Application Features of a VOF Method for Simulating Boiling and Condensation Processes
Abstract
1. Introduction
2. Physical and Mathematical Model
3. Increasing the Stability of the Numerical Solution
4. Results of Numerical Computations
4.1. The Stefan Problem
4.2. Single Vapor Bubble Condensation Problem
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferrín, J.L.; Pérez-Pérez, L.J. Numerical simulation of natural convection and boil-off in a small size pressurized LNG storage tank. Comput. Chem. Eng. 2020, 138, 106840. [Google Scholar] [CrossRef]
- Roh, S.; Son, G. Numerical study of natural convection in a liquefied natural gas tank. J. Mech. Sci. Technol. 2012, 26, 3133–3140. [Google Scholar] [CrossRef]
- Tyatyushkina, E.S.; Kozelkov, A.S.; Kurkin, A.A.; Kurulin, V.V.; Efremov, V.R.; Utkin, D.A. Evaluation of numerical diffusion of the finite volume method when modelling surface waves. Comput. Technol. 2019, 24, 106–119. [Google Scholar] [CrossRef]
- Kozelkov, A.; Kurulin, V.; Kurkin, A.; Taranov, A.; Plygunova, K.; Krutyakova, O.; Korotkov, A. Numerical Approach Based on Solving 3D Navier–Stokes Equations for Simulation of the Marine Propeller Flow Problems. Fluids 2023, 8, 293. [Google Scholar] [CrossRef]
- Korotkov, A.V.; Kozelkov, A.S.; Kurkin, A.A.; Giniyatullin, R.R.; Lashkin, S.V. Numerical Simulation of the Conjugate Heat Transfer of a «Fluid–Solid Body» System on an Unmatched Grid Interface. Fluids 2023, 8, 266. [Google Scholar] [CrossRef]
- Kurul, N.; Podowski, M. Multidimensional effects in forced convection subcooled boiling. In Proceedings of the Ninth International Heat Transfer Conference, Jerusalem, Israel, 19–24 August 1990. [Google Scholar]
- Yang, K.; Hong, F.; Cheng, P. A fully coupled numerical simulation of sessile droplet evaporation using Arbitrary Lagrangian-Eulerian formulation. Int. J. Heat Mass Transf. 2014, 70, 409–420. [Google Scholar] [CrossRef]
- Wang, H.; Pan, Z.; Garimella, S.V. Numerical investigation of heat and mass transfer from an evaporating meniscus in a heated open groove. Int. J. Heat Mass Transf. 2011, 54, 3015–3023. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B. Volume of fluid (VOF) method for dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Osher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988, 79, 12–49. [Google Scholar] [CrossRef]
- Cerne, G.; Petelinb, S.; Tiselja, I. Coupling of the Interface Tracking and the Two-Fluid Models for the Simulation of Incompressible Two-Phase Flow. J. Comput. Phys. 2001, 171, 776–804. [Google Scholar] [CrossRef]
- Li, L.; Niu, Y.; Wei, G.; Manickam, S.; Sun, X.; Zhu, Z. Investigation of cavitation noise using Eulerian-Lagrangian multiscale modeling. Ultrason. Sonochem. 2023, 97, 106446. [Google Scholar] [CrossRef]
- Alkhezzi, A.; Fan, Y. Improved Two-Fluid Model for Segregated Flow and Integrated Multiphase Flow Modeling for Downhole Pressure Predictions. Energies 2023, 16, 7923. [Google Scholar] [CrossRef]
- Zürner, T.; Kamble, V.; Rzehak, R.; Eckert, K. Experimental and numerical investigation of turbulent multiphase jets. Miner. Eng. 2024, 211, 108699. [Google Scholar] [CrossRef]
- Meng, L.; Gao, S.; Wei, D.; Zhao, Q.; Cui, B.; Shen, Y.; Song, Z. Particulate flow modelling in a spiral separator by using the Eulerian multi-fluid VOF approach. Int. J. Min. Sci. Technol. 2023, 33, 251–263. [Google Scholar] [CrossRef]
- Ubbink, O. Numerical Prediction of Two Fluid Systems with Sharp Interfaces. Ph.D. Thesis, University of London, London, UK, 1997. [Google Scholar]
- Kozelkov, A.S.; Pogosyan, M.A.; Strelets, D.Y.; Tarasova, N.V. Application of mathematical modeling to solve the emergency water landing task in the interests of passenger aircraft certification. Aerosp. Syst. 2021, 4, 75–89. [Google Scholar] [CrossRef]
- Kozelkov, A.S.; Kurkin, A.A.; Kurulin, V.V.; Lashkin, S.V.; Tarasova, N.V.; Tyatyushkina, E.S. Numerical Modeling of the Free Rise of an Air Bubble. Fluid Dyn. 2016, 51, 709–721. [Google Scholar] [CrossRef]
- Kozelkov, A.; Galanov, N.; Semenov, I.; Zhuchkov, R.; Strelets, D. Computational Investigation of the Water Droplet Effects on Shapes of Ice on Airfoils. Aerospace 2023, 10, 906. [Google Scholar] [CrossRef]
- Knudsen, M. The Kinetic Theory of Gases. Some Modern Aspects; Methuen and Co., Ltd.: London, UK, 1934. [Google Scholar]
- Schrage, R.W. A Theoretical Study of Interphase Mass Transfer; Columbia University Press: New York, NY, USA, 1953. [Google Scholar]
- Kharangate, C.R.; Mudawar, I. Review of computational studies on boiling and condensation. Int. J. Heat Mass Transf. 2017, 108, 1164–1196. [Google Scholar] [CrossRef]
- Tanasawa, I. Advances in condensation heat transfer. In Advances in Heat Transfer; Hartnett, J.P., Irvine, T.F., Eds.; Academic Press: San Diego, CA, USA, 1991; Volume 21. [Google Scholar]
- Lee, W.H. A Pressure Iteration Scheme for Two-Phase Flow Modeling. In Multiphase Transport Fundamentals, Reactor Safety, Applications; Hemisphere: Washington, DC, USA, 1980. [Google Scholar]
- Rohsenow, W.M. A method of correlating heat transfer data for surface boiling of liquids. Trans. ASME 1952, 74, 969–976. [Google Scholar] [CrossRef]
- Sharif, S.A.; Ho, M.K.M.; Timchenko, V.; Yeoh, G.H. Numerical study of effects of system variables on rising vapour bubble in convective boiling conditions. Ann. Nucl. Energy 2025, 222, 111553. [Google Scholar] [CrossRef]
- Darshan, M.B.; Magnini, M.; Matar, O.K. Numerical simulations of flow boiling in constricted microchannels: Bubble dynamics and heat transfer characteristics. Int. J. Heat Mass Transf. 2025, 253, 127456. [Google Scholar] [CrossRef]
- Vishal; Rohilla, L.; Kumar, P. Numerical investigation of drop spreading on a heated surface. Sustain. Chem. Clim. Action 2025, 6, 100065. [Google Scholar] [CrossRef]
- Li, Q.; Ge, H.; Pan, R.; Zhang, Z.; Chen, R. Numerical Study on Flow and Release Characteristics of Gas Extinguishing Agent under Different Filling Pressure and Amount Conditions. Processes 2021, 9, 1683. [Google Scholar] [CrossRef]
- Wan, H.; Hu, J.; Gao, L.; Miao, X.; Xu, Y. Unsteady numerical calculation of flow boiling heat transfer in microchannels with Kagome structures. Case Stud. Therm. Eng. 2024, 63, 105289. [Google Scholar] [CrossRef]
- Caner, J.; Videcoq, E.; Benselama, A.M.; Girault, M. Simulation of a two-phase loop thermosyphon using a new interface-resolved phase change model. Int. J. Heat Mass Transf. 2024, 228, 125607. [Google Scholar] [CrossRef]
- Liu, S.; Chen, J.; Ji, W.; Tong, Z.; Fu, Y.; Qian, N.; Dai, C. Analysis of pool boiling heat transfer characteristics on copperbased structured surfaces modified with superhydrophilic, hydrophobic, superhydrophobic and hybrid biphilic properties. Case Stud. Therm. Eng. 2024, 61, 105044. [Google Scholar] [CrossRef]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Welch, S.W.; Wilson, J. A volume of fluid based method for fluid flows with phase change. J. Comput. Phys. 2000, 160, 662–682. [Google Scholar] [CrossRef]
- Kamei, S.; Hirata, M. Condensing phenomena of a single vapor bubble into subcooled water. Exp. Heat Transf. Int. J. 1990, 3, 173–182. [Google Scholar] [CrossRef]
- Ferziger, J.H.; Peric, M. Computational Method for Fluid Dynamics; Springer: New York, NY, USA, 2002. [Google Scholar]
- Vachaparambil, K.J.; Einarsrud, K.E. Comparison of Surface Tension Models for the Volume of Fluid Method. Processes 2019, 7, 542. [Google Scholar] [CrossRef]
- Lee, H.; Kharangate, C.R.; Mascarenhas, N.; Park, I.; Mudawar, I. Experimental and computational investigation of vertical downflow condensation. Int. J. Heat Mass Transf. 2015, 85, 865–879. [Google Scholar] [CrossRef]
- Efremov, V.R.; Kozelkov, A.S.; Kornev, A.V.; Kurkin, A.A.; Kurulin, V.V.; Strelets, D.Y.; Tarasova, N.V. Method for taking into account gravity in free-surface flow simulation. Comput. Math. Math. Phys. 2017, 57, 1720–1733. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, V.M. Hydrodynamics; Nauka: Moscow, Russia, 1988. [Google Scholar]
- Lashkin, S.V.; Kozelkov, A.S.; Yalozo, A.V.; Gerasimov, V.Y.; Zelensky, D.K. Efficiency Analysis of the Parallel Implementation of the SIMPLE Algorithm on Multiprocessor Computers. J. Appl. Mech. Tech. Phys. 2017, 58, 1242–1259. [Google Scholar] [CrossRef]
- Sarazov, A.V.; Kozelkov, A.S.; Strelets, D.Y.; Zhuchkov, R.N. Modeling Object Motion on Arbitrary Unstructured Grids Using an Invariant Principle of Computational Domain Topology: Key Features. Symmetry 2023, 15, 2081. [Google Scholar] [CrossRef]
- Giustini, G.; Issa, R.I. A method for simulating interfacial mass transfer on arbitrary meshes. Phys. Fluids 2021, 33, 087102. [Google Scholar] [CrossRef]
- Magnini, M.; Pulvirenti, B.; Thome, J.R. Numerical investigation of hydrodynamics and heat transfer of elongated bubbles during flow boiling in a microchannel. Int. J. Heat Mass Transf. 2013, 59, 451–471. [Google Scholar] [CrossRef]
- Kamei, S.; Hirata, M. Study on condensation of a single vapor bubble into subcooled water—Part 2; Experimental analysis. Heat Trans.–Jpn. Res. 1990, 19, 1–10. [Google Scholar]
- Hardt, S.; Wondra, F. Evaporation model for interfacial flows based on a continuum-field representation of the source terms. J. Comput. Phys. 2008, 227, 5871–5895. [Google Scholar] [CrossRef]
- Marek, R.; Straub, J. Analysis of the evaporation coefficient and the condensation coefficient of water. Int. J. Heat Mass Transf. 2001, 44, 39–53. [Google Scholar] [CrossRef]
- Zeng, Q.; Cai, J.; Yin, H. Numerical simulation of single bubble condensation in subcooled flow using OpenFOAM. Prog. Nucl. Energy 2015, 83, 336–346. [Google Scholar] [CrossRef]
- Samkhaniani, N.; Ansari, M. Numerical simulation of bubble condensation using CF-VOF. Prog. Nucl. Energy 2016, 89, 120–131. [Google Scholar] [CrossRef]
Vapor (ν) | Liquid (l) | |||||
---|---|---|---|---|---|---|
(a) | (b) | (c) | (a) | (b) | (c) | |
Boiling temperature (saturation temperature), K (Tsat) | – | – | – | 373 | 428 | 609 |
Density, kg/m3 (ρ) | 0.59 | 2.92 | 87 | 958 | 912 | 640 |
Dynamic viscosity, Pa · s (μ) | 1.2 × 10−5 | 1.4 × 10−5 | 2.4 × 10−5 | 2.8 × 10−4 | 1.8 × 10−4 | 8.1 × 10−5 |
Thermal conductivity, W/(m·K) (k) | 2.3 × 10−2 | 2.8 × 10−2 | 8.7 × 10−2 | 68.3 × 10−2 | 68.4 × 10−2 | 46.5 × 10−2 |
Specific heat capacity, J/(kg·K) (s) | 2135 | 2358.5 | 11,000 | 4220 | 7244 | 4320 |
Specific heat of evaporation, kJ/kg (hνl) | – | – | – | 2257 | 2096 | 1070 |
Mesh | N°1 | N°2 | N°3 |
---|---|---|---|
Relative size of cells, Δx/D | 50 | 100 | 200 |
Number of cells | 30,000 | 75,000 | 225,000 |
Vapor (ν) | Liquid (l) | |
---|---|---|
Boiling (saturation) temperature, K (Tsat) | 380 | |
Density, kg/m3 (ρ) | 0.75453 | 953.13 |
Dynamic viscosity, Pa × s (μ) | 1.25 × 10−5 | 2.6 × 10−4 |
Thermal conductivity, W/(m × K) (k) | 0.025905 | 0.68106 |
Specific heat at constant pressure, J/(kg × K) (Cp) | 2110 | 4224 |
Specific heat of evaporation, kJ/kg (hνl) | 2237 | |
Surface tension, N/m (σ) | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozelkov, A.; Kurkin, A.; Puzan, A.; Kurulin, V.; Tarasova, N.; Gerasimov, V. Application Features of a VOF Method for Simulating Boiling and Condensation Processes. Algorithms 2025, 18, 604. https://doi.org/10.3390/a18100604
Kozelkov A, Kurkin A, Puzan A, Kurulin V, Tarasova N, Gerasimov V. Application Features of a VOF Method for Simulating Boiling and Condensation Processes. Algorithms. 2025; 18(10):604. https://doi.org/10.3390/a18100604
Chicago/Turabian StyleKozelkov, Andrey, Andrey Kurkin, Andrey Puzan, Vadim Kurulin, Natalya Tarasova, and Vitaliy Gerasimov. 2025. "Application Features of a VOF Method for Simulating Boiling and Condensation Processes" Algorithms 18, no. 10: 604. https://doi.org/10.3390/a18100604
APA StyleKozelkov, A., Kurkin, A., Puzan, A., Kurulin, V., Tarasova, N., & Gerasimov, V. (2025). Application Features of a VOF Method for Simulating Boiling and Condensation Processes. Algorithms, 18(10), 604. https://doi.org/10.3390/a18100604