has intensified research into spinal cord regeneration. However, despite these advances, the impact of clinical trials involving spinal cord-injured (SCI) patients remains disappointingly low. Long-distance regeneration has yet to be proven. Methods: Our study involved a microsurgical dorsal myelotomy in fetal rats. The development of pioneering long primary afferent axons during early gestation was examined long after birth. Results: A single cut triggered the intrinsic ability of the dorsal root ganglion (DRG) neurons to reprogram. Susceptibility to hypoxia caused the axons to stop developing. However, the residual axonal outgrowth sheds light on the intriguing temporal and spatial events that reveal long-distance CNS regeneration. The altered phenotypes displayed axons of varying lengths and different features, which remained visible throughout life. The previously designed developmental blueprint was crucial for interpreting these enigmatic features. Conclusions: This research into immaturity enabled the exploration of the previously impenetrable domain of early life and the identification of a potential missing link in CNS regeneration research. Central axon regeneration appeared to occur much faster than is generally believed. The paradigm provides a challenging approach for exhaustive intrauterine reprogramming. When the results demonstrate pre-clinical effectiveness in CNS regeneration research, the transformational impact may ultimately lead to improved outcomes for patients with spinal cord injuries. Full article
(This article belongs to the Special Issue From Anatomy to Clinical Neurosciences)
Show Figures

Figure 1

14 pages, 1813 KiB  
Article
Elevated Antigen-Presenting-Cell Signature Genes Predict Stemness and Metabolic Reprogramming States in Glioblastoma
by Ji-Yong Sung and Kihwan Hwang
Int. J. Mol. Sci. 2025, 26(15), 7411; https://doi.org/10.3390/ijms26157411 (registering DOI) - 1 Aug 2025
Abstract
Glioblastoma (GBM) is a highly aggressive and heterogeneous brain tumor. Glioma stem-like cells (GSCs) play a central role in tumor progression, therapeutic resistance, and recurrence. Although immune cells are known to shape the GBM microenvironment, the impact of antigen-presenting-cell (APC) signature genes on [...] Read more.
Glioblastoma (GBM) is a highly aggressive and heterogeneous brain tumor. Glioma stem-like cells (GSCs) play a central role in tumor progression, therapeutic resistance, and recurrence. Although immune cells are known to shape the GBM microenvironment, the impact of antigen-presenting-cell (APC) signature genes on tumor-intrinsic phenotypes remains underexplored. We analyzed both bulk- and single-cell RNA sequencing datasets of GBM to investigate the association between APC gene expression and tumor-cell states, including stemness and metabolic reprogramming. Signature scores were computed using curated gene sets related to APC activity, KEGG metabolic pathways, and cancer hallmark pathways. Protein–protein interaction (PPI) networks were constructed to examine the links between immune regulators and metabolic programs. The high expression of APC-related genes, such as HLA-DRA, CD74, CD80, CD86, and CIITA, was associated with lower stemness signatures and enhanced inflammatory signaling. These APC-high states (mean difference = –0.43, adjusted p < 0.001) also showed a shift in metabolic activity, with decreased oxidative phosphorylation and increased lipid and steroid metabolism. This pattern suggests coordinated changes in immune activity and metabolic status. Furthermore, TNF-α and other inflammatory markers were more highly expressed in the less stem-like tumor cells, indicating a possible role of inflammation in promoting differentiation. Our findings revealed that elevated APC gene signatures are associated with more differentiated and metabolically specialized GBM cell states. These transcriptional features may also reflect greater immunogenicity and inflammation sensitivity. The APC metabolic signature may serve as a useful biomarker to identify GBM subpopulations with reduced stemness and increased immune engagement, offering potential therapeutic implications. Full article
(This article belongs to the Special Issue Advanced Research on Cancer Stem Cells)
Show Figures

Figure 1

27 pages, 1869 KiB  
Review
Understanding the Molecular Basis of Miller–Dieker Syndrome
by Gowthami Mahendran and Jessica A. Brown
Int. J. Mol. Sci. 2025, 26(15), 7375; https://doi.org/10.3390/ijms26157375 - 30 Jul 2025
Viewed by 297
Abstract
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological [...] Read more.
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological defects, distinctive facial abnormalities, cognitive impairments, seizures, growth retardation, and congenital heart and liver abnormalities. One hallmark feature of MDS is an unusually smooth brain surface due to abnormal neuronal migration during early brain development. Several genes located within the MDS locus have been implicated in the pathogenesis of MDS, including PAFAH1B1, YWHAE, CRK, and METTL16. These genes play a role in the molecular and cellular pathways that are vital for neuronal migration, the proper development of the cerebral cortex, and protein translation in MDS. Improved model systems, such as MDS patient-derived organoids and multi-omics analyses indicate that WNT/β-catenin signaling, calcium signaling, S-adenosyl methionine (SAM) homeostasis, mammalian target of rapamycin (mTOR) signaling, Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and others are dysfunctional in MDS. This review of MDS integrates details at the clinical level alongside newly emerging details at the molecular and cellular levels, which may inform the development of novel therapeutic strategies for MDS. Full article
(This article belongs to the Special Issue Rare Diseases and Neuroscience)
Show Figures

Figure 1

13 pages, 1323 KiB  
Article
Genotypic and Phenotypic Characterization of Axonal Charcot–Marie–Tooth Disease in Childhood: Identification of One Novel and Four Known Mutations
by Rojan İpek, Büşra Eser Çavdartepe, Sevcan Tuğ Bozdoğan, Erman Altunışık, Akçahan Akalın, Mahmut Yaman, Alper Akın and Sefer Kumandaş
Genes 2025, 16(8), 917; https://doi.org/10.3390/genes16080917 - 30 Jul 2025
Viewed by 161
Abstract
Background: Charcot–Marie–Tooth disease (CMT) is a genetically and phenotypically heterogeneous hereditary neuropathy. Axonal CMT type 2 (CMT2) subtypes often exhibit overlapping clinical features, which makes molecular genetic analysis essential for accurate diagnosis and subtype differentiation. Methods: This retrospective study included five pediatric patients [...] Read more.
Background: Charcot–Marie–Tooth disease (CMT) is a genetically and phenotypically heterogeneous hereditary neuropathy. Axonal CMT type 2 (CMT2) subtypes often exhibit overlapping clinical features, which makes molecular genetic analysis essential for accurate diagnosis and subtype differentiation. Methods: This retrospective study included five pediatric patients who presented with gait disturbance, muscle weakness, and foot deformities and were subsequently diagnosed with axonal forms of CMT. Clinical data, electrophysiological studies, neuroimaging, and genetic analyses were evaluated. Whole exome sequencing (WES) was performed in three sporadic cases, while targeted CMT gene panel testing was used for two siblings. Variants were interpreted using ACMG guidelines, supported by public databases (ClinVar, HGMD, and VarSome), and confirmed by Sanger sequencing when available. Results: All had absent deep tendon reflexes and distal muscle weakness; three had intellectual disability. One patient was found to carry a novel homozygous frameshift variant (c.2568_2569del) in the IGHMBP2 gene, consistent with CMT2S. Other variants were identified in the NEFH (CMT2CC), DYNC1H1 (CMT2O), and MPV17 (CMT2EE) genes. Notably, a previously unreported co-occurrence of MPV17 mutation and congenital heart disease was observed in one case. Conclusions: This study expands the clinical and genetic spectrum of pediatric axonal CMT and highlights the role of early physical examination and molecular diagnostics in detecting rare variants. Identification of a novel IGHMBP2 variant and unique phenotypic associations provides new insights for future genotype–phenotype correlation studies. Full article
(This article belongs to the Special Issue Genetics of Neuromuscular and Metabolic Diseases)
Show Figures

Figure 1

11 pages, 737 KiB  
Article
Generation of an In Vitro Cartilage Aging Model Using Human Sera from Old Donors
by Sophie Hines, Meagan J. Makarczyk, Joseph Garzia and Hang Lin
Bioengineering 2025, 12(8), 823; https://doi.org/10.3390/bioengineering12080823 - 30 Jul 2025
Viewed by 188
Abstract
Cartilage degradation is a key feature of osteoarthritis (OA), a joint disease that significantly impacts the quality of life of the elderly population. While advanced age is recognized as one of the major risk factors for OA, the underlying mechanisms are not fully [...] Read more.
Cartilage degradation is a key feature of osteoarthritis (OA), a joint disease that significantly impacts the quality of life of the elderly population. While advanced age is recognized as one of the major risk factors for OA, the underlying mechanisms are not fully understood. Research involving cartilage from aged animals has improved our understanding of the changes associated with aging. However, studies with aged animals can be time-consuming and costly. In this study, we investigate the use of human sera from older donors as a stressor to induce aging-like changes in cultured human chondrocytes. First, we assess the expression levels of markers related to chondrogenesis, hypertrophy, fibrosis, and inflammation in human chondrocytes treated with sera from younger or older human donors. Next, we evaluate the regenerative potential of these sera-treated chondrocytes by stimulating them with the anabolic factor transforming growth factor (TGF)-β3. The results show that treatment with sera from older donors induced an aging-like phenotype in chondrocytes and impaired their ability to generate new cartilage. These findings provide insight into the role of systemic factors (serum) in cartilage aging and offer a novel in vitro model for studying age-related changes in chondrocytes. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

16 pages, 5301 KiB  
Article
TSINet: A Semantic and Instance Segmentation Network for 3D Tomato Plant Point Clouds
by Shanshan Ma, Xu Lu and Liang Zhang
Appl. Sci. 2025, 15(15), 8406; https://doi.org/10.3390/app15158406 - 29 Jul 2025
Viewed by 116
Abstract
Accurate organ-level segmentation is essential for achieving high-throughput, non-destructive, and automated plant phenotyping. To address the challenge of intelligent acquisition of phenotypic parameters in tomato plants, we propose TSINet, an end-to-end dual-task segmentation network designed for effective and precise semantic labeling and instance [...] Read more.
Accurate organ-level segmentation is essential for achieving high-throughput, non-destructive, and automated plant phenotyping. To address the challenge of intelligent acquisition of phenotypic parameters in tomato plants, we propose TSINet, an end-to-end dual-task segmentation network designed for effective and precise semantic labeling and instance recognition of tomato point clouds, based on the Pheno4D dataset. TSINet adopts an encoder–decoder architecture, where a shared encoder incorporates four Geometry-Aware Adaptive Feature Extraction Blocks (GAFEBs) to effectively capture local structures and geometric relationships in raw point clouds. Two parallel decoder branches are employed to independently decode shared high-level features for the respective segmentation tasks. Additionally, a Dual Attention-Based Feature Enhancement Module (DAFEM) is introduced to further enrich feature representations. The experimental results demonstrate that TSINet achieves superior performance in both semantic and instance segmentation, particularly excelling in challenging categories such as stems and large-scale instances. Specifically, TSINet achieves 97.00% mean precision, 96.17% recall, 96.57% F1-score, and 93.43% IoU in semantic segmentation and 81.54% mPrec, 81.69% mRec, 81.60% mCov, and 86.40% mWCov in instance segmentation. Compared with state-of-the-art methods, TSINet achieves balanced improvements across all metrics, significantly reducing false positives and false negatives while enhancing spatial completeness and segmentation accuracy. Furthermore, we conducted ablation studies and generalization tests to systematically validate the effectiveness of each TSINet component and the overall robustness of the model. This study provides an effective technological approach for high-throughput automated phenotyping of tomato plants, contributing to the advancement of intelligent agricultural management. Full article
Show Figures

Figure 1

18 pages, 1278 KiB  
Review
Metabolic Maturation in hiPSC-Derived Cardiomyocytes: Emerging Strategies for Inducing the Adult Cardiac Phenotype
by Daniela Malan, Maria Pia Gallo, Federica Geddo, Renzo Levi and Giulia Querio
Pharmaceuticals 2025, 18(8), 1133; https://doi.org/10.3390/ph18081133 - 29 Jul 2025
Viewed by 198
Abstract
Human induced pluripotent stem cells (hiPSCs) are widely used in basic research because of their versatility and ability to differentiate into multiple cell types. In particular, differentiating hiPSCs into cardiac cells (hiPSC-CMs) has been an important milestone in cardiac pathophysiology studies. Although hiPSC-CMs [...] Read more.
Human induced pluripotent stem cells (hiPSCs) are widely used in basic research because of their versatility and ability to differentiate into multiple cell types. In particular, differentiating hiPSCs into cardiac cells (hiPSC-CMs) has been an important milestone in cardiac pathophysiology studies. Although hiPSC-CMs offer a model for human cardiomyocytes, they still exhibit characteristics linked to the fetal cardiac cell phenotype. One important feature that prevents hiPSC-CMs from being identified as adult cells relates to their metabolism, which is a key factor in defining a mature phenotype capable of sustaining the workload requirements characteristic of fully differentiated cardiomyocytes. This review aims to present the most relevant strategies in terms of culture medium composition, culture times, and 3D culture methods that have been developed to promote the metabolic maturation of hiPSC-CMs, which are now widely used. Defining a standardized and universally accepted protocol would enable the creation of a cellular model for studies of cardiac pathophysiology from a patient-specific perspective and for drug screening. Full article
(This article belongs to the Special Issue Cell Therapy for Cardiac Disease)
Show Figures

Figure 1

27 pages, 5430 KiB  
Article
Gene Monitoring in Obesity-Induced Metabolic Dysfunction in Rats: Preclinical Data on Breast Neoplasia Initiation
by Francisco Claro, Joseane Morari, Camila de Angelis, Emerielle Cristine Vanzela, Wandir Antonio Schiozer, Lício Velloso and Luis Otavio Zanatta Sarian
Int. J. Mol. Sci. 2025, 26(15), 7296; https://doi.org/10.3390/ijms26157296 - 28 Jul 2025
Viewed by 249
Abstract
Obesity and metabolic dysfunction are established risk factors for luminal breast cancer, yet current preclinical models inadequately recapitulate the complex metabolic and immune interactions driving tumorigenesis. To develop and characterize an immunocompetent rat model of luminal breast cancer induced by chronic exposure to [...] Read more.
Obesity and metabolic dysfunction are established risk factors for luminal breast cancer, yet current preclinical models inadequately recapitulate the complex metabolic and immune interactions driving tumorigenesis. To develop and characterize an immunocompetent rat model of luminal breast cancer induced by chronic exposure to a cafeteria diet mimicking Western obesogenic nutrition, female rats were fed a cafeteria diet or standard chow from weaning. Metabolic parameters, plasma biomarkers (including leptin, insulin, IGF-1, adiponectin, and estrone), mammary gland histology, tumor incidence, and gene expression profiles were longitudinally evaluated. Gene expression was assessed by PCR arrays and qPCR. A subgroup underwent dietary reversal to assess the reversibility of molecular alterations. Cafeteria diet induced significant obesity (mean weight 426.76 g vs. 263.09 g controls, p < 0.001) and increased leptin levels without altering insulin, IGF-1, or inflammatory markers. Histological analysis showed increased ductal ectasia and benign lesions, with earlier fibroadenoma and luminal carcinoma development in diet-fed rats. Tumors exhibited luminal phenotype, low Ki67, and elevated PAI-1 expression. Gene expression alterations were time point specific and revealed early downregulation of ID1 and COX2, followed by upregulation of MMP2, THBS1, TWIST1, and PAI-1. Short-term dietary reversal normalized several gene expression changes. Overall tumor incidence was modest (~12%), reflecting early tumor-promoting microenvironmental changes rather than aggressive carcinogenesis. This immunocompetent cafeteria diet rat model recapitulates key metabolic, histological, and molecular features of obesity-associated luminal breast cancer and offers a valuable platform for studying early tumorigenic mechanisms and prevention strategies without carcinogen-induced confounders. Full article
(This article belongs to the Special Issue Genomic Research in Carcinogenesis, Cancer Progression and Recurrence)
Show Figures

Figure 1

14 pages, 3376 KiB  
Case Report
Clinicopathologic Features, Surgical Treatment, and Pathological Characterization of Canine Dacryops with Different Localization
by Barbara Lamagna, Luigi Navas, Francesco Prisco, Dario Costanza, Valeria Russo, Francesco Lamagna, Cristina Di Palma, Valeria Uccello, Giuseppina Mennonna, Orlando Paciello, Flaviana La Peruta, Giovanni Flauto and Giovanni Della Valle
Vet. Sci. 2025, 12(8), 705; https://doi.org/10.3390/vetsci12080705 - 28 Jul 2025
Viewed by 113
Abstract
Lacrimal cysts (dacryops), which involve lacrimal tissue, are uncommon in dogs with an obscure/unclear pathogenesis. Compared to the current available literature, this report describes the clinicopathologic and immunohistochemical features of two cases of unusual dacryops in brachycephalic dogs. A three-year-old male Cane Corso [...] Read more.
Lacrimal cysts (dacryops), which involve lacrimal tissue, are uncommon in dogs with an obscure/unclear pathogenesis. Compared to the current available literature, this report describes the clinicopathologic and immunohistochemical features of two cases of unusual dacryops in brachycephalic dogs. A three-year-old male Cane Corso was referred with a 1-month history of swelling ventromedial to the left eye associated with blepharospasm and epiphora. Furthermore, a severe lower and upper eyelid entropion and a deep corneal ulcer were present. B-mode ultrasonography and a CT scan revealed a subcutaneous cyst, closely adherent to the maxillary bone. Surgical removal and the correction of entropion were performed. No recurrence and/or complication was detected by seven-year follow-up. Histopathology revealed a cystic structure with single- to double-cell-layered, nonciliated, cuboidal epithelia. Alcian blue stain revealed rare, disseminated goblet cells admixed with epithelial cells. The epithelium was strongly Cytokeratin-positive by immunohistochemistry and appeared lined by several layers of smooth muscle actin (SMA)-positive myoepithelial cells. A 1-year-old male French Bulldog with a 3-month lesion of the third eyelid of the right eye. The lesion (15 mm × 7 mm) beneath the conjunctiva appeared pale-pink, smooth, and multilobulated. Excision was performed by blunt dissection through the conjunctiva on the palpebral surface of the third eyelid. Recovery was uncomplicated, and no recurrence has been noted at three-year follow-up. Cytology of the cystic fluid and histopathology and immunohistochemistry of the cyst wall revealed findings for case 1. To further characterize the SMA-positive spindle cells located directly beneath the cyst-lining epithelium, double-color immunofluorescence for SMA and p63 (a myoepithelial cell marker) was performed on the sample from case 2. The analysis revealed that the SMA-positive cells lacked p63 expression, indicating a non-myoepithelial phenotype. The histological findings in our cases are consistent with previous reports of canine dacryops. The positivity of immunohistochemical staining for SMA in cells directly beneath the epithelium of dacryops in the cases here described in two brachycephalic dogs is consistent with previous reports in dogs and horses but in contrast with a retrospective study about a human dacryops. These results support the conclusion that the pathogenesis of dacryops in dogs should exclude failure of ductular “neuromuscular” contractility. Full article
(This article belongs to the Special Issue Spotlight on Ophthalmologic Pathology in Animals)
Show Figures

Figure 1

12 pages, 2243 KiB  
Article
Cholinergic Receptor Nicotinic Beta 2 Subunit Promotes the Peritoneal Disseminating Metastasis of Colorectal Cancer
by Shinichi Umeda, Kenshiro Tanaka, Takayoshi Kishida, Norifumi Hattori, Haruyoshi Tanaka, Dai Shimizu, Hideki Takami, Masamichi Hayashi, Chie Tanaka, Goro Nakayama and Mitsuro Kanda
Cancers 2025, 17(15), 2485; https://doi.org/10.3390/cancers17152485 - 28 Jul 2025
Viewed by 152
Abstract
Background: Peritoneal dissemination in colorectal cancer (CRC) is associated with poor prognosis due to limited efficacy of current therapeutic strategies. The cholinergic receptor nicotinic beta 2 subunit (CHRNB2), a component of the acetylcholine receptor, has been implicated in other malignancies, but [...] Read more.
Background: Peritoneal dissemination in colorectal cancer (CRC) is associated with poor prognosis due to limited efficacy of current therapeutic strategies. The cholinergic receptor nicotinic beta 2 subunit (CHRNB2), a component of the acetylcholine receptor, has been implicated in other malignancies, but its role in CRC remains unknown. Methods: This study evaluated the expression and function of CHRNB2 in CRC. CHRNB2 mRNA levels were quantified by qRT-PCR in cell lines and clinical specimens. Functional assays were conducted using CRC cell lines with high CHRNB2 expression, in which CHRNB2 was knocked down by shRNA. Cell proliferation, migration, and invasion were assessed in vitro. In vivo effects were evaluated using subcutaneous and peritoneal xenograft models. The impact of CHRNB2 monoclonal antibody (mAb) treatment on CRC cell proliferation was also examined. Clinical correlations were assessed between CHRNB2 expression and clinicopathological features, including recurrence patterns. Results: CHRNB2 expression varied among CRC cell lines, with the highest levels observed in LOVO cells. CHRNB2 knockdown significantly inhibited proliferation, migration, and invasion in vitro and suppressed tumor growth in vivo. CHRNB2 mAb treatment reduced cell proliferation. Clinically, high CHRNB2 expression correlated with a significantly higher cumulative rate of peritoneal recurrence, but not with recurrence in the liver, lungs, or lymph nodes. Multivariate analysis identified high CHRNB2 expression and T4 tumor depth as independent predictors of peritoneal recurrence. Conclusions: CHRNB2 promotes the malignant phenotype of CRC, particularly in peritoneal dissemination. These findings suggest that CHRNB2 may serve as a novel diagnostic biomarker and therapeutic target for CRC with peritoneal metastasis. Full article
Show Figures

Figure 1

10 pages, 678 KiB  
Article
Do Rare Genetic Conditions Exhibit a Specific Phonotype? A Comprehensive Description of the Vocal Traits Associated with Crisponi/Cold-Induced Sweating Syndrome Type 1
by Federico Calà, Elisabetta Sforza, Lucia D’Alatri, Lorenzo Frassineti, Claudia Manfredi, Roberta Onesimo, Donato Rigante, Marika Pane, Serenella Servidei, Guido Primiano, Giangiorgio Crisponi, Laura Crisponi, Chiara Leoni, Antonio Lanatà and Giuseppe Zampino
Genes 2025, 16(8), 881; https://doi.org/10.3390/genes16080881 - 26 Jul 2025
Viewed by 191
Abstract
Background: Perceptual analysis has highlighted that the voice characteristics of patients with rare congenital genetic syndromes differ from those of normophonic subjects. In this paper, we describe the voice phenotype, also called the phonotype, of patients with Crisponi/cold-induced sweating syndrome type 1 [...] Read more.
Background: Perceptual analysis has highlighted that the voice characteristics of patients with rare congenital genetic syndromes differ from those of normophonic subjects. In this paper, we describe the voice phenotype, also called the phonotype, of patients with Crisponi/cold-induced sweating syndrome type 1 (CS/CISS1). Methods: We conducted an observational study at the Department of Life Sciences and Public Health, Rome. Thirteen patients were included in this study (five males; mean age: 16 years; SD: 10.63 years; median age: 12 years; age range: 6–44 years), and five were adults (38%). We prospectively recorded and analyzed acoustical features of three corner vowels [a], [i], and [u]. For perceptual analysis, the GIRBAS (grade, instability, roughness, breathiness, asthenia, and strain) scale was utilized. Acoustic analysis was performed through BioVoice software. Results: We found that CS/CISS1 patients share a common phonotype characterized by articulation disorders and hyper-rhinophonia. Conclusions: This study contributes to delineating the voice of CS/CISS1 syndrome. The phonotype can represent one of the earliest indicators for detecting rare congenital conditions, enabling specialists to reduce diagnosis time and better define a spectrum of rare and ultra-rare diseases. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

Back to TopTop