Identification of Interannual Variation Frequency of Cropland Cropping Intensity Based on Remote Sensing Spatiotemporal Fusion and Crop Phenological Rhythm: A Case Study of Zhenjiang, Jiangsu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preprocessing
2.2.1. Field Survey Data
2.2.2. Satellite Data Acquisition and Preprocessing
2.3. Method
2.3.1. Land Cover Classification Based on Spatiotemporal Fusion Algorithm
2.3.2. Estimation of Interannual Distribution Frequency of Cropping Types
3. Results
3.1. Performance Verification of Spatiotemporal Fusion Method
3.2. Land Cover Type Classification Based on Sentinel-2 NDVI Time-Series Fusion Images
3.3. Estimation of Crop Distribution Frequency Based on Phenological Rhythm
4. Discussion
4.1. Comparison with Other Similar Products
4.2. Advantages and Limitations of Our Approaches
4.3. Application Prospects and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Tunio, M.H.; Ahmad, F.; Solangi, K.A. Overview of the aeroponic agriculture—An emerging technology for global food security. Int. J. Agric. Biol. Eng. 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Dai, Z.-Z.; Chang, S.; Zhao, G.-R.; Duan, J.-J.; Liang, H.-Y.; Zhu, Z.-Y.; Liu, S.-L.; Feng, Y.-Z.; Wang, X. Unlocking China’s grain yield potential: Harnessing technological and spatial synergies in diverse cropping systems. Agric. Syst. 2025, 226, 104308. [Google Scholar] [CrossRef]
- Qiu, B.; Jian, Z.; Yang, P.; Tang, Z.; Zhu, X.; Duan, M.; Yu, Q.; Chen, X.; Zhang, M.; Tu, P.; et al. Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification. Agric. Syst. 2024, 216, 103878. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Yan, H.; Ullah, I.; Zuo, Z.; Li, L.; Yu, J. Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato. Agric. Water Manag. 2020, 241, 106263. [Google Scholar] [CrossRef]
- Li, X.; Wu, K.; Hao, S.; Yue, Z.; Ran, Z.; Ma, J. Mapping cropland suitability in China using optimized MaxEnt model. Field Crop Res. 2023, 302, 109064. [Google Scholar] [CrossRef]
- Huang, D.; Lu, Y.; Liu, Y.; Liu, Y.; Tong, Z.; Xing, L.; Dou, C. Multifunctional evaluation and multiscenario regulation of non-grain farmlands from the grain security perspective: Evidence from the Wuhan Metropolitan Area, China. Land Use Policy 2024, 146, 107322. [Google Scholar] [CrossRef]
- Abay, K.A.; Breisinger, C.; Glauber, J.; Kurdi, S.; Laborde, D.; Siddig, K. The Russia-Ukraine war: Implications for global and regional food security and potential policy responses. Glob. Food Secur. 2023, 36, 100675. [Google Scholar] [CrossRef]
- Alhussam, M.I.; Ren, J.; Yao, H.; Abu Risha, O. Food Trade Network and Food Security: From the Perspective of Belt and Road Initiative. Agriculture 2023, 13, 1571. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Zhu, Q.; Niu, Y. Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value. Agric. Water Manag. 2023, 285, 108349. [Google Scholar] [CrossRef]
- Shen, G.; Yu, Q.; Zhou, Q.; Wang, C.; Wu, W. From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity. Agric. Syst. 2023, 204, 103535. [Google Scholar] [CrossRef]
- Massigoge, I.; Carcedo, A.; Reis, A.; Mitchell, C.; Day, S.; Oliverio, J.; Truong, S.; McCormick, R.; Rotundo, J.; Lira, S.; et al. Exploring avenues for agricultural intensification: A case study for maize-soybean in the Southern US region. Agric. Syst. 2023, 204, 103539. [Google Scholar] [CrossRef]
- Cai, Z.; Hu, Q.; Zhang, X.; Yang, J.; Wei, H.; Wang, J.; Zeng, Y.; Yin, G.; Li, W.; You, L.; et al. Improving agricultural field parcel delineation with a dual branch spatiotemporal fusion network by integrating multimodal satellite data. ISPRS J. Photogramm. 2023, 205, 34–49. [Google Scholar] [CrossRef]
- Sainte Fare Garnot, V.; Landrieu, L.; Chehata, N. Multi-modal temporal attention models for crop mapping from satellite time series. ISPRS J. Photogramm. 2022, 187, 294–305. [Google Scholar] [CrossRef]
- Tao, J.; Wang, Y.; Qiu, B.; Wu, W. Exploring cropping intensity dynamics by integrating crop phenology information using Bayesian networks. Comput. Electron. Agric. 2022, 193, 106667. [Google Scholar] [CrossRef]
- Memon, M.S.; Chen, S.; Niu, Y.; Zhou, W.; Elsherbiny, O.; Liang, R.; Du, Z.; Guo, X. Evaluating the Efficacy of Sentinel-2B and Landsat-8 for Estimating and Mapping Wheat Straw Cover in Rice–Wheat Fields. Agronomy 2023, 13, 2691. [Google Scholar] [CrossRef]
- Raza, A.; Hu, Y.; Lu, Y.; Ray, R.L. Comparison of Landsat-8 and Sentinel-2 Imagery for Modeling Gross Primary Productivity of Tea Ecosystem. J. Crop Health 2024, 76, 1585–1605. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 111624. [Google Scholar] [CrossRef]
- Awais, M.; Li, W.; Hussain, S.; Cheema, M.J.; Li, W.; Song, R.; Liu, C. Comparative Evaluation of Land Surface Temperature Images from Unmanned Aerial Vehicle and Satellite Observation for Agricultural Areas Using In Situ Data. Agriculture 2022, 12, 184. [Google Scholar] [CrossRef]
- Gray, J.; Friedl, M.; Frolking, S.; Ramankutty, N.; Nelson, A.; Gumma, M.K. Mapping Asian Cropping Intensity with MODIS. IEEE J.-Stars 2014, 7, 3373–3379. [Google Scholar] [CrossRef]
- Boschetti, M.; Busetto, L.; Manfron, G.; Laborte, A.; Asilo, S.; Pazhanivelan, S.; Nelson, A. PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series. Remote Sens. Environ. 2017, 194, 347–365. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Z.; Luo, Y.; Cao, J.; Zhang, L.; Zhuang, H.; Cheng, F.; Zhang, J.; Tao, F. Annual paddy rice planting area and cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020. Agric. Syst. 2022, 200, 103437. [Google Scholar] [CrossRef]
- He, T.; Zhang, M.; Xiao, W.; Zhai, G.; Fang, K.; Chen, Y.; Wu, C. Trend and potential enhancement of cropping intensity. Comput. Electron. Agric. 2025, 229, 109777. [Google Scholar] [CrossRef]
- Liu, L.; Kang, S.; Xiong, X.; Qin, Y.; Wang, J.; Liu, Z.; Xiao, X. Cropping intensity map of China with 10 m spatial resolution from analyses of time-series Landsat-7/8 and Sentinel-2 images. Int. J. Appl. Earth Obs. 2023, 124, 103504. [Google Scholar] [CrossRef]
- Qiu, B.; Hu, X.; Yang, P.; Tang, Z.; Wu, W.; Li, Z. A robust approach for large-scale cropping intensity mapping in smallholder farms from vegetation, brownness indices and SAR time series. ISPRS J. Photogramm. 2023, 203, 328–344. [Google Scholar] [CrossRef]
- Pan, L.; Xia, H.; Yang, J.; Niu, W.; Wang, R.; Song, H.; Guo, Y.; Qin, Y. Mapping cropping intensity in Huaihe basin using phenology algorithm, all Sentinel-2 and Landsat images in Google Earth Engine. Int. J. Appl. Earth Obs. 2021, 102, 102376. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, X.; Liu, Y.; Jiang, Q.; Zhou, Y. Estimating Agricultural Cropping Intensity Using a New Temporal Mixture Analysis Method from Time Series MODIS. Remote Sens. 2023, 15, 4712. [Google Scholar] [CrossRef]
- Yan, H.; Liu, F.; Qin, Y.; Niu, Z.e.; Doughty, R.; Xiao, X. Tracking the spatio-temporal change of cropping intensity in China during 2000–2015. Environ. Res. Lett. 2019, 14, 035008. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, J.; Yu, L.; Hao, P.; Chen, B.; Xin, Q.; Fu, H.; Gong, P. Annual dynamic dataset of global cropping intensity from 2001 to 2019. Sci. Data 2021, 8, 283. [Google Scholar] [CrossRef]
- Yu, W.; Li, D.; Zheng, H.; Yao, X.; Zhu, Y.; Cao, W.; Qiu, L.; Cheng, T.; Zhang, Y.; Zhou, Y. HIDYM: A high-resolution gross primary productivity and dynamic harvest index based crop yield mapper. Remote Sens. Environ. 2025, 318, 114548. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Mosallaeepour, E.; Kamgar-Haghighi, A.A.; Sepaskhah, A.R. Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements. Water Resour. Manag. 2015, 29, 2837–2853. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, X.; Jiang, Q.; Wu, L.; Zhang, Y.; Zhou, W. DBCT-Net: A dual branch hybrid CNN-transformer network for remote sensing image fusion. Expert Syst. Appl. 2023, 233, 120829. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, G.; Yang, H.; Wu, J.; Lei, L.; Zhao, F.; Fan, L.; Zhao, C. Identification of Apple Orchard Planting Year Based on Spatiotemporally Fused Satellite Images and Clustering Analysis of Foliage Phenophase. Remote Sens. 2020, 12, 1199. [Google Scholar] [CrossRef]
- Qiu, B.; Liu, B.; Tang, Z.; Dong, J.; Xu, W.; Liang, J.; Chen, N.; Chen, J.; Wang, L.; Zhang, C.; et al. National-scale 10-m maps of cropland use intensity in China during 2018–2023. Scientific Data 2024, 11, 691. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, B.; Zeng, H.; He, G.; Liu, C.; Tao, S.; Zhang, Q.; Nabil, M.; Tian, F.; Bofana, J.; et al. GCI30: A global dataset of 30 m cropping intensity using multisource remote sensing imagery. Earth Syst. Sci. Data 2021, 13, 4799–4817. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P.; Li, Z.; Zhang, H.K.; Huang, H. Sentinel-2A multi-temporal misregistration characterization and an orbit-based sub-pixel registration methodology. Remote Sens. Environ. 2018, 215, 495–506. [Google Scholar] [CrossRef]
- Ye, S.; Zhu, Z.; Cao, G. Object-based continuous monitoring of land disturbances from dense Landsat time series. Remote Sens. Environ. 2023, 287, 113462. [Google Scholar] [CrossRef]
- Wheeler, T.; von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Wu, W.; Yu, Q.; You, L.; Chen, K.; Tang, H.; Liu, J. Global cropping intensity gaps: Increasing food production without cropland expansion. Land Use Policy 2018, 76, 515–525. [Google Scholar] [CrossRef]
Class | Prod. Acc. 1 (%) | User. Acc. 2 (%) | Prod. Acc. (Pixels) | User. Acc. (Pixels) |
---|---|---|---|---|
Town area | 98.26 | 98.96 | 3325/3384 | 3325/3360 |
Open water | 99.63 | 91.17 | 537/539 | 537/589 |
Cropland | 99.48 | 99.55 | 2848/2863 | 2848/2861 |
Grassland | 96.91 | 96.04 | 848/875 | 848/883 |
Tea garden | 98.78 | 88 | 242/245 | 242/275 |
Deciduous forest | 92.28 | 97.27 | 1530/1658 | 1530/1573 |
Evergreen forest | 92.7 | 88.34 | 432/466 | 432/489 |
Overall accuracy | 97.32% (9762/10,030) | |||
Kappa coefficient | 0.96 |
Distribution Frequency (Year) | Rice–Wheat Rotation | Single-Season Rice | Single-Season Wheat | |||
---|---|---|---|---|---|---|
Prod. Acc. (%) | User. Acc. (%) | Prod. Acc. (%) | User. Acc. (%) | Prod. Acc. (%) | User. Acc. (%) | |
1 | 94.66 | 81.05 | 87.04 | 91.25 | 77.84 | 88.80 |
2 | 61.33 | 53.62 | 61.00 | 88.55 | 86.63 | 63.81 |
3 | 70.46 | 78.74 | 77.78 | 68.85 | 54.66 | 79.88 |
4 | 83.02 | 82.42 | 92.62 | 95.76 | / | / |
5 | 93.68 | 93.31 | / | / | / | / |
Overall accuracy | 86.11% (5364/6229) | 82.53% (1115/1351) | 75.95% (1083/1426) | |||
Kappa coefficient | 0.78 | 0.66 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Zhu, Q.; Gao, Y.; Zhang, L.; Wang, A.; Zhu, Y.; Wang, C.; Liu, B.; Zhao, F.; Li, P.; et al. Identification of Interannual Variation Frequency of Cropland Cropping Intensity Based on Remote Sensing Spatiotemporal Fusion and Crop Phenological Rhythm: A Case Study of Zhenjiang, Jiangsu. Agriculture 2025, 15, 1004. https://doi.org/10.3390/agriculture15091004
Zhu Y, Zhu Q, Gao Y, Zhang L, Wang A, Zhu Y, Wang C, Liu B, Zhao F, Li P, et al. Identification of Interannual Variation Frequency of Cropland Cropping Intensity Based on Remote Sensing Spatiotemporal Fusion and Crop Phenological Rhythm: A Case Study of Zhenjiang, Jiangsu. Agriculture. 2025; 15(9):1004. https://doi.org/10.3390/agriculture15091004
Chicago/Turabian StyleZhu, Yaohui, Qingzhen Zhu, Yuanyuan Gao, Liyuan Zhang, Aichen Wang, Yongyun Zhu, Chunshan Wang, Bo Liu, Fa Zhao, Peiying Li, and et al. 2025. "Identification of Interannual Variation Frequency of Cropland Cropping Intensity Based on Remote Sensing Spatiotemporal Fusion and Crop Phenological Rhythm: A Case Study of Zhenjiang, Jiangsu" Agriculture 15, no. 9: 1004. https://doi.org/10.3390/agriculture15091004
APA StyleZhu, Y., Zhu, Q., Gao, Y., Zhang, L., Wang, A., Zhu, Y., Wang, C., Liu, B., Zhao, F., Li, P., Wei, X., & Song, Q. (2025). Identification of Interannual Variation Frequency of Cropland Cropping Intensity Based on Remote Sensing Spatiotemporal Fusion and Crop Phenological Rhythm: A Case Study of Zhenjiang, Jiangsu. Agriculture, 15(9), 1004. https://doi.org/10.3390/agriculture15091004