Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (381)

Search Parameters:
Keywords = phase state diagram

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 2856 KiB  
Review
Intertwined Orders and the Physics of High Temperature Superconductors
by Eduardo Fradkin
Particles 2025, 8(3), 70; https://doi.org/10.3390/particles8030070 - 23 Jul 2025
Viewed by 151
Abstract
Complex phase diagrams are a generic feature of quantum materials that display high-temperature superconductivity. In addition to d-wave superconductivity (or other unconventional states), these phase diagrams typically include various forms of charge-ordered phases, including charge-density waves and/or spin-density waves, as well as electronic [...] Read more.
Complex phase diagrams are a generic feature of quantum materials that display high-temperature superconductivity. In addition to d-wave superconductivity (or other unconventional states), these phase diagrams typically include various forms of charge-ordered phases, including charge-density waves and/or spin-density waves, as well as electronic nematic states. In most cases, these phases have critical temperatures comparable in magnitude to that of the superconducting state and appear in a “pseudo-gap” regime. In these systems, the high temperature state does not produce a good metal with well-defined quasiparticles but a ”strange metal”. These states typically arise from doping a strongly correlated Mott insulator. With my collaborators, I have identified these behaviors as a problem with “Intertwined Orders”. A pair-density wave is a type of superconducting state that embodies the physics of intertwined orders. Here, I discuss the phenomenology of intertwined orders and the quantum materials that are known to display these behaviors. Full article
Show Figures

Figure 1

16 pages, 3610 KiB  
Article
Multiple-Q States in Bilayer Triangular-Lattice Systems with Bond-Dependent Anisotropic Interaction
by Satoru Hayami
Crystals 2025, 15(7), 663; https://doi.org/10.3390/cryst15070663 - 20 Jul 2025
Viewed by 236
Abstract
We investigate magnetic instabilities toward multiple-Q states in centrosymmetric bilayer triangular-lattice systems. By focusing on the interplay between the layer-dependent Dzyaloshinskii–Moriya interaction and layer-independent bond-dependent anisotropic interaction, both of which originate from the relativistic spin-orbit coupling, we construct a low-temperature phase diagram [...] Read more.
We investigate magnetic instabilities toward multiple-Q states in centrosymmetric bilayer triangular-lattice systems. By focusing on the interplay between the layer-dependent Dzyaloshinskii–Moriya interaction and layer-independent bond-dependent anisotropic interaction, both of which originate from the relativistic spin-orbit coupling, we construct a low-temperature phase diagram based on an effective spin model that also includes frustrated isotropic exchange interactions. Employing simulated annealing, we reveal the stabilization of three distinct double-Q phases in the absence of an external magnetic field, each characterized by noncoplanar spin textures with spatially modulated local scalar spin chirality. Under applied magnetic fields, we identify field-induced phase transitions among single-Q, double-Q, and triple-Q states, some of which exhibit a finite net scalar spin chirality indicative of topologically nontrivial order. These findings highlight centrosymmetric systems with sublattice-dependent Dzyaloshinskii–Moriya interactions as promising platforms for realizing a variety of multiple-Q spin textures. Full article
Show Figures

Figure 1

16 pages, 1799 KiB  
Article
Skyrmion Crystal in Bilinear–Biquadratic–Bicubic Model on a Centrosymmetric Triangular Lattice
by Satoru Hayami
Condens. Matter 2025, 10(3), 39; https://doi.org/10.3390/condmat10030039 - 18 Jul 2025
Viewed by 275
Abstract
We numerically investigate the effect of multi-spin interactions on the stability of skyrmion crystals and other multiple-Q magnetic states, with a particular emphasis on the momentum-resolved bicubic interaction. By performing simulated annealing for an effective spin model that incorporates bilinear, biquadratic, and [...] Read more.
We numerically investigate the effect of multi-spin interactions on the stability of skyrmion crystals and other multiple-Q magnetic states, with a particular emphasis on the momentum-resolved bicubic interaction. By performing simulated annealing for an effective spin model that incorporates bilinear, biquadratic, and bicubic interactions on a two-dimensional triangular lattice, we construct the corresponding low-temperature phase diagram. Our results reveal that a positive bicubic interaction stabilizes a skyrmion crystal with a skyrmion number of two, whereas a negative bicubic interaction favors a single-Q spiral state. Moreover, we demonstrate that the stability region of the field-induced skyrmion crystal with the skyrmion number of one is largely enlarged in the presence of a positive bicubic interaction. Full article
Show Figures

Figure 1

15 pages, 3151 KiB  
Article
Solid-State Thermal Decomposition in a Cu-Rich Cu-Ti-Zr Alloy
by Chenying Shi, Biaobiao Yang, Yuling Liu, Wei Shao, Yidi Li, Yunping Li, Dewen Zeng and Yong Du
Materials 2025, 18(13), 3042; https://doi.org/10.3390/ma18133042 - 26 Jun 2025
Viewed by 310
Abstract
Solid-state thermal decomposition in the Cu-13.3Ti-3.8Zr (at.%) alloy was studied using a synthesized method, including the temperature–concentration gradient and differential scanning calorimetry experiments within a single experimental cycle, as well as first principle calculations. Experimentally, the decomposition pathway and the solid solubility of [...] Read more.
Solid-state thermal decomposition in the Cu-13.3Ti-3.8Zr (at.%) alloy was studied using a synthesized method, including the temperature–concentration gradient and differential scanning calorimetry experiments within a single experimental cycle, as well as first principle calculations. Experimentally, the decomposition pathway and the solid solubility of Ti/Zr in the Cu matrix in the temperature range of 820 °C to 801.5 °C were observed in the Cu-13.3Ti-3.8Zr (at.%) alloy. The primary solid phase is (Cu) phase and subsequently precipitated Cu51Zr14 and Cu4Ti phases. These features are valuable for understanding the thermal stability and solid-state phase equilibria of the alloy. First principle calculations, including formation enthalpy, charge density, and electron localization function analyses, were conducted to evaluate the thermal, structural, and electrical stability of Cu51Zr14 with and without Ti doping, as well as Cu4Ti. The present work introduces an effective strategy for determining both the solid-state thermal decomposition pathway and the phase diagram within the solid-state region within a single experimental cycle. Full article
Show Figures

Graphical abstract

22 pages, 3666 KiB  
Article
Green Solid-State Synthesis of Antibacterial Binary Organic Material: Crystal Growth, Physicochemical Properties, Thermal Study, Antibacterial Activity, and Hirshfeld Surface Analysis
by Adarsh Rai, Sumit Chaudhary, Surya Prakash Dube, Szymon Bajda, Richa Raghuwanshi, Shiva Kant Mishra, Gaetano Palumbo and Rama Nand Rai
Int. J. Mol. Sci. 2025, 26(12), 5509; https://doi.org/10.3390/ijms26125509 - 9 Jun 2025
Viewed by 530
Abstract
The organic compounds 2-aminopyrimidine (AP) and 4-aminobenzoic acid (PABA) were selected for the synthesis of a compound by establishing the phase diagram and adopting the solid-state synthesis method. The phase diagram analysis suggested the formation of a novel intermolecular compound (IMC) at a [...] Read more.
The organic compounds 2-aminopyrimidine (AP) and 4-aminobenzoic acid (PABA) were selected for the synthesis of a compound by establishing the phase diagram and adopting the solid-state synthesis method. The phase diagram analysis suggested the formation of a novel intermolecular compound (IMC) at a 1:1 stoichiometric ratio of AP and PABA, along with two eutectics at 0.25 and 0.90 mole fractions of AP. FTIR and NMR spectroscopy were used for the structure elucidation of the intermolecular compound. The powder X-ray diffraction analysis revealed the novel nature of IMC (APPABA) and the mechanical mixture nature of eutectics. The sharp and single peak of the DSC curve suggested the melting and pure nature of the synthesized IMC. Various thermodynamic parameters of IMC and eutectics were studied. A single crystal of the IMC was grown from solution and its single-crystal X-ray diffraction analysis revealed that it crystallized in a monoclinic system with the P21/n space group. Hirshfeld surface analysis further validated the weak non-covalent interactions summarized through the single-crystal X-ray analysis. Studies on the IMC were thoroughly conducted to evaluate its antibacterial activity with reference to antibiotics, and it showed significant positive responses against various pathogenic microbial isolates (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella aerogenes, and Shigella boydii) and non-pathogenic microbial isolates (Enterobacter cloacae, Pseudomonas azotoformans, and Burkholderia paludis). It was also found effective against methicillin-resistant bacterial strains viz. Staphylococcus aureus MRSA. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

29 pages, 13848 KiB  
Article
A Study on the Influence of Disturbance Factors’ Coupling Effects on the Dynamic Response of the Symmetrical Structure Press Mechanism
by Jun Niu, Hao Zhang and Shuai Jiang
Symmetry 2025, 17(5), 730; https://doi.org/10.3390/sym17050730 - 9 May 2025
Viewed by 360
Abstract
The dynamic response of symmetrical press mechanisms is severely affected by revolute clearance, translational clearance, and the elasticity of the components. Therefore, the coupling effects of disturbance factors were studied in this paper, including revolute clearance, translational clearance, and component elastic deformation; the [...] Read more.
The dynamic response of symmetrical press mechanisms is severely affected by revolute clearance, translational clearance, and the elasticity of the components. Therefore, the coupling effects of disturbance factors were studied in this paper, including revolute clearance, translational clearance, and component elastic deformation; the influence of their coupling effects on the dynamic chaos characteristic are also discussed. A dynamic model of a rigid–flexible coupling mechanism with revolute clearance and translational clearance was established. Using MATLAB R2024a to solve the model, chaos identification was researched through phase diagrams, Poincaré maps, and maximum Lyapunov exponents. Under the parameters studied in this paper, the maximum Lyapunov exponents at revolute clearance A (X direction and Y direction) and translational clearance B (X direction and Y direction) were 0.0521, 0.0573, 0.3915, and −0.0287, respectively. The motion state of revolute pair A (X direction and Y direction) and translational pair B (X direction) were more prone to chaotic states; translational pair B (Y direction) was more prone to periodic motion. The influence of various factors on the dynamic response were analyzed. With the increase in driving speed and clearance value, as well as the decrease in friction coefficient, the stability of the mechanism weakened, and the vibration of the mechanism’s dynamic response intensified. This paper provides theoretical support for the establishment of precise dynamic models for multi-link symmetrical structure press mechanisms. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

13 pages, 4450 KiB  
Article
Emergent Magnetic Order in Superconducting FeS Induced by Trace Cr Doping
by Yangzhou Wang, Qianshuo Wang, Yanhao Dong, Jin Wang, Shu Chen, Zihan Wang, Fei Chen, Guixin Cao, Wei Ren, Jie Li and Wen Wan
Materials 2025, 18(9), 2108; https://doi.org/10.3390/ma18092108 - 4 May 2025
Viewed by 477
Abstract
Multiband and nodal-like superconductivity (SC) with s- + d-wave pairing symmetry have implied that tetragonal iron sulphide (FeS) is a distinctive testbed for exploring unexpected electronic correlations. In particular, the low-moment disordered static magnetism originating from the Fe moment leads to the possibility [...] Read more.
Multiband and nodal-like superconductivity (SC) with s- + d-wave pairing symmetry have implied that tetragonal iron sulphide (FeS) is a distinctive testbed for exploring unexpected electronic correlations. In particular, the low-moment disordered static magnetism originating from the Fe moment leads to the possibility of the coexistence of magnetic orders (MOs) in the superconducting ground state via the tuning of electronic configurations. Here, guided by density functional theory (DFT) calculations, we found that slightly substitutionally doped chromium (Cr) atoms in tetragonal FeS single crystals can induce both considerable d-orbital reconstruction around the Fermi surface and a local magnetic moment of 2.4 µB at each doping site, which could highly modulate the SC ground states of the host. On this basis, a clear magnetic transition and reduced anisotropy of SC were experimentally observed. In particular, SC can survive with a doping content below 0.05. This coexistence of SC and MOs suggests strong spin correlations between Cr dopants and the host through exchange coupling. Further, an electronic temperature-related phase diagram of FeS with Cr doping contents from 0 to 0.07 is also provided. These results demonstrate that the continuous injection of local moments can be a controllable method to use to tune collective orders in unconventional iron-based superconductors. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

14 pages, 933 KiB  
Article
Evolution of the Early Universe in Einstein–Cartan Theory
by Qihong Huang, He Huang, Bing Xu and Kaituo Zhang
Universe 2025, 11(5), 147; https://doi.org/10.3390/universe11050147 - 2 May 2025
Viewed by 725
Abstract
Einstein–Cartan theory is a generalization of general relativity that introduces spacetime torsion. In this paper, we perform phase space analysis to investigate the evolution of the early universe in Einstein–Cartan theory. By studying the stability of critical points in the dynamical system, we [...] Read more.
Einstein–Cartan theory is a generalization of general relativity that introduces spacetime torsion. In this paper, we perform phase space analysis to investigate the evolution of the early universe in Einstein–Cartan theory. By studying the stability of critical points in the dynamical system, we find that there exist two stable critical points which represent an Einstein static solution and an expanding solution, respectively. After analyzing the phase diagram of the dynamical system, we find that the early universe may exhibit an Einstein static state, an oscillating state, or a bouncing state. By assuming the equation of state ω can decrease over time t, the universe can depart from the initial Einstein static state, oscillating state, or bouncing state and then evolve into an inflationary phase. Then, we analyze four different inflationary evolution cases in Einstein–Cartan theory and find that a time-variable equation of state ω cannot yield values of ns and r consistent with observations, while a time-invariant equation of state ω is supported by the Planck 2018 results. Thus, in Einstein–Cartan theory, the universe likely originates from a bouncing state rather than an Einstein static state or an oscillating state. Full article
Show Figures

Figure 1

28 pages, 15480 KiB  
Article
Analysis and Synchronous Study of a Five-Dimensional Multistable Memristive Chaotic System with Bidirectional Offset Increments
by Lina Ding and Mengtian Xuan
Entropy 2025, 27(5), 481; https://doi.org/10.3390/e27050481 - 29 Apr 2025
Cited by 1 | Viewed by 451
Abstract
In order to further explore the complex dynamical behavior involved in super-multistability, a new five-dimensional memristive chaotic system was obtained by using a magnetically controlled memristor to construct a four-dimensional equation on the basis of a three-dimensional chaotic system, adding a five-dimensional equation [...] Read more.
In order to further explore the complex dynamical behavior involved in super-multistability, a new five-dimensional memristive chaotic system was obtained by using a magnetically controlled memristor to construct a four-dimensional equation on the basis of a three-dimensional chaotic system, adding a five-dimensional equation and selecting parameter y as the control term. Firstly, the multistability of the system was analyzed by using a Lyapunov exponential diagram, a bifurcation diagram and a phase portrait; the experimental results show that the system has parameter-related periodic chaotic alternating characteristics, symmetric attractors and transient chaotic characteristics, and it also has the characteristics of homogeneous multistability, heterogeneous multistability and super-multistability, which depend on the initial memristive values. Secondly, two offset constants g and h were added to the linear state variables, which were used as controllers of the attractors in the z and w directions, respectively, and the influences of the bidirectional offset increments on the system were analyzed. The complexity of the system was analyzed; the higher the complexity of the system, the larger the values of the complexity, and the darker the colors of the spectrogram. The five-dimensional memristive chaotic system was simulated using Multisim to verify the feasibility of the new system. Finally, an adaptive synchronization controller was designed using the method of adaptive synchronization; then, synchronization of the drive system and the response system was realized by changing the positive gain constant k, which achieved encryption and decryption of sinusoidal signals based on chaotic synchronization. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

25 pages, 36928 KiB  
Article
Exploring Entanglement Spectra and Phase Diagrams in Multi-Electron Quantum Dot Chains
by Guanjie He and Xin Wang
Entropy 2025, 27(5), 479; https://doi.org/10.3390/e27050479 - 29 Apr 2025
Viewed by 456
Abstract
We investigate the entanglement properties in semiconductor quantum dot systems modeled by the extended Hubbard model, focusing on the impacts of potential energy variations and electron interactions within a four-site quantum dot spin chain. Our study explores local and pairwise entanglement across configurations [...] Read more.
We investigate the entanglement properties in semiconductor quantum dot systems modeled by the extended Hubbard model, focusing on the impacts of potential energy variations and electron interactions within a four-site quantum dot spin chain. Our study explores local and pairwise entanglement across configurations with electron counts N=4 and N=6, under different potential energy settings. By adjusting the potential energy in specific dots and examining the entanglement across various interaction regimes, we identify significant variations in the ground states of quantum dots. We extend this analysis to larger systems with L=6 and L=8, comparing electron counts N=L and N=L+2, revealing sharper entanglement transitions and reduced finite-size effects as the system size increases. Our results show that local potential shifts and the Coulomb interaction strength lead to notable redistributions of the electron configurations in the quantum dot spin chain, significantly affecting the entanglement properties. These changes are depicted in phase diagrams that highlight entanglements’ dependencies on the interaction strengths and potential energy adjustments, illustrating complex entanglement dynamics shifts triggered by interdot interactions. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

19 pages, 2384 KiB  
Article
Exploring the Relationship Between Stability and Dynamics in Polymer-Based Amorphous Solid Dispersions for Pharmaceutical Applications
by Emeline Dudognon, Jeanne-Annick Bama and Frédéric Affouard
Polymers 2025, 17(9), 1210; https://doi.org/10.3390/polym17091210 - 28 Apr 2025
Viewed by 564
Abstract
Mixing polymeric excipients with drugs in amorphous solid dispersions (ASD) is known to enhance the bioavailability of drugs by inhibiting their recrystallisation. However, the mechanisms underlying stabilisation remain not fully understood. This study aims to improve our understanding of the role of dynamics, [...] Read more.
Mixing polymeric excipients with drugs in amorphous solid dispersions (ASD) is known to enhance the bioavailability of drugs by inhibiting their recrystallisation. However, the mechanisms underlying stabilisation remain not fully understood. This study aims to improve our understanding of the role of dynamics, particularly the molecular movements that drive instabilities, through investigations of ASD made of Polyvinylpyrrolidone (PVP K12) and a model drug, Terfenadine. The analyses combine temperature modulated differential scanning calorimetry (MDSC) and dielectric relaxation spectroscopy. The results reveal that the produced ASDs are supersaturated with Terfenadine, regardless of the content, and that PVP slows down the dynamics of the blends, limiting the recrystallisation of the drug during heating. Although the ASDs appear homogeneous based on thermal analysis with a single glass transition consistently detected by MDSC, the investigation of the dynamics reveals a dissociation of the main relaxation into two components for PVP contents below 30 wt.%. This dynamic heterogeneity suggests a structural heterogeneity with the coexistence of two amorphous phases of different compositions, each characterised by its own dynamics. The complex evolution of these dynamics under recrystallisation is rationalised by the confrontation with the phase and state diagram of Terfenadine/PVP blends established by MDSC. Full article
Show Figures

Graphical abstract

18 pages, 5181 KiB  
Article
Analytic Model for U-Nb Liquidus and U-6Nb Melting Curve
by Leonid Burakovsky, Dean L. Preston and Andrew A. Green
Appl. Sci. 2025, 15(7), 3763; https://doi.org/10.3390/app15073763 - 29 Mar 2025
Viewed by 348
Abstract
Uranium–niobium (U-Nb) alloys, used in a variety of industrial and energy applications that require high density, ductility, and good corrosion resistance, comprise a highly complex, multiphasic system with a phase diagram well established through decades of extensive experimental and theoretical research. They are [...] Read more.
Uranium–niobium (U-Nb) alloys, used in a variety of industrial and energy applications that require high density, ductility, and good corrosion resistance, comprise a highly complex, multiphasic system with a phase diagram well established through decades of extensive experimental and theoretical research. They are also one of the best candidates for a metallic fuel alloy with high-temperature strength sufficient to support the core, acceptable nuclear properties, good fabricability, and compatibility with usable coolant media. The key factor determining the performance and safety of a metallic fuel such as U-Nb is its operational limits in the application environment, which are closely related to material’s structure and thermodynamic stability. They are in turn closely related to the ambient (zero-pressure) melting point (Tm); thus, Tm is an important engineering parameter. However, the current knowledge of Tm of the U-Nb system is limited, as the only experimental study of its Nb-rich portion dates back to 1958. In addition, it has not yet been adequately modeled based on general thermodynamics principles or using an equation-of-state approach. In this study, we present a theoretical model for the melting curve (liquidus) of a mixture, and apply it to U-Nb, which is considered as a mixture of pure U and pure Nb. The model uses the known melting curves of pure constituents as an input and predicts the melting curve of their mixture. It has only one free parameter, which must be determined independently. The ambient liquidus of U-Nb predicted by the model appears to be in good agreement with the available experimental data. We calculate the melting curve (the pressure dependence of Tm) of pure U using ab initio quantum molecular dynamics (QMD), the knowledge of which is required for obtaining the model parameters for U. We also generalize the new model to nonzero pressure and consider the melting curve of U-6 wt.% Nb (U-6Nb) alloy as an example. The melting curve of U-6Nb alloy predicted by the model appears to be in good agreement with the ab initio melting curve obtained from our QMD simulations. We suggest that the U-18Nb alloy can be considered as a proxy for protactinium (Pa) and demonstrate that the melting curves of U-18Nb and Pa are in good agreement with each other. Full article
Show Figures

Figure 1

33 pages, 15014 KiB  
Article
Dynamic Response and Nonlinear Characteristic Analysis of Rigid–Flexible Coupling Mechanism with Lubricated Revolute Clearance and Prismatic Clearance
by Jun Niu, Kai Meng, Mingxuan An and Shuai Jiang
Lubricants 2025, 13(4), 142; https://doi.org/10.3390/lubricants13040142 - 25 Mar 2025
Viewed by 500
Abstract
Revolute and prismatic pair clearances are common in various mechanisms, and their motion state seriously affects the accuracy of the mechanism. Adding lubricant to a kinematic pair can effectively counteract the adverse influence of a collision force. Thus, this work introduces an advanced [...] Read more.
Revolute and prismatic pair clearances are common in various mechanisms, and their motion state seriously affects the accuracy of the mechanism. Adding lubricant to a kinematic pair can effectively counteract the adverse influence of a collision force. Thus, this work introduces an advanced modeling method that considers the combined effects of a lubricated revolute and prismatic clearance, as well as component flexibility, and studies the influence of their coupling effect on the dynamic response and nonlinear characteristic of mechanisms. The specific content of this paper is as follows: Firstly, revolute lubrication clearance and prismatic pair clearance models are established. Secondly, rigid components and flexible components are described based on the reference point coordinate method and absolute nodal coordinate formulation. Then, based on the Lagrange multiplier method, a rigid–flexible coupling dynamics model with revolute lubrication clearance and prismatic clearance is established. Finally, the dynamic responses of the mechanism are analyzed, including the displacement, velocity, and acceleration of the slider, the driving torque of the crank, and the center trajectories of the revolute clearance and prismatic clearance. Qualitative research is conducted on the nonlinear characteristics of the system through a phase diagram and Poincaré map. This quantitative study is conducted on the nonlinear characteristics of a system using the maximum Lyapunov exponent. The influences of different parameters on the dynamic response and nonlinear characteristic of the mechanism are analyzed. The results indicate that lubrication effectively reduces the influence of the clearance on the dynamic response and nonlinear characteristic of the mechanism, resulting in a decrease in the peak dynamic response and a weakening of the chaotic phenomenon. Further, as the driving speed increases, the dynamic viscosity decreases the clearance value increases, and the stability of the mechanism decreases. Full article
Show Figures

Figure 1

22 pages, 14916 KiB  
Article
An Adaptive Compound Control Strategy of Electric Vehicles for Coordinating Lateral Stability and Energy Efficiency
by Xia Hua, Kai Xiang, Xiangle Cheng and Xiaobin Ning
Appl. Sci. 2025, 15(6), 3347; https://doi.org/10.3390/app15063347 - 19 Mar 2025
Viewed by 414
Abstract
To enhance the balance between lateral stability and energy efficiency, we propose an adaptive compound controller based on phase plane analysis for four-wheel independent drive electric vehicles (4WID-EVs). The adaptive stability and energy-saving controller (SEC) is designed with a three-layer structure. The upper-layer [...] Read more.
To enhance the balance between lateral stability and energy efficiency, we propose an adaptive compound controller based on phase plane analysis for four-wheel independent drive electric vehicles (4WID-EVs). The adaptive stability and energy-saving controller (SEC) is designed with a three-layer structure. The upper-layer controller employs model predictive control (MPC) to compute the external yaw moment based on the desired yaw rate and side slip angle derived from a reference model. The adaptive-layer controller utilizes a phase plane diagram to evaluate vehicle stability and reduces unnecessary external yaw moment consumption by accounting for the vehicle’s steering state and battery’s state-of-charge (SOC) level. The lower-layer controller implements an optimal torque distribution algorithm to minimize an objective function that considers tire workload, energy consumption, and smooth motor control. Numerical simulations are performed in MATLAB/Simulink using three distinct steering angles to evaluate the performance of the proposed control strategy. At each steering angle, the SEC’s stability and energy efficiency are compared to those of the energy-saving controller (EC) and stability controller (SC) under varying battery charge levels. The results indicate that, at small steering angles, the vehicle operates in a highly stable state, enabling a reduction in the external yaw moment to achieve substantial energy savings. As the steering angle increases, the vehicle approaches a critical stability state, where the external yaw moment is applied to maintain lateral stability. Furthermore, as the SOC decreases, the SEC strategy will increasingly prioritize energy savings. Simulation results verify that the SEC strategy effectively balances lateral stability and energy savings while maintaining consistent performance across a range of operating conditions. Full article
Show Figures

Figure 1

13 pages, 2649 KiB  
Article
First-Principles and PSO-Driven Exploration of Ca-Pt Intermetallics: Stable Phases and Pressure-Driven Transitions
by Yifei Wang and Dengjie Yan
Crystals 2025, 15(3), 263; https://doi.org/10.3390/cryst15030263 - 12 Mar 2025
Viewed by 525
Abstract
In this study, first-principles calculations in conjunction with the particle swarm optimization (PSO) algorithm structure search method were employed to investigate the stable phases of Ca-Pt intermetallic compounds under various pressure conditions. The previously reported CaPt5 phase and the hitherto unreported phases [...] Read more.
In this study, first-principles calculations in conjunction with the particle swarm optimization (PSO) algorithm structure search method were employed to investigate the stable phases of Ca-Pt intermetallic compounds under various pressure conditions. The previously reported CaPt5 phase and the hitherto unreported phases Ca3Pt and Ca2Pt were successfully predicted, perfecting the known phase diagram for Ca-Pt intermetallic compounds. Furthermore, the pressure-induced phase transition in Ca2Pt has been identified. The structure of Ca2Pt undergoes a phase transition from Cmmm to C2/m and then to Cm at pressures ranging from 25 to 75 GPa. Electronic properties analyses revealed stable metallic bonds between the Ca and Pt atoms in the Ca-Pt intermetallic compounds. Simultaneously, the anionic character of the Pt atoms and the localization of electrons within the intermetallic compounds were observed. Analysis of the mechanical properties showed that Ca3Pt and CaPt5 exhibited different degrees of anisotropy. The CaPt5 structure exhibits significant transverse isotropy, whereas the Ca3Pt structure exhibits pronounced anisotropic behavior. The results of this study provide theoretical support for further research on Ca-Pt intermetallic compounds and the expansion of Pt oxidation states. Full article
Show Figures

Figure 1

Back to TopTop