Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = phenology rhythms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11596 KB  
Article
A Region-Adaptive Phenology-Aware Network for Perennial Cash Crop Mapping Using Multi-Source Time-Series Remote Sensing
by Yujuan Yang, Shi Cao, Xia Lu, Lina Ping, Xiang Fan, Meiling Liu, Qin Yang and Xiangnan Liu
Remote Sens. 2025, 17(24), 4011; https://doi.org/10.3390/rs17244011 - 12 Dec 2025
Viewed by 352
Abstract
Monitoring and identifying perennial cash crops is essential for optimizing agricultural resource allocation and supporting sustainable rural development. However, cross-regional recognition remains challenging due to cloud contamination, irregular mountainous topography, and climatic-driven phenological shifts. To address these issues, we propose a Region-Adaptive Multi-Head [...] Read more.
Monitoring and identifying perennial cash crops is essential for optimizing agricultural resource allocation and supporting sustainable rural development. However, cross-regional recognition remains challenging due to cloud contamination, irregular mountainous topography, and climatic-driven phenological shifts. To address these issues, we propose a Region-Adaptive Multi-Head Phenology-Aware Network (RAM-PAMNet) that incorporates three key innovations. First, a Multi-source Temporal Attention Fusion (MTAF) module dynamically fuses Sentinel-1 SAR and Sentinel-2 optical time series to enhance temporal consistency and cloud robustness. Second, a Region-Aware Module (RAM) encodes topographic and climatic factors to adaptively adjust phenological windows across regions. Third, a Multi-Head Phenology-Aware Module (MHA-PAM) captures short-, mid-, and long-term phenological rhythms while integrating region-modulated attention for adaptive feature learning. The model was trained and validated in Changde, Hunan (694 patches; augmented to 2776; 70%/15%/15% split) and independently tested in Yaan, Sichuan (574 patches), two regions with contrasting elevation, terrain complexity, and hydrothermal regimes. RAM-PAMNet achieved an OA of 83.3%, mean F1 of 78.8%, and mIoU of 65.4% in Changde, and maintained strong generalization in Yaan with an mIoU of 59.2% and a DecayRate of 9.5, outperforming all baseline models. These results demonstrate that RAM-PAMNet effectively mitigates regional phenological mismatches and improves perennial crop mapping across heterogeneous environments. The proposed framework provides an interpretable and region-adaptive solution for large-scale monitoring of tea, citrus, and grape. Full article
Show Figures

Figure 1

23 pages, 5310 KB  
Article
Ecoacoustic Baseline of a Successional Subarctic Ecosystem Post-Glaciation Amidst Climate Change in South-Central Alaska
by Timothy C. Mullet and Almo Farina
Diversity 2025, 17(7), 443; https://doi.org/10.3390/d17070443 - 23 Jun 2025
Cited by 1 | Viewed by 825
Abstract
As climate change alters subarctic ecosystems and human activities in Alaska, ecological baselines are critical for long-term conservation. We applied an ecoacoustic approach to characterize the ecological conditions of a rapidly deglaciating region in Kenai Fjords National Park, Alaska. Using automated recording units [...] Read more.
As climate change alters subarctic ecosystems and human activities in Alaska, ecological baselines are critical for long-term conservation. We applied an ecoacoustic approach to characterize the ecological conditions of a rapidly deglaciating region in Kenai Fjords National Park, Alaska. Using automated recording units deployed at increasing distances from a road, we collected over 120,000 one-minute audio samples during the tourist seasons of 2021 and 2022. Ecoacoustic indices—Sonic Heterogeneity Index (SHItf), Spectral Sonic Signature (SSS), Weighted Proportion of Occupied Frequencies (wPOF), and Normalized Difference Sonic Heterogeneity Index (NDSHI)—were used to measure spatio-temporal patterns of the sonoscape. Results revealed higher sonic heterogeneity near the road attributed to technophony (vehicles) and geophony (wind) that spanned across the frequency spectrum, masking mid-high frequency biophony. Seasonal phenology and diel variations reflected ecological and human rhythms, including biophony from the dawn chorus from May–June, technophony from vehicle-based tourism from July–September, and decreased sonic activity in the form of geophonic ambience in October. Low-frequency geophonies were prevalent throughout the sonoscape with more natural sounds at greater distances from the road. Our findings demonstrate the benefits of using ecoacoustic methods to assess ecosystem dynamics for establishing ecological baselines useful for future comparisons in rapidly changing environments. Full article
(This article belongs to the Special Issue Wildlife in Natural and Altered Environments)
Show Figures

Figure 1

21 pages, 32288 KB  
Article
Identification of Interannual Variation Frequency of Cropland Cropping Intensity Based on Remote Sensing Spatiotemporal Fusion and Crop Phenological Rhythm: A Case Study of Zhenjiang, Jiangsu
by Yaohui Zhu, Qingzhen Zhu, Yuanyuan Gao, Liyuan Zhang, Aichen Wang, Yongyun Zhu, Chunshan Wang, Bo Liu, Fa Zhao, Peiying Li, Xinhua Wei and Qi Song
Agriculture 2025, 15(9), 1004; https://doi.org/10.3390/agriculture15091004 - 6 May 2025
Cited by 1 | Viewed by 877
Abstract
The scientific evaluation of cropland resource utilization efficiency is crucial for ensuring food security and promoting sustainable agricultural development. At present, the research on the utilization of cropland resources primarily focuses on the multiple cropping index and cropping intensity, but these data are [...] Read more.
The scientific evaluation of cropland resource utilization efficiency is crucial for ensuring food security and promoting sustainable agricultural development. At present, the research on the utilization of cropland resources primarily focuses on the multiple cropping index and cropping intensity, but these data are insufficient to reveal long-term trends and potential future changes in crop production. To fill this knowledge gap, this study took Zhenjiang City, Jiangsu Province, as a case study and proposed a method to determine the distribution and spatiotemporal change frequency of single- and double-season cropping patterns using spatiotemporal fusion and crop phenological rhythm. By combining Sentinel-2 NDVI and MOD13Q1 satellite data, a dataset with 10 m resolution was developed to show the interannual distribution frequency of the three cropping patterns in the study area. The accuracy evaluation revealed that the interannual cropping intensity distribution frequency of the three cropping patterns exhibited good verification accuracy, with an average overall accuracy and Kappa coefficient of 81.53% and 0.68, respectively. This study provides essential support for government agencies to assess future food production potential and develop policies for improving cropland use efficiency. Full article
Show Figures

Figure 1

17 pages, 1809 KB  
Article
The Impact of Wheat Growth Stages on Soil Microbial Communities in a Rain-Fed Agroecosystem
by Yosef Steinberger, May Levi, Itaii Applebaum, Chen Sherman, Tirza Doniger and Adrian Unc
Microorganisms 2025, 13(4), 838; https://doi.org/10.3390/microorganisms13040838 - 7 Apr 2025
Viewed by 957
Abstract
Wheat is the largest terrestrial agricultural crop globally. This study was conducted to determine the soil microbial biomass, soil CO2 evolution, and physiological profile in the rhizosphere of the winter wheat rain-fed Triticum aestivum along the development stages in a rain-fed semi-arid [...] Read more.
Wheat is the largest terrestrial agricultural crop globally. This study was conducted to determine the soil microbial biomass, soil CO2 evolution, and physiological profile in the rhizosphere of the winter wheat rain-fed Triticum aestivum along the development stages in a rain-fed semi-arid agro-ecosystem. The data show that a significant, over 100-fold increase in the utilization of four substrate groups (benzoic acid, amino acid, carbohydrates, and carboxylic acid) occurred in the wheat soil rhizosphere along the wheat growth phenology. After the stubble field stage, there was a notable decrease in the utilization of all four substrates. The occurrence of each substrate in the soil aligns with the below-ground rhythm of wheat plant biomass growth. The abundance of fine roots, categorizing wheat plant roots, in the soil at maturity and the stubble field stage may explain the heightened activity and diversity of copiotroph bacteria. This association suggests a potential link between the richness of fine roots and the increased activity and diversity of copiotroph bacteria in the soil. The findings clarify the impact of constraining abiotic factors, coupled with the phenological influences of wheat plants, and their combined effects on substrate utilization by microbial communities in a rain-fed Triticum aestivum wheat field. Full article
(This article belongs to the Collection Feature Papers in Environmental Microbiology)
Show Figures

Figure 1

17 pages, 767 KB  
Review
Artificial Light at Night (ALAN) as an Emerging Urban Stressor for Tree Phenology and Physiology: A Review
by Luisa Friulla and Laura Varone
Urban Sci. 2025, 9(1), 14; https://doi.org/10.3390/urbansci9010014 - 10 Jan 2025
Cited by 4 | Viewed by 5763
Abstract
Artificial light at night (ALAN) is an expanding environmental issue, particularly in urban areas. This review aimed to present the state of the art regarding the impact of ALAN on specific and interrelated aspects related to physiological processes and life cycle events in [...] Read more.
Artificial light at night (ALAN) is an expanding environmental issue, particularly in urban areas. This review aimed to present the state of the art regarding the impact of ALAN on specific and interrelated aspects related to physiological processes and life cycle events in tree species. The reviewed studies highlighted the multifaceted effects of artificial light on plants, offering insights and perspectives to guide future research in this evolving and stimulating field. ALAN disrupts circadian rhythms, alters photoperiodic responses, and affects photosynthesis and carbohydrate metabolism. Changes in phenology such as delayed senescence and altered budburst timing demonstrated species-specific responses, often compounded by other urban stressors like heat and drought. Despite an increased interest, knowledge gaps remain concerning the species-specific responses and the effects of light spectra as well as the long-term consequences on tree physiology. These gaps highlight the need for integrated research approaches and urban planning strategies to mitigate ALAN effects, ensuring the resilience of urban trees and preserving ecosystem services in the context of growing urbanization and climate change. Full article
Show Figures

Figure 1

24 pages, 4347 KB  
Article
Formation of Adaptive Trophic Niches of Euryphagous Fish Species in Response to Off-Seasonal Water Level Regulation in Hongze Lake
by Si Luo, Zexin Wang, Shengyu Zhang, Huan Mu, Yubin Jiao, Xiao Qu, Qishuo Wang, Ruiqi Yang, Yanxia Zuo and Shiyu Jin
Animals 2025, 15(1), 59; https://doi.org/10.3390/ani15010059 - 30 Dec 2024
Cited by 4 | Viewed by 1342
Abstract
Off-seasonal water level regulations disrupt the biological traits and phenological rhythms of native fish species, yet their impacts on interspecific trophic interactions remain understudied. This study employed stable isotope analysis to assess the trophic dynamics of three fish species (Parabramis pekinensis, [...] Read more.
Off-seasonal water level regulations disrupt the biological traits and phenological rhythms of native fish species, yet their impacts on interspecific trophic interactions remain understudied. This study employed stable isotope analysis to assess the trophic dynamics of three fish species (Parabramis pekinensis, Carassius auratus, and Toxabramis swinhonis) across different water periods in Hongze Lake. The findings revealed that all three species occupied similar mid-level trophic positions, with no significant difference among water periods (p > 0.05). During high-water periods, P. pekinensis and T. swinhonis exploited broader niches, while C. auratus relied on a narrower diet. In contrast, during low-water periods, C. auratus expanded its niche, while P. pekinensis and T. swinhonis reduced their isotopic niche widths. Niche overlap analysis showed minimal trophic overlap among the three species during high-water periods, with increased overlap during low-water periods, except for the highest overlap between C. auratus and T. swinhonis during mid-water periods. This variation in niche overlap aligns with shifts in dietary reliance, as POM was the predominant dietary component for all three species, but its contribution varied significantly across different water periods. These findings indicated that adaptive trophic niche facilitated the coexistence of these fish species, while off-seasonal water level regulation may intensify interspecific competition. These insights are essential for refining water management policies and developing sustainable fishery management strategies of Hongze Lake and other water-level-regulated systems. Full article
(This article belongs to the Collection Behavioral Ecology of Aquatic Animals)
Show Figures

Figure 1

20 pages, 4923 KB  
Article
The Impact of Climate Variability on the Blooming of Fraxinus ornus ‘Globosa’ as a Component of Novi Sad’s (Serbia) Green Infrastructure
by Jelena Čukanović, Mirjana Ljubojević, Sara Djordjević, Tijana Narandžić, Djurdja Petrov and Mirjana Ocokoljić
Sustainability 2024, 16(19), 8404; https://doi.org/10.3390/su16198404 - 27 Sep 2024
Cited by 7 | Viewed by 2165
Abstract
Climate change increasingly impacts urban dendroflora, affecting plant physiology and phenological phases. This paper investigates the impact of changing climatic conditions on the blooming of Fraxinus ornus ‘Globosa’, a decorative form of ash that is a significant component of green infrastructure in Novi [...] Read more.
Climate change increasingly impacts urban dendroflora, affecting plant physiology and phenological phases. This paper investigates the impact of changing climatic conditions on the blooming of Fraxinus ornus ‘Globosa’, a decorative form of ash that is a significant component of green infrastructure in Novi Sad, Serbia. The research, conducted over 15 years on 42 individuals in a linear planting near a large river, analyzed temperature and precipitation effects on blooming times and inflorescence characteristics The results indicate changes in the timing of blooming, earlier than recorded in the literature, suggesting that temperature variations and changes in climatic conditions have significantly influenced the phenological phases of the selected clones of globe flowering ash. Additionally, the studied individuals showed exceptional adaptation to climate change and are not considered vulnerable. This study confirmed that this cultivar of flowering ash in urban environments is a key link in the green infrastructure of cities, functioning as green corridors along river flows as a nature-based solution. The studied cultivar is an important element of cultural heritage, contributing to the recreational potential of the linear composition of the promenade, especially during the flowering phenophase, when, in addition to its aesthetic values, it has psychological effects on users of the space, offering a calming influence due to its regular canopy and planting rhythm. Additionally, this cultivar provides important ecological functions, such as offering pollen for pollinators, thereby significantly contributing to the implementation of ecosystem services. Full article
Show Figures

Figure 1

13 pages, 3497 KB  
Technical Note
Analysis of Changes in Forest Vegetation Peak Growth Metrics and Driving Factors in a Typical Climatic Transition Zone: A Case Study of the Funiu Mountain, China
by Jiao Tang, Huimin Wang, Nan Cong, Jiaxing Zu and Yuanzheng Yang
Remote Sens. 2024, 16(16), 2921; https://doi.org/10.3390/rs16162921 - 9 Aug 2024
Cited by 3 | Viewed by 2093
Abstract
Phenology and photosynthetic capacity both regulate carbon uptake by vegetation. Previous research investigating the impact of phenology on vegetation productivity has focused predominantly on the start and end of growing seasons (SOS and EOS), leaving the influence of peak phenology metrics—particularly in typical [...] Read more.
Phenology and photosynthetic capacity both regulate carbon uptake by vegetation. Previous research investigating the impact of phenology on vegetation productivity has focused predominantly on the start and end of growing seasons (SOS and EOS), leaving the influence of peak phenology metrics—particularly in typical climatic transition zones—relatively unexplored. Using a 24-year (2000–2023) enhanced vegetation index (EVI) dataset from the Moderate Resolution Imaging Spectroradiometer (MODIS), we extracted and examined the spatiotemporal variation for peak of season (POS) and peak growth (defined as EVImax) of forest vegetation in the Funiu Mountain region, China. In addition to quantifying the factors influencing the peak phenology metrics, the relationship between vegetation productivity and peak phenological metrics (POS and EVImax) was investigated. Our findings reveal that POS and EVImax showed advancement and increase, respectively, negatively and positively correlated with vegetation productivity. This suggested that variations in EVImax and peak phenology both increase vegetation productivity. Our analysis also showed that EVImax was heavily impacted by precipitation, whereas SOS had the greatest effect on POS variation. Our findings highlighted the significance of considering climate variables as well as biological rhythms when examining the global carbon cycle and phenological shifts in response to climate change. Full article
Show Figures

Figure 1

30 pages, 14594 KB  
Article
Analysis of Factors Driving Subtropical Forest Phenology Differentiation, Considering Temperature and Precipitation Time-Lag Effects: A Case Study of Fujian Province
by Menglu Ma, Hao Zhang, Jushuang Qin, Yutian Liu, Baoguo Wu and Xiaohui Su
Forests 2024, 15(2), 334; https://doi.org/10.3390/f15020334 - 8 Feb 2024
Cited by 3 | Viewed by 2389
Abstract
Subtropical forest phenology differentiation is affected by temperature, precipitation, and topography. Understanding the primary contributing elements and their interactions with forest phenology can help people better comprehend the subtropical forest growth process and its response to climate. Meanwhile, the temporal and spatial variations [...] Read more.
Subtropical forest phenology differentiation is affected by temperature, precipitation, and topography. Understanding the primary contributing elements and their interactions with forest phenology can help people better comprehend the subtropical forest growth process and its response to climate. Meanwhile, the temporal and spatial variations of phenological rhythms are important indicators of climatic impacts on forests. Therefore, this study aimed to analyze both a total area and different forest growth environments within the whole (i.e., coastal site areas (II, IV) and inland site areas (I, III)) as to spatiotemporal patterns associated with subtropical forests in Fujian Province, which is located at the boundary between the middle and south subtropical zones. Considering the asymmetric effects of climate and forest growth, this study chose pre-seasonal and cumulative temperature and precipitation factors and utilized the GeoDetector model to analyze the dominant drivers and interactions within phenology differentiation in Fujian Province. The results show the following: (1) All of the phenological parameters were advanced or shortened over the 19-year observation period; those of shrubland and deciduous broadleaf forests fluctuated greatly, and their stability was poor. (2) The phenological parameters were more distinct at the borders of the site areas. Additionally, the dates associated with the end of the growth season (EOS) and the date-position of peak value (POP) in coastal areas (i.e., II and IV) were later than those in inland areas (i.e., I and III). Among the parameters, the length of the growth season (LOS) was most sensitive to altitude. (3) Precipitation was the main driving factor affecting the spatial heterogeneity of the start of the growth season (SOS) and the EOS. The relatively strong effects of preseason and current-month temperatures on the SOS may be influenced by the temperature threshold required to break bud dormancy, and the relationship between the SOS and temperature was related to the lag time and the length of accumulation. The EOS was susceptible to the hydrothermal conditions of the preseason accumulation, and the variation trend was negatively correlated with temperature and precipitation. Spatial attribution was used to analyze the attribution of phenology differentiation from the perspectives of different regions, thus revealing the relationships between forest phenology and meteorological time-lag effects, the result which can contribute to targeted guidance and support for scientific forest management. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Vegetation Dynamic and Ecology)
Show Figures

Figure 1

27 pages, 501 KB  
Review
Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs
by Sangam L. Dwivedi, Luis Felipe Quiroz, Anireddy S. N. Reddy, Charles Spillane and Rodomiro Ortiz
Int. J. Mol. Sci. 2023, 24(20), 15205; https://doi.org/10.3390/ijms242015205 - 15 Oct 2023
Cited by 8 | Viewed by 6169
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation [...] Read more.
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues. Full article
(This article belongs to the Special Issue Modern Plant Cell Biotechnology: From Genes to Structure)
22 pages, 5353 KB  
Review
Shoot Phenology as a Driver or Modulator of Stem Diameter Growth and Wood Properties, with Special Reference to Pinus radiata
by Rowland D. Burdon
Forests 2023, 14(3), 570; https://doi.org/10.3390/f14030570 - 13 Mar 2023
Cited by 4 | Viewed by 2269
Abstract
Seasonal phenology is expressed in the annual rhythms of growth and quiescence, which may range from being sharply defined to weakly quantitative. These rhythms, both vegetative and reproductive, are a key aspect of a plant’s survival strategy. They enable the plant to both [...] Read more.
Seasonal phenology is expressed in the annual rhythms of growth and quiescence, which may range from being sharply defined to weakly quantitative. These rhythms, both vegetative and reproductive, are a key aspect of a plant’s survival strategy. They enable the plant to both survive seasonal stresses and take advantage of favourable conditions, while making pollination efficient through synchronised flowering. Maturation in woody perennials causes some ontogenetic modulation of seasonal phenology. Shoot phenology is driven by various environmental cues, notably temperatures and daylength, with shoot extremities often being prime receptors. The phenology of shoot extremities is in turn seen as a strong driver of cambial activity, which itself is an aspect of shoot phenology and the basis of stem diameter growth. The aspects of cambial activity reflecting hoot–tip phenology primarily involve the timing of xylem formation and the anatomical and physical properties of xylem cells. The actual amount of diameter growth, however, is governed much more by other factors, notably the growth potential of the species, the space for the tree to grow in, and how favourable local conditions are for growth. Somehow, all tree species allocate resources to shoot extension and diameter growth to represent viable adaptive strategies, although there is no identified role of phenology per se in such allocation. Among species, Pinus radiata is extremely important commercially, largely through a high growth potential that reflects distinctive phenology. Much research on the species provides a basis for linking its phenology and shoot–tip architecture to seasonal timing of diameter growth and fine details of within-ring variation in xylem cell properties. This provides a baseline for comparison with many other tree species, conifers and hardwoods. Selected examples are considered to illustrate the range of adaptive strategies. Regulation of diameter growth and internal variation in wood properties reflects the response to competitive pressures. Modifying the regulation to optimise wood production and quality poses a great challenge for future domestication. Full article
(This article belongs to the Special Issue Intrinsic Regulation of Diameter Growth in Woody Plants)
Show Figures

Figure 1

24 pages, 5911 KB  
Article
Investigating the Potential of Crop Discrimination in Early Growing Stage of Change Analysis in Remote Sensing Crop Profiles
by Mengfan Wei, Hongyan Wang, Yuan Zhang, Qiangzi Li, Xin Du, Guanwei Shi and Yiting Ren
Remote Sens. 2023, 15(3), 853; https://doi.org/10.3390/rs15030853 - 3 Feb 2023
Cited by 14 | Viewed by 4453
Abstract
Currently, remote sensing crop identification is mostly based on all available images acquired throughout crop growth. However, the available image and data resources in the early growth stage are limited, which makes early crop identification challenging. Different crop types have different phenological characteristics [...] Read more.
Currently, remote sensing crop identification is mostly based on all available images acquired throughout crop growth. However, the available image and data resources in the early growth stage are limited, which makes early crop identification challenging. Different crop types have different phenological characteristics and seasonal rhythm characteristics, and their growth rates are different at different times. Therefore, making full use of crop growth characteristics to augment crop growth difference information at different times is key to early crop identification. In this study, we first calculated the differential features between different periods as new features based on images acquired during the early growth stage. Secondly, multi-temporal difference features of each period were constructed by combination, then a feature optimization method was used to obtain the optimal feature set of all possible combinations in different periods and the early key identification characteristics of different crops, as well as their stage change characteristics, were explored. Finally, the performance of classification and regression tree (Cart), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Support Vector Machine (SVM) classifiers in recognizing crops in different periods were analyzed. The results show that: (1) There were key differences between different crops, with rice changing significantly in period F, corn changing significantly in periods E, M, L, and H, and soybean changing significantly in periods E, M, N, and H. (2) For the early identification of rice, the land surface water index (LSWI), simple ratio index (SR), B11, and normalized difference tillage index (NDTI) contributed most, while B11, normalized difference red-edge3 (NDRE3), LSWI, the green vegetation index (VIgreen), red-edge spectral index (RESI), and normalized difference red-edge2 (NDRE2) contributed greatly to corn and soybean identification. (3) Rice could be identified as early as 13 May, with PA and UA as high as 95%. Corn and soybeans were identified as early as 7 July, with PA and UA as high as 97% and 94%, respectively. (4) With the addition of more temporal features, recognition accuracy increased. The GBDT and RF performed best in identifying the three crops in the early stage. This study demonstrates the feasibility of using crop growth difference information for early crop recognition, which can provide a new idea for early crop recognition. Full article
(This article belongs to the Special Issue Within-Season Agricultural Monitoring from Remotely Sensed Data)
Show Figures

Figure 1

20 pages, 5211 KB  
Article
Chromosome-Level Assembly of Flowering Cherry (Prunus campanulata) Provides Insight into Anthocyanin Accumulation
by Dongyue Jiang, Xiangkong Li, Yingang Li, Shiliang Zhou, Qi Zhou, Xinhong Liu and Xin Shen
Genes 2023, 14(2), 389; https://doi.org/10.3390/genes14020389 - 2 Feb 2023
Cited by 4 | Viewed by 3486
Abstract
The flowering cherries (genus Prunus, subgenus Cerasus) are popular ornamental trees in China, Japan, Korea, and elsewhere. Prunus campanulata Maxim. is an important species of flowering cherry native to Southern China, which is also distributed in Taiwan, the Ryukyu Islands of [...] Read more.
The flowering cherries (genus Prunus, subgenus Cerasus) are popular ornamental trees in China, Japan, Korea, and elsewhere. Prunus campanulata Maxim. is an important species of flowering cherry native to Southern China, which is also distributed in Taiwan, the Ryukyu Islands of Japan, and Vietnam. It produces bell-shaped flowers with colors ranging from bright pink to crimson during the Chinese Spring Festival from January to March each year. We selected the P. campanulata cultivar “Lianmeiren”, with only 0.54% of heterozygosity, as the focus of this study, and generated a high-quality chromosome-scale genome assembly of P. campanulata by combining Pacific Biosciences (PacBio) single-molecule sequencing, 10× Genomics sequencing, and high-throughput chromosome conformation capture (Hi-C) technology. We first assembled a 300.48 Mb genome assembly with a contig N50 length of 2.02 Mb. In total, 28,319 protein-coding genes were predicted from the genome, 95.8% of which were functionally annotated. Phylogenetic analyses indicated that P. campanulata diverged from a common ancestor of cherry approximately 15.1 million years ago. Comparative genomic analyses showed that the expanded gene families were significantly involved in ribosome biogenesis, diterpenoid biosynthesis, flavonoid biosynthesis, and circadian rhythm. Furthermore, we identified 171 MYB genes from the P. campanulata genome. Based on the RNA-seq of five organs at three flowering stages, expression analyses revealed that the majority of the MYB genes exhibited tissue-specific expression patterns, and some genes were identified as being associated with anthocyanin accumulation. This reference sequence is an important resource for further studies of floral morphology and phenology, and comparative genomics of the subgenera Cerasus and Prunus. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

10 pages, 389 KB  
Article
Predator-Prey Interactions between Nonnative Juvenile Largemouth Bass (Micropterus salmoides) and Local Candidate Prey Species in the Pearl River Delta: Predation Capacity, Preference and Growth Performance
by Du Luo, Minghao Ye and Dingtian Yang
Life 2022, 12(2), 295; https://doi.org/10.3390/life12020295 - 16 Feb 2022
Cited by 3 | Viewed by 3106
Abstract
An ontogenetic dietary shift is crucial for the survival and growth of piscivorous largemouth bass (LB). However, there is much to learn about the predator-prey interaction during the switching process. We carried out a series of indoor experiments to examine the predation capacity, [...] Read more.
An ontogenetic dietary shift is crucial for the survival and growth of piscivorous largemouth bass (LB). However, there is much to learn about the predator-prey interaction during the switching process. We carried out a series of indoor experiments to examine the predation capacity, predation preference, and growth performance of exotic juvenile LB feeding on candidate prey species in the Pearl River Delta. The widely distributed oriental river prawn (Macrobranchium nipponense), barcheek goby (Ctenogobius giurinus), western mosquitofish (Gambusia affinis), silver carp (Hypophthalmichthys molitrix), and mud carp (Cirrhinus molitorella), with relatively similar total lengths, were selected as potential prey based on their availability and habitat use. Our results show that predation capacity and preference varied quantitatively and qualitatively among prey species. The number of oriental river prawns killed was significantly less than that of fish species, comparing the 1st hour with the 24th hour (p < 0.01). The feeding rhythm of LB varied significantly from crayfish to fish. Numerically, Jacobs’ selection index reinforced LB’s special preference for predating G. affinis. Although there were obvious variations in predation capacity and feed selection, no statistically significant growth differences were detected among LB groups feeding on live M. nipponense, G. affinis, H. molitrix, and C. molitorella (p < 0.05). These findings suggest that the successful ontogenetic dietary shift of juvenile LB may depend on the availability and vulnerability of local fish species. Further study on the reproductive phenology of potential fish prey may help to predict LB’s establishment. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

42 pages, 7577 KB  
Article
Advanced Chemophenetic Analysis of Essential Oil from Leaves of Piper gaudichaudianum Kunth (Piperaceae) Using a New Reduction-Oxidation Index to Explore Seasonal and Circadian Rhythms
by Ygor Jessé Ramos, Claudete da Costa-Oliveira, Irene Candido-Fonseca, George Azevedo de Queiroz, Elsie Franklin Guimarães, Anna C. Antunes e Defaveri, Nicholas John Sadgrove and Davyson de Lima Moreira
Plants 2021, 10(10), 2116; https://doi.org/10.3390/plants10102116 - 6 Oct 2021
Cited by 16 | Viewed by 4234
Abstract
The aromatic species Piper gaudichaudianum Kunth (Piperaceae) is widely used in Brazil for medicinal and ritualistic applications. In the current study, chemophenetic patterns were realized across season and circadian rhythm based on the chemical profile of essential oils (EOs) from leaves. Hydrodistilled essential [...] Read more.
The aromatic species Piper gaudichaudianum Kunth (Piperaceae) is widely used in Brazil for medicinal and ritualistic applications. In the current study, chemophenetic patterns were realized across season and circadian rhythm based on the chemical profile of essential oils (EOs) from leaves. Hydrodistilled essential oils were analyzed by GC-MS and GC-FID, and a new calculation of metabolite oxidation level, averaged for each individual molecule component of the EO, was used to explore the patterns of metabolism/biosynthesis. This new index used an intermediate calculation, the ‘weighted average redox standard’ (SRO), to enable a value for mixtures of metabolites to be generated, the ‘general mixture redox index’ (GMOR). The indices were subjected to a proof-of-concept approach by making comparison to outcomes from multivariate analyses, i.e., PCA and HCA. Chemical analysis demonstrated that the essential oils were dominated by sesquiterpenes, constructed of 15 classes of compound (C-skeletons), and 4 C-skeletons were recognized in the monoterpene group, giving a total of 19. The variation of chemical profiles was distinct at different phenological stages, but stronger chemical variation was evident between day and night as compared to season. Furthermore, due to comprehensive sampling across different regions, nine chemotypes were recognized, including those previously reported. The SRO and GMRO indices demonstrate that phenological variation of chemistry is mainly an outcome of redox fluctuations in terpene biosynthesis, changing from day to night. These indices also corroborate that chemical diversity is increased with oxidative metabolism. Lastly, the current study demonstrates pronounced phenotypic plasticity in P. gaudichaudianum, which makes it a suitable candidate to help further our understanding of chemophenetics and chemical ecology. Full article
(This article belongs to the Special Issue Integrated Metabolomics and Plant Chemical Diversity)
Show Figures

Figure 1

Back to TopTop