Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,422)

Search Parameters:
Keywords = phase transition process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1539 KB  
Article
Modelling the Effect of Viruses on Insect Survival: Using a Second-Order Phase Transition Model to Describe Time–Effect and Dose–Effect Relationships Using Entomopathogenic Viruses as an Example
by Vladislav Soukhovolsky, Anton Kovalev, Olga Tarasova, Dmitry Kurenshchikov, Yuriy Tokarev, Daria Kharlamova, Yuriy Akhanaev, Sergey Pavlushin and Vyacheslav Martemyanov
Insects 2025, 16(10), 1023; https://doi.org/10.3390/insects16101023 - 3 Oct 2025
Abstract
The present study examines the effect of viruses on forest insects depending on the virus dose. Two model approaches are used to quantify the effect of viruses on insect survival. Both approaches describe the processes of virus exposure to insects within the framework [...] Read more.
The present study examines the effect of viruses on forest insects depending on the virus dose. Two model approaches are used to quantify the effect of viruses on insect survival. Both approaches describe the processes of virus exposure to insects within the framework of the second-order phase transition model, which is well known in theoretical physics. The first approach examines the temporal dynamics of larval survival at a given dose of virus exposure. This dependence is characterized by the time–effect curve. In this case, the lethal time of exposure LT100 is the time required for the death of all larvae in the experiment at a given dose D of exposure. The second approach describes the relationship between the proportion qr of larvae that survived a fixed time Tc after the start of the experiment and the dose D of virus exposure. This dependence is characterized by the dose–effect curve. The experiments tested the effect of two different viruses—nucleopolyhedrovirus (NPV) and cypovirus (CPV)—on such insect species as Lymantria dispar L., Manduca sexta L. and Loxostege sticticalis L. It was shown that the proposed models of second-order phase transitions very accurately (with coefficients of determination of the models close to R2 = 0.95) describe experiments on studying the effect of different virus strains on insect survival. The proposed models turned out to be useful for assessing the effectiveness of different virus strains against insect pests. Since the parameters of the second-order “dose–time” and “dose–effect” phase transition models are related to each other, it is possible to reduce the number of measurements of virus–insect interaction due to the relationship between these parameters, and instead of n observations of insect dynamics over time depending on the dose of exposure, the basic parameters characterizing the “virus–insect” interactions can be accurately estimated using only one measurement. It appears that the proposed model can be used to calculate the effect of toxic agents on the population of victims for a wide variety of toxicant species and populations. A sharp reduction in the labor intensity of experiments to assess the toxicity of certain toxicants on animal populations will simplify and reduce the cost of testing the response of living objects to toxicants. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

18 pages, 716 KB  
Article
Metacognitive Modulation of Cognitive-Emotional Dynamics Under Social-Evaluative Stress: An Integrated Behavioural–EEG Study
by Katia Rovelli, Angelica Daffinà and Michela Balconi
Appl. Sci. 2025, 15(19), 10678; https://doi.org/10.3390/app151910678 - 2 Oct 2025
Abstract
Background/Objectives: Decision-making under socially evaluative stress engages a dynamic interplay between cognitive control, emotional appraisal, and motivational systems. Contemporary models of multi-level co-regulation posit that these systems operate in reciprocal modulation, redistributing processing resources to prioritise either rapid socio-emotional alignment or deliberate evaluation [...] Read more.
Background/Objectives: Decision-making under socially evaluative stress engages a dynamic interplay between cognitive control, emotional appraisal, and motivational systems. Contemporary models of multi-level co-regulation posit that these systems operate in reciprocal modulation, redistributing processing resources to prioritise either rapid socio-emotional alignment or deliberate evaluation depending on situational demands. Methods: Adopting a neurofunctional approach, a novel dual-task protocol combining the MetaCognition–Stress Convergence Paradigm (MSCP) and the Social Stress Test Neuro-Evaluation (SST-NeuroEval), a simulated social–evaluative speech task calibrated across progressive emotional intensities, was implemented. Twenty professionals from an HR consultancy firm participated in the study, with concurrent recording of frontal-temporoparietal electroencephalography (EEG) and bespoke psychometric indices: the MetaStress-Insight Index and the TimeSense Scale. Results: Findings revealed that decision contexts with higher socio-emotional salience elicited faster, emotionally guided choices (mean RT difference emotional vs. cognitive: −220 ms, p = 0.026), accompanied by oscillatory signatures (frontal delta: F(1,19) = 13.30, p = 0.002; gamma: F(3,57) = 14.93, p ≤ 0.001) consistent with intensified socio-emotional integration and contextual reconstruction. Under evaluative stress, oscillatory activity shifted across phases, reflecting the transition from anticipatory regulation to reactive engagement, in line with models of phase-dependent stress adaptation. Across paradigms, convergences emerged between decision orientation, subjective stress, and oscillatory patterns, supporting the view that cognitive–emotional regulation operates as a coordinated, multi-level system. Conclusions: These results underscore the importance of integrating behavioural, experiential, and neural indices to characterise how individuals adaptively regulate decision-making under socially evaluative stress and highlight the potential of dual-paradigm designs for advancing theory and application in cognitive–affective neuroscience. Full article
(This article belongs to the Special Issue Brain Functional Connectivity: Prediction, Dynamics, and Modeling)
Show Figures

Figure 1

34 pages, 6690 KB  
Article
Assessing the Effect of Mineralogy and Reaction Pathways on Geological Hydrogen (H2) Generation in Ultramafic and Mafic (Basaltic) Rocks
by Abubakar Isah, Hamidreza Samouei and Esuru Rita Okoroafor
Hydrogen 2025, 6(4), 76; https://doi.org/10.3390/hydrogen6040076 - 1 Oct 2025
Abstract
This study evaluates the impact of mineralogy, elemental composition, and reaction pathways on hydrogen (H2) generation in seven ultramafic and mafic (basaltic) rocks. Experiments were conducted under typical low-temperature hydrothermal conditions (150 °C) and captured early and evolving stages of fluid–rock [...] Read more.
This study evaluates the impact of mineralogy, elemental composition, and reaction pathways on hydrogen (H2) generation in seven ultramafic and mafic (basaltic) rocks. Experiments were conducted under typical low-temperature hydrothermal conditions (150 °C) and captured early and evolving stages of fluid–rock interaction. Pre- and post-interactions, the solid phase was analyzed using X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS), while Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to determine the composition of the aqueous fluids. Results show that not all geologic H2-generating reactions involving ultramafic and mafic rocks result in the formation of serpentine, brucite, or magnetite. Our observations suggest that while mineral transformation is significant and may be the predominant mechanism, there is also the contribution of surface-mediated electron transfer and redox cycling processes. The outcome suggests continuous H2 production beyond mineral phase changes, indicating active reaction pathways. Particularly, in addition to transition metal sites, some ultramafic rock minerals may promote redox reactions, thereby facilitating ongoing H2 production beyond their direct hydration. Fluid–rock interactions also regenerate reactive surfaces, such as clinochlore, zeolite, and augite, enabling sustained H2 production, even without serpentine formation. Variation in reaction rates depends on mineralogy and reaction kinetics rather than being solely controlled by Fe oxidation states. These findings suggest that ultramafic and mafic rocks may serve as dynamic, self-sustaining systems for generating H2. The potential involvement of transition metal sites (e.g., Ni, Mo, Mn, Cr, Cu) within the rock matrix may accelerate H2 production, requiring further investigation. This perspective shifts the focus from serpentine formation as the primary driver of H2 production to a more complex mechanism where mineral surfaces play a significant role. Understanding these processes will be valuable for refining experimental approaches, improving kinetic models of H2 generation, and informing the site selection and design of engineered H2 generation systems in ultramafic and mafic formations. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

13 pages, 1436 KB  
Article
Functional Characterization of Trypsin in the Induction of Biologically Live Bait Feeding in Mandarin Fish (Siniperca chuatsi) Larvae
by Xiaoru Dong, Ke Lu, Jiaqi Wu, Qiuling Wang and Xu-fang Liang
Cells 2025, 14(19), 1537; https://doi.org/10.3390/cells14191537 - 1 Oct 2025
Abstract
The early developmental transition from endogenous to exogenous feeding is a critical period in carnivorous fish larvae, often associated with high mortality rates in aquaculture. Although trypsin, a key protease in protein digestion, is hypothesized to play a pivotal role in initiating exogenous [...] Read more.
The early developmental transition from endogenous to exogenous feeding is a critical period in carnivorous fish larvae, often associated with high mortality rates in aquaculture. Although trypsin, a key protease in protein digestion, is hypothesized to play a pivotal role in initiating exogenous feeding, the expression dynamics and functional contributions of trypsin and isoforms during early development remain poorly characterized in carnivorous species. This study explores the critical role of trypsin in the early feeding process of carnivorous fish, using mandarin fish (Siniperca chuatsi) as a model, which is a commercially valuable species that faces significant challenges during this phase due to its strict dependence on live prey and underdeveloped digestive system. Phylogenetic analysis indicates that, compared to herbivorous and omnivorous fish, carnivorous fish have evolved a greater number of trypsins, with a distinct branch specifically dedicated to try. RNA-seq data revealed the expression profiles of 13 trypsins during the early developmental stages of the mandarin fish. Most trypsins began to be expressed in large quantities with the appearance of the pancreas, reaching a peak prior to feeding. In situ hybridization revealed the spatiotemporal expression pattern of trypsins, starting from the pancreas in early development and later extending to the intestines. Furthermore, inhibition of trypsins activity successfully suppressed early oral feeding in mandarin fish, which was achieved by increasing the expression of cholecystokinin 2 (CCK2) and proopiomelanocortin (POMC) to suppress appetite. These findings enhance our understanding of the adaptive relationship between the ontogeny of the digestive enzyme system and feeding behavior in carnivorous fish. This research may help alleviate bottleneck issues in aquaculture production by improving the survival rate and growth performance of carnivorous fish during critical early life stages. Full article
Show Figures

Figure 1

27 pages, 2502 KB  
Review
Recent Advances in Transition Metal Dichalcogenide-Based Electrodes for Asymmetric Supercapacitors
by Tianyi Gao, Yue Li, Chin Wei Lai, Ping Xiang, Irfan Anjum Badruddin, Pooja Dhiman and Amit Kumar
Catalysts 2025, 15(10), 945; https://doi.org/10.3390/catal15100945 - 1 Oct 2025
Abstract
The global transition toward renewable energy sources has intensified in response to escalating environmental challenges. Nevertheless, the inherent intermittency and instability of renewable energy necessitate the development of reliable energy storage technologies. Supercapacitors are particularly notable for their high specific capacitance, rapid charge [...] Read more.
The global transition toward renewable energy sources has intensified in response to escalating environmental challenges. Nevertheless, the inherent intermittency and instability of renewable energy necessitate the development of reliable energy storage technologies. Supercapacitors are particularly notable for their high specific capacitance, rapid charge and discharge capability, and exceptional cycling stability. Concurrently, the increasing demand for efficient and sustainable energy storage systems has stimulated interest in multifunctional electrode materials that integrate electrocatalytic activity with electrochemical energy storage. Two-dimensional transition metal dichalcogenides (TMDs), owing to their distinctive layered structures, large surface areas, phase state, energy band structure, and intrinsic electrocatalytic properties, have emerged as promising candidates to achieve dual functionality in electrocatalysis and electrochemical energy storage for asymmetric supercapacitors (ASCs). Specifically, their unique electronic properties and catalytic characteristics promote reversible Faradaic reactions and accelerate charge transfer kinetics, thus markedly enhancing charge storage efficiency and energy density. This review highlights recent advances in TMD-based multifunctional electrodes. It elucidates mechanistic correlations between intrinsic electronic properties and electrocatalytic reactions that influence charge storage processes, guiding the rational design of high-performance ASC systems. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

12 pages, 1565 KB  
Article
Effect of LaF3 on Thermal Stability of Na-Aluminosilicate Glass and Formation of Low-Phonon Glass-Ceramics
by Marcin Środa, Szymon Świontek and Maciej Szal
Crystals 2025, 15(10), 859; https://doi.org/10.3390/cryst15100859 - 30 Sep 2025
Abstract
This study examines the impact of varying the content of lanthanum oxide and lanthanum fluoride on the formation of glass-ceramics and their effect on the thermal stability of Na-aluminosilicate glasses, depending on the type and concentration of the raw material used. The aim [...] Read more.
This study examines the impact of varying the content of lanthanum oxide and lanthanum fluoride on the formation of glass-ceramics and their effect on the thermal stability of Na-aluminosilicate glasses, depending on the type and concentration of the raw material used. The aim of this study is to obtain a fluoride crystalline phase in the glassy matrix. Such a phase, due to its low phonon energy, increases the probability of radiative transitions (decay) of optically active lanthanide dopants, thereby enhancing luminescence. The scope of the work included the preparation of two glass series with varying amounts of La2O3 and LaF3 to determine the glass-forming range and to identify the characteristic temperatures of the glasses using Differential Thermal Analysis. It was found that increasing the La2O3 content above 10 mol% in this glass leads to exceeding the target melting temperature (1400 °C) of the glass batch. In contrast, the introduction of 10 mol% LaF3 prevents the formation of homogeneous glass. Based on these results, a controlled crystallization process was designed, and the resulting crystalline phases were identified using X-ray diffraction (XRD). In the base glass, two crystalline phases were identified: Na2O·Al2O3·SiO2 and Na2SiO3. For the La-oxide series, the crystallization of NaAlSiO4 and La2SiO5 was confirmed. In the case of the La-fluoride series, the formation of LaF3 was observed. It was found that by introducing an appropriate amount of LaF3 (7.5 mol%) into the aluminosilicate network, it is possible to obtain a glass suitable for controlled crystallization, leading to the formation of a low-phonon LaF3 phase. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
21 pages, 2134 KB  
Review
Think Outside the Block: Rehabilitation Continuum After ACL Reconstruction with Adaptive Macro-Blocks—A Narrative Review
by Giandomenico Campardo, Roberto Ricupito, Carlotta Vercesi, Firas Mourad, Georgios Kakavas and Florian Forelli
Healthcare 2025, 13(19), 2480; https://doi.org/10.3390/healthcare13192480 - 29 Sep 2025
Abstract
Background: Conventional rehabilitation after anterior cruciate ligament reconstruction often follows a rigid, phase-based model. This structure may overlook individual differences in healing, neuromuscular control, and psychological readiness, leading to low return-to-sport rates and a high risk of reinjury. Methods: This narrative review proposes [...] Read more.
Background: Conventional rehabilitation after anterior cruciate ligament reconstruction often follows a rigid, phase-based model. This structure may overlook individual differences in healing, neuromuscular control, and psychological readiness, leading to low return-to-sport rates and a high risk of reinjury. Methods: This narrative review proposes a flexible rehabilitation framework based on overlapping progression blocks. Inspired by principles of strength and conditioning, motor learning, and cognitive training, this model emphasizes continuous, individualized development instead of fixed timelines. Results: The proposed model integrates essential components—such as joint mobility, muscle activation, motor control, and psychological factors—throughout the entire recovery process. Functional testing is redefined as a dynamic and ongoing diagnostic tool that helps clinicians identify areas needing further development, rather than acting as a simple pass/fail gateway. Progression is guided by demonstrated readiness rather than time or phase completion. Conclusions: Rehabilitation using adaptive, overlapping progression blocks offers a more holistic and responsive approach. It allows for better personalization, supports safer decision-making, and improves the transition back to sport through sustained development of physical and cognitive capacities. Full article
(This article belongs to the Special Issue Advances in Physical Therapy for Sports-Related Injuries and Pain)
Show Figures

Figure 1

18 pages, 11004 KB  
Article
Electrical Imaging Across Eastern South China: New Insights into the Intracontinental Tectonic Process During Mesozoic
by Kun Zhang, Zhaohong Wan, Xingzhi Ma, Yufan Yang and Hao Hu
Minerals 2025, 15(10), 1035; https://doi.org/10.3390/min15101035 - 29 Sep 2025
Abstract
To further investigate the collision process and tectonic regime transition between the North China (NCB) and South China Block (SCB), two magnetotelluric profiles were arranged across the Dabie Orogeny Belt (DOB) and eastern SCB. We then obtain the lithospheric resistivity models. The prominent [...] Read more.
To further investigate the collision process and tectonic regime transition between the North China (NCB) and South China Block (SCB), two magnetotelluric profiles were arranged across the Dabie Orogeny Belt (DOB) and eastern SCB. We then obtain the lithospheric resistivity models. The prominent feature revealed by our new model is an extensive conductive arc from the lower crust to the upper mantle, across the Jiangnan orogenic belt (JNOB) and the eastern Cathaysia Block (CAB). In addition, a huge resistor beneath the conductive arc is revealed, which is separated by a conductive wedge. Combining the heat flow and seismic tomographic imaging results, the conductors are to contain a large amount of hot material that present as the detachment layers (belts) controlled by the two subduction slabs. Considering multi-phase magmatism in the study area, new models suggest an intracontinental tectonic event in eastern CAB. Therefore, we propose a reliable tectonic process that occurred in the study area, including five stages: (1) an eastward intracontinental subduction and orogen carried out in CAB before the collision between SCB and NCB; (2) an extensional structural developed in CAB, following the subduction slab wrecking/sinking; (3) after the collision with NCB, the SCB crust/lithosphere thickened following the westward subduction of the Paleo-Pacific plate; (4) following the westward Yangtze slab sinking, the regional extension developed with the asthenosphere upwelling beneath SCB; (5) afterwards, the SCB was welded into one continent in a setting of westward compression. Full article
Show Figures

Figure 1

18 pages, 5196 KB  
Article
How Hydrometeors Varied with the Secondary Circulation During the Rapid Intensification of Typhoon Nangka (2015)
by Lin Wang, Hong Huang, Ju Wang, Xinjie Ouyang, Xiaolin Ma and Zhen Wang
Atmosphere 2025, 16(10), 1142; https://doi.org/10.3390/atmos16101142 - 28 Sep 2025
Abstract
A comprehensive understanding of the evolution and phase transitions of hydrometeors during the development of tropical cyclones (TCs) is essential for advancing research on the mechanisms of TC intensity change. In this study, utilizing the Weather Research and Forecasting numerical model, we simulate [...] Read more.
A comprehensive understanding of the evolution and phase transitions of hydrometeors during the development of tropical cyclones (TCs) is essential for advancing research on the mechanisms of TC intensity change. In this study, utilizing the Weather Research and Forecasting numerical model, we simulate the evolution of Super Typhoon Nangka (No. 1511), explore the relationship between the TC intensity variations and the internal hydrometeor distribution, and examine the secondary circulation characteristics. The results indicate that the total content of hydrometeor particles increased during the intensification of Typhoon Nangka. Ice-phase particles expanded outward radially as the typhoon intensified, while liquid-phase particles contracted inward. Ice-phase hydrometeor distributions varied in conjunction with TC intensity variations, whereas liquid-phase hydrometeor variations were closely related to the complex dynamic–thermodynamic–microphysical processes within the typhoon. The spatial pattern of the secondary circulation exhibits high consistency with the distribution of hydrometeor particles. Low-level radial inflow, upper-level radial outflow, and middle-level vertical updrafts played dominant roles in regulating the distribution and transport of particles at different stages. The intensification of Typhoon Nangka was primarily driven by water vapor convergence and the latent heat released by ascending liquid-phase particles near the eyewall, while the stagnation of its intensification was mainly attributed to the resistance exerted by descending ice-phase particles from upper levels and the heat consumption associated with their melting. These findings provide a foundation for better understanding how hydrometeors modulate TC intensity variations and offer valuable insights into energy conversion mechanisms during hydrometeor phase transitions under the influence of secondary circulations. Full article
(This article belongs to the Special Issue Typhoon/Hurricane Dynamics and Prediction (2nd Edition))
Show Figures

Figure 1

19 pages, 472 KB  
Review
Nutrition and Physical Activity in the University Population: A Scoping Review of Combined Impacts on Psychological Well-Being, Cognitive Performance, and Quality of Life
by Paride Vasco, Salvatore Allocca, Claudia Casella, Francesco Paolo Colecchia, Maria Ruberto, Nicola Mancini, Maria Casillo, Antonietta Messina, Marcellino Monda, Giovanni Messina, Vincenzo Monda, Antonietta Monda, Fiorenzo Moscatelli and Rita Polito
J. Funct. Morphol. Kinesiol. 2025, 10(4), 374; https://doi.org/10.3390/jfmk10040374 - 27 Sep 2025
Abstract
Background: University students are particularly vulnerable to psychological distress due to the transitional nature of this life phase and increasing academic, social, and financial pressures. Accumulating evidence indicates that lifestyle behaviors—especially nutrition and physical activity—play a critical role in shaping mental health, cognitive [...] Read more.
Background: University students are particularly vulnerable to psychological distress due to the transitional nature of this life phase and increasing academic, social, and financial pressures. Accumulating evidence indicates that lifestyle behaviors—especially nutrition and physical activity—play a critical role in shaping mental health, cognitive functioning, and overall well-being in this population. Methods: The objective of this scoping review was to systematically map the literature on the combined impacts of diet and physical activity on psychological well-being among university students. Following PRISMA-ScR guidelines, an initial search of three major databases (PubMed, Sciencedirect, and Wiley) yielded 718 articles. After a multi-stage screening process, 39 articles of various designs (including cross-sectional, interventional, and review studies) focusing on non-clinical student populations were included. The studies were then thematically analyzed. Results: While most research explored isolated behaviors, a smaller set of integrated studies revealed synergistic effects, reporting enhanced outcomes in mental health and quality of life. Notably, several articles proposed practical strategies—such as app-based tools, structured wellness initiatives, and interdisciplinary educational programs—as effective means to support healthier habits. Conclusions: The evidence strongly suggests that universities should prioritize holistic, multi-component wellness strategies over siloed, single-behavior initiatives. Developing integrated programs that combine nutritional education and physical activity support represents a practical and effective approach to enhance student well-being. Full article
Show Figures

Figure 1

16 pages, 702 KB  
Article
Development and Validation of a Tool to Assess Healthcare Professionals’ Views on Parental Presence During Neonatal Resuscitation
by Paraskevi Volaki, Rozeta Sokou, Abraham Pouliakis, Nikoleta Aikaterini Xixi, Zoi Iliodromiti, Styliani Paliatsiou, Georgios Kafalidis, Theodora Boutsikou, Theodoros Xanthos and Nicoletta Iacovidou
Nurs. Rep. 2025, 15(10), 352; https://doi.org/10.3390/nursrep15100352 - 26 Sep 2025
Abstract
Background/Objectives: Childbirth is a natural and joyfully anticipated life event for parents and relatives. Yet, in some cases, it can be a medical emergency requiring immediate intervention, i.e., neonatal resuscitation. The majority of newborns breathe spontaneously; a small number, though, may receive [...] Read more.
Background/Objectives: Childbirth is a natural and joyfully anticipated life event for parents and relatives. Yet, in some cases, it can be a medical emergency requiring immediate intervention, i.e., neonatal resuscitation. The majority of newborns breathe spontaneously; a small number, though, may receive basic life support (assisted transition), and an even smaller but clinically significant number require advanced life support (resuscitation). Within the context of family-centered care, the presence of parents during resuscitation has emerged as a factor with potential implications for emotional adjustment, communication with healthcare providers, and early parent–infant bonding. However, the presence of family members during neonatal resuscitation remains a subject of ongoing debate among healthcare professionals (HCPs). Despite increasing recognition of its potential benefits, HCPs’ views on parental presence during such critical procedures have not been extensively investigated in Greece. This study aims at developing and validating a tool to assess healthcare professionals’ views on parental presence during neonatal resuscitation. Methods: A preliminary questionnaire was developed based on the principles of family-centered care and adapted to the Greek population. The first phase included expert assessment of validity, clarity, and relevance using a modified Delphi method. Item Content Validity Index (I-CVI) and Scale CVI (S-CVI) were calculated. Pilot testing was conducted to assess test–retest reliability. Reliability was assessed using the Intraclass Correlation Coefficient (ICC) and Bland–Altman analyses. The study followed the principles of the Declaration of Helsinki, ensuring anonymity, informed consent, and confidentiality. Results: The questionnaire includes 37–50 items allocated in four sections. It demonstrated excellent content validity (CVI = 1.00) and good test–retest reliability (ICC = 0.86). Qualitative feedback indicated that the tool is user-friendly and comprehensive. Interestingly, participants expressed genuine concerns regarding the implementation of parental presence in neonatal resuscitation. Conclusions: The questionnaire development process led to a comprehensive tool, ready for large-scale testing in order to further establish its validity and internal consistency. Full article
Show Figures

Figure 1

21 pages, 2419 KB  
Article
Application Features of a VOF Method for Simulating Boiling and Condensation Processes
by Andrey Kozelkov, Andrey Kurkin, Andrey Puzan, Vadim Kurulin, Natalya Tarasova and Vitaliy Gerasimov
Algorithms 2025, 18(10), 604; https://doi.org/10.3390/a18100604 - 26 Sep 2025
Abstract
This article presents the results of a study on the possibility of using a single-speed multiphase model with free surface allowance for simulating boiling and condensation processes. The simulation is based on the VOF method, which allows the position of the interphase boundary [...] Read more.
This article presents the results of a study on the possibility of using a single-speed multiphase model with free surface allowance for simulating boiling and condensation processes. The simulation is based on the VOF method, which allows the position of the interphase boundary to be tracked. To increase the stability of the iterative procedure for numerically solving volume fraction transfer equations using a finite volume discretization method on arbitrary unstructured grids, the basic VOF method is been modified by writing these equations in a semi-divergent form. The models of Tanasawa, Lee, and Rohsenow are considered models of interphase mass transfer, in which the evaporated or condensed mass linearly depends on the difference between the local temperature and the saturation temperature with accuracy in empirical parameters. This paper calibrates these empirical parameters for each mass transfer model. The results of our study of the influence of the values of the empirical parameters of models on the intensity of boiling and evaporation, as well as on the dynamics of the interphase boundary, are presented. This research is based on Stefan’s problem of the movement of the interphase boundary due to the evaporation of a liquid and the problem of condensation of vapor bubbles water columns. As a result of a series of numerical experiments, it is shown that the average error in the position of the interfacial boundary for the Tanasawa and Lee models does not exceed 3–6%. For the Rohsenow model, the result is somewhat worse, since the interfacial boundary moves faster than it should move according to calculations based on analytical formulas. To investigate the possibility of condensation modeling, the results of a numerical solution of the problem of an emerging condensing vapor bubble are considered. A numerical assessment of its position in space and the shape and dynamics of changes in its diameter over time is carried out using the VOF method, taking into account the free surface. It is shown herein that the Tanasawa model has the highest accuracy for modeling the condensation process using a VOF method taking into account the free surface, while the Rohsenow model is most unstable and prone to deformation of the bubble shape. At the same time, the dynamics of bubble ascent are modeled by all three models. The results obtained confirm the fundamental possibility of using a VOF method to simulate the processes of boiling and condensation and taking into account the dynamics of the free surface. At the same time, the problem of the studied models of phase transitions is revealed, which consists of the need for individual selection of optimal values of empirical parameters for each specific task. Full article
Show Figures

Figure 1

25 pages, 8509 KB  
Article
Dynamic Evolution and Driving Mechanisms of Cultivated Land Non-Agriculturalization in Sichuan Province
by Yaowen Xu, Qian Li, Youhan Wang, Na Zhang, Julin Li, Kun Zeng and Liangsong Wang
Sustainability 2025, 17(19), 8643; https://doi.org/10.3390/su17198643 - 25 Sep 2025
Abstract
Given that the increasing non-agricultural conversion of cultivated land (NACCL) endangers food security, studying the spatial and temporal variation characteristics and driving mechanisms of NACCL in Sichuan Province can offer a scientific foundation for developing local farmland preservation measures and controlling further conversion. [...] Read more.
Given that the increasing non-agricultural conversion of cultivated land (NACCL) endangers food security, studying the spatial and temporal variation characteristics and driving mechanisms of NACCL in Sichuan Province can offer a scientific foundation for developing local farmland preservation measures and controlling further conversion. Guided by the theoretical framework of land use transition, this study utilizes land use datasets spanning multiple periods between 2000 and 2023. Comprehensively considering population scale factors, natural geographical factors, and socioeconomic factors, the county-level annual NACCL rate is calculated. Following this, the dynamic evolution and underlying driving forces of NACCL across 183 counties in Sichuan Province are examined through temporal and spatial dimensions, utilizing analytical tools including Nonparametric Kernel Density Estimation (KDE) and the Geographical Detector model with Optimal Parameters (OPGD). The study finds that: (1) Overall, NACCL in Sichuan Province exhibits phased temporal fluctuations characterized by “expansion—contraction—re-expansion—strict control,” with cultivated land mainly being converted into urban land, and the differences among counties gradually narrowing. (2) In Sichuan Province, the spatial configuration of NACCL is characterized by the expansion of high-value agglomerations alongside the dispersed and stable distribution of low-value areas. (3) Analysis through the OPGD model indicates that urban construction land dominates the NACCL process in Sichuan Province, and the driving dimension evolves from single to synergistic. The findings of this study offer a systematic examination of the spatiotemporal evolution and underlying drivers of NACCL in Sichuan Province. This analysis provides a scientific basis for formulating region-specific farmland protection policies and supports the optimization of territorial spatial planning systems. The results hold significant practical relevance for promoting the sustainable use of cultivated land resources. Full article
Show Figures

Figure 1

21 pages, 6518 KB  
Article
Topological Rainbow Trapping in One-Dimensional Magnetoelastic Phononic Crystal Slabs
by Wen Xiao, Fuhao Sui, Jiujiu Chen, Hongbo Huang and Tao Luo
Magnetochemistry 2025, 11(10), 83; https://doi.org/10.3390/magnetochemistry11100083 - 25 Sep 2025
Abstract
We design a one-dimensional magnetoelastic phononic crystal slab composed of the smart magnetostrictive material Terfenol-D and pure tungsten. Band inversion and topological phase transitions are achieved by modifying the geometric parameters of the non-magnetic medium within the unit cell. The emergence of topological [...] Read more.
We design a one-dimensional magnetoelastic phononic crystal slab composed of the smart magnetostrictive material Terfenol-D and pure tungsten. Band inversion and topological phase transitions are achieved by modifying the geometric parameters of the non-magnetic medium within the unit cell. The emergence of topological interface states within overlapping bandgaps, exhibiting distinct topological properties, along with their robustness against interfacial structural defects, is confirmed. The coupling effects between adjacent topological interface states in a sandwich-like supercell configuration are investigated, and their tunability under external magnetic fields is demonstrated. A Su-Schrieffer-Heeger (SSH) phononic crystal slab system under gradient magnetic fields is proposed. Critically, and in stark contrast to previous static or structurally graded designs, we achieve reconfigurable rainbow trapping of topological interface states solely by reprogramming the gradient magnetic field, leaving the physical structure entirely unchanged. This highly localized, compact, and broadband-tunable topological rainbow trapping system design holds significant promise for applications in elastic energy harvesting, wave filtering, and multi-frequency signal processing. Full article
(This article belongs to the Special Issue Advances in Low-Dimensional Magnetic Materials)
Show Figures

Figure 1

45 pages, 10484 KB  
Systematic Review
Innovative Procedures and Tools for the Digitalisation of Management Construction Processes in PA: A Systematic Scoping Review
by Giulia D’Alberto, Kavita Raj, Virginia Adele Tiburcio and Ugo Maria Coraglia
Buildings 2025, 15(19), 3457; https://doi.org/10.3390/buildings15193457 - 24 Sep 2025
Viewed by 37
Abstract
In recent years, the construction sector has experienced a significant technological transition, driven by the introduction of innovative digital tools and the evolution of the legislative environment. This article presents a Systematic Scoping Review conducted in accordance with the PRISMA-ScR guidelines, aiming to [...] Read more.
In recent years, the construction sector has experienced a significant technological transition, driven by the introduction of innovative digital tools and the evolution of the legislative environment. This article presents a Systematic Scoping Review conducted in accordance with the PRISMA-ScR guidelines, aiming to examine the role of Public Administration (PA) regarding the adoption of innovative technologies, such as Building Information Modelling (BIM) and Digital Twin (DT), to improve the management of construction and public procurement processes. The review analyses the state of the art in the implementation of digitalised procedures for project management in the construction phase, according to PA organisational purposes and national and international standard requirements. The data obtained was used to structure the analysis in order to provide a useful framework for understanding the level of convergence between the academic world and public administration in the use of digital technologies and their combined applications. The review results are organised in a thematic matrix classifying contributions according to key topics, building process phases, and operational aims. This approach highlights adopted strategies and emerging best practices, aiming to support both PAs and professionals in overcoming digitalisation challenges. A specific focus has been dedicated to the need for continuous training and legislative adaptation, which are essential for integrating digital technologies into building processes. The analysis and verification of the results of the systematic scoping review on the digitalisation process in the construction sector, conducted between academia and the public administration, is supported by a comparison with an Italian case study from the Emilia-Romagna region, which illustrates the specific application of the strategies identified in the digital management of public construction processes. Full article
Show Figures

Figure 1

Back to TopTop