Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = phase noise meter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5033 KB  
Article
Development and Verification of Sampling Timing Jitter Noise Suppression System for Phasemeter
by Tao Yu, Ke Xue, Hongyu Long, Mingzhong Pan, Zhi Wang and Yunqing Liu
Photonics 2025, 12(6), 623; https://doi.org/10.3390/photonics12060623 - 19 Jun 2025
Cited by 1 | Viewed by 528
Abstract
As the primary electronic payload of laser interferometry system for space gravitational wave detection, the core function of the phasemeter is ultra-high precision phase measurement. According to the principle of laser heterodyne interferometry and the requirement of 1 pm ranging accuracy of the [...] Read more.
As the primary electronic payload of laser interferometry system for space gravitational wave detection, the core function of the phasemeter is ultra-high precision phase measurement. According to the principle of laser heterodyne interferometry and the requirement of 1 pm ranging accuracy of the phasemeter, the phase measurement noise should reach 2π μrad/Hz1/2@(0.1 mHz–1 Hz). The heterodyne interference signal first passes through the quadrant photoelectric detector (QPD) to achieve photoelectric conversion, then passes through the analog-to-digital converter (ADC) to achieve analog and digital conversion, and finally passes through the digital phase-locked loop (DPLL) for phase locking. The sampling timing jitter of the heterodyne interference signal caused by the ADC is the main noise affecting the phase measurement performance and must be suppressed. This paper proposes a sampling timing jitter noise suppression system (STJNSS), which can set system parameters for high-frequency signals used for inter-satellite clock noise transmission, the system clock of the phasemeter, and the pilot frequency for suppressing ADC sampling timing jitter noise, meeting the needs of the current major space gravitational wave detection plans. The experimental results after the integration of SJNSS and the phase meter show that the phase measurement noise of the heterodyne interferometer signal reaches 2π μrad/Hz1/2@(0.1 mHz–1 Hz), which meets the requirements of space gravitational wave missions. Full article
(This article belongs to the Special Issue Deep Ultraviolet Detection Materials and Devices)
Show Figures

Figure 1

19 pages, 7126 KB  
Article
Decoding Fluid Flow Characteristics Through Distributed Acoustic Sensing: A Novel Approach
by Haochu Ku, Kunpeng Zhang, Xiangge He, Min Zhang and Hailong Lu
Sensors 2025, 25(7), 2011; https://doi.org/10.3390/s25072011 - 23 Mar 2025
Viewed by 1005
Abstract
Flow characteristic monitoring includes parameters such as flow regime, fluid characteristic frequency, and flow rate, which are crucial for optimizing production and ensuring the safety of oil and gas transportation systems. Existing fluid monitoring technologies, such as various flow meters, often face limitations [...] Read more.
Flow characteristic monitoring includes parameters such as flow regime, fluid characteristic frequency, and flow rate, which are crucial for optimizing production and ensuring the safety of oil and gas transportation systems. Existing fluid monitoring technologies, such as various flow meters, often face limitations in providing distributed and real-time monitoring data. In contrast, distributed acoustic sensing offers a spatial resolution of 1 m with high frequency sampling capability, allowing for long-term, multi-point dynamic monitoring of fluid migration characteristics. We developed an indoor physical simulation pipeline loop to assess the feasibility of using distributed acoustic sensing for monitoring flow migration characteristics. The experiment collected signal characteristics under different conditions, including background noise, single gas-phase flow, single liquid-phase flow, and gas–liquid two-phase flow. In the frequency–power spectral density analysis, single gas-phase flow signals are concentrated at lower frequencies, single liquid-phase flow displays noticeable spikes over a broader frequency range, and gas–liquid two-phase flow covers the widest frequency range with stronger amplitude signals. Autocorrelation analysis shows larger oscillations for gas–liquid two-phase flow, smoother signals for gas-phase flow, and more turbulent signals for liquid-phase flow. By examining root mean square energy changes, flow rates can be qualitatively estimated, revealing a positive correlation between energy and flow velocity. Finally, the study discussed the limitations of the experimental setup and proposed improvements and advanced research directions of distributed acoustic sensing in fluid monitoring. Full article
(This article belongs to the Special Issue Fiber Optic Sensing and Applications)
Show Figures

Figure 1

16 pages, 677 KB  
Article
Localization Optimization Algorithm Based on Phase Noise Compensation
by Yanming Liu, Yingkai Cao, Charilaos C. Zarakovitis, Disheng Xiao, Kai Ying and Xianfu Chen
Electronics 2024, 13(24), 4947; https://doi.org/10.3390/electronics13244947 - 16 Dec 2024
Viewed by 1109
Abstract
Phase noise is a consequence of the instability inherent in the operation of oscillators, making it impossible to entirely eliminate. For low-cost internet of things (IoT) devices, this type of noise can be particularly pronounced, posing a challenge in providing high-quality localization services. [...] Read more.
Phase noise is a consequence of the instability inherent in the operation of oscillators, making it impossible to entirely eliminate. For low-cost internet of things (IoT) devices, this type of noise can be particularly pronounced, posing a challenge in providing high-quality localization services. To tackle this issue, this paper introduces an improved localization algorithm that includes phase noise compensation. The proposed algorithm enhances the direction of arrival (DoA) estimation for each base station by employing the EM–MUSIC method, subsequently forming a non-convex optimization problem based on the mean square error (MSE) of the estimated DoA results. Finally, a closed-form solution is derived through rational assumptions and approximations. Results show that this algorithm effectively minimizes localization errors and achieves accuracy levels within the sub-meter range. Full article
(This article belongs to the Special Issue Energy-Efficient Wireless Solutions for 6G/B6G)
Show Figures

Figure 1

21 pages, 11486 KB  
Article
Performance of Smartphone BDS-3/GPS/Galileo Multi-Frequency Ionosphere-Free Precise Code Positioning
by Ruiguang Wang, Chao Hu, Zhongyuan Wang, Fang Yuan and Yangyang Wang
Remote Sens. 2023, 15(22), 5371; https://doi.org/10.3390/rs15225371 - 15 Nov 2023
Cited by 1 | Viewed by 2312
Abstract
The continuously improving performance of mass-market global navigation satellite system (GNSS) chipsets is enabling the prospect of high-precision GNSS positioning for smartphones. Nevertheless, a substantial portion of Android smartphones lack the capability to access raw carrier phase observations. Therefore, this paper introduces a [...] Read more.
The continuously improving performance of mass-market global navigation satellite system (GNSS) chipsets is enabling the prospect of high-precision GNSS positioning for smartphones. Nevertheless, a substantial portion of Android smartphones lack the capability to access raw carrier phase observations. Therefore, this paper introduces a precise code positioning (PCP) method, which utilizes Doppler-smoothed pseudo-range and inter-satellite single-difference methods. For the first time, the results of a quality investigation involving BDS-3 B1C/B2a/B1I, GPS L1/L5, and Galileo E1/E5a observed using smartphones are presented. The results indicated that Xiaomi 11 Lite (Mi11) exhibited a superior satellite data decoding performance compared to Huawei P40 (HP40), but it lagged behind HP40 in terms of satellite tracking. In the static open-sky scenario, the carrier-to-noise ratio (CNR) values were mostly above 25 dB-Hz. Additionally, for B1C/B1I/L1/E1, they were approximately 8 dB-Hz higher than those for B2a/L5/E5a. Second, various PCP models were developed to address ionospheric delay. These models include the IF-P models, which combine traditional dual-frequency IF pseudo-ranges with single-frequency ionosphere-corrected pseudo-ranges using precise ionospheric products, and IFUC models, which rely solely on single-frequency ionosphere-corrected pseudo-ranges. Finally, static and dynamic tests were conducted using datasets collected from various real-world scenarios. The static tests demonstrated that the PCP models could achieve sub-meter-level accuracy in the east (E) and north (N) directions, while achieving meter-level accuracy in the upward (U) direction. Numerically, the root mean square error (RMSE) improvement percentages were approximately 93.8%, 75%, and 82.8% for HP40 in the E, N, and U directions, respectively, in both open-sky and complex scenarios compared to single-point positioning (SPP). In the open-sky scenario, Mi11 showed an average increase of about 85.6%, 87%, and 16% in the E, N, and U directions, respectively, compared to SPP. In complex scenarios, Mi11 exhibited an average increase of roughly 68%, 75.9%, and 90% in the E, N, and U directions, respectively, compared to SPP. Dynamic tests showed that the PCP models only provided an improvement of approximately 10% in the horizontal plane or U direction compared to SPP. The triple-frequency IFUC (IFUC123) model outperforms others due to its lower noise and utilization of multi-frequency pseudo-ranges. The PCP models can enhance smartphone positioning accuracy. Full article
(This article belongs to the Special Issue GNSS Advanced Positioning Algorithms and Innovative Applications)
Show Figures

Figure 1

13 pages, 7271 KB  
Article
Microwave Absolute Distance Measurement Method with Ten-Micron-Level Accuracy and Meter-Level Range Based on Frequency Domain Interferometry
by Longhuang Tang, Xing Jia, Heli Ma, Shenggang Liu, Yongchao Chen, Tianjiong Tao, Long Chen, Jian Wu, Chengjun Li, Xiang Wang and Jidong Weng
Sensors 2023, 23(18), 7898; https://doi.org/10.3390/s23187898 - 15 Sep 2023
Cited by 2 | Viewed by 2556
Abstract
A microwave absolute distance measurement method with ten-micron-level accuracy and meter-level range based on frequency domain interferometry is proposed and experimentally demonstrated for the first time. Theoretical analysis indicates that an interference phenomenon occurs instantaneously in the frequency domain when combining two homologous [...] Read more.
A microwave absolute distance measurement method with ten-micron-level accuracy and meter-level range based on frequency domain interferometry is proposed and experimentally demonstrated for the first time. Theoretical analysis indicates that an interference phenomenon occurs instantaneously in the frequency domain when combining two homologous broad-spectrum microwave beams with different paths, and the absolute value of the distance difference between the two paths is only inversely proportional to the period of frequency domain interference fringes. The proof-of-principle experiments were performed to prove that the proposed method can achieve absolute distance measurement in the X-band with standard deviations of 15 μm, 17 μm, and 26 μm and within ranges of 1.69 m, 2.69 m, and 3.75 m. Additionally, a displacement resolution of 100 microns was realized. The multi-target recognition performance was also verified in principle. Furthermore, at the expense of a slight decrease in ranging accuracy, a fast distance measurement with the single measurement time of 20 μs was achieved by using a digitizer combined with a Fourier transform analyzer. Compared with the current microwave precision ranging technologies, the proposed method not only has the advantages of high precision, large range, and rapid measurement capability, but the required components are also easily obtainable commercial devices. The proposed method also has better complex engineering applicability, because the ten-micron-level ranging accuracy is achievable only by using a simple Fourier transform without any phase estimation algorithm, which greatly reduces the requirement for signal-to-noise ratio. Full article
(This article belongs to the Special Issue Radar Technology and Data Processing)
Show Figures

Figure 1

30 pages, 11526 KB  
Article
A Multi-Correlation Peak Phase Deblurring Algorithm for BeiDou B1C Signals in Urban Environments
by Xu Yang, Wenquan Feng, Chen Zhuang, Qiang Wang, Xu Yang and Zhe Yang
Remote Sens. 2023, 15(17), 4300; https://doi.org/10.3390/rs15174300 - 31 Aug 2023
Cited by 3 | Viewed by 2107
Abstract
With the widespread global application of BeiDou navigation, BeiDou B1C signaling based on Quadrature Multiplexed Binary Offset Carrier (QMBOC) modulation is expected to be extensively used in urban environments due to its wider signal bandwidth, smaller code pseudorange measurement errors, and stronger multipath [...] Read more.
With the widespread global application of BeiDou navigation, BeiDou B1C signaling based on Quadrature Multiplexed Binary Offset Carrier (QMBOC) modulation is expected to be extensively used in urban environments due to its wider signal bandwidth, smaller code pseudorange measurement errors, and stronger multipath capabilities. Despite offering higher positioning accuracy and secondary modulation characteristics of the BeiDou, B1C signals introduce the challenge of multiple peaks in the autocorrelation function. This leads to phase ambiguity during signal acquisition and tracking, resulting in positioning deviations of tens or even hundreds of meters. In urban environments, such deviations give rise to significant practical application issues. To address this problem, we have designed a multi-loop structure for the synchronous tracking of B1C signals and proposed a multi-peak phase-deblurring algorithm specifically tailored for the BeiDou B1C signal in urban environments. This algorithm considers the coupling relationship between the code and the carrier loops, and by matching the structural design of multiple loops, it achieves a precise and unambiguous phase estimation of the pseudocode, enabling the stable tracking of the entire loop for the BeiDou B1C signal. Simulation and actual testing demonstrate that the algorithm exhibits an error less than 0.03 for chip intervals when the signal-to-noise ratio is greater than −20 dB. Additionally, the accuracy can be improved by adjusting the set conditions, making it suitable for urban environments. Full article
(This article belongs to the Special Issue GNSS for Urban Transport Applications II)
Show Figures

Graphical abstract

18 pages, 15145 KB  
Article
BDS/GPS/Galileo Precise Point Positioning Performance Analysis of Android Smartphones Based on Real-Time Stream Data
by Mengyuan Li, Guanwen Huang, Le Wang and Wei Xie
Remote Sens. 2023, 15(12), 2983; https://doi.org/10.3390/rs15122983 - 8 Jun 2023
Cited by 7 | Viewed by 3144
Abstract
Smartphones with the Android operating system can acquire Global Navigation Satellite System (GNSS) raw pseudorange and carrier phase observations, which can provide a new way for the general public to obtain precise position information. However, only postprocessing precise orbit and clock offset products [...] Read more.
Smartphones with the Android operating system can acquire Global Navigation Satellite System (GNSS) raw pseudorange and carrier phase observations, which can provide a new way for the general public to obtain precise position information. However, only postprocessing precise orbit and clock offset products in some older smart devices are applied in current studies. The performances of precise point positioning (PPP) with the smartphone using real-time products and newly smartphones are still unrevealed, which is more valuable for real-time applications. This study investigates the observation data quality and multi-GNSS real-time PPP performance using recent smartphones. Firstly, the observed carrier-to-noise density ratio (C/N0), number of satellites and position dilution of precision (PDOP) of GNSS observations are evaluated. The results demonstrate that the C/N0 received by Huawei Mate40 is better than that of the Huawei P40 for GPS, BDS, QZSS and Galileo systems, while the GLONASS is poorer, and the PDOP of the Huawei P40 is slightly better than that of Mate40. Additionally, a comprehensive analysis of real-time precise orbit and clock offset products performance is conducted. The experiment result expresses that the orbit and clock offset performance of GPS and Galileo is better than that of BDS-3 and GLONASS, and BDS-2 is the worst. Finally, single- and dual-frequency multi-GNSS combined PPP experiments using observations received from smartphones and real-time products are conducted; the results indicate that the real-time static PPP using a smartphone can achieve decimeter-level positioning accuracy, and kinematic PPP can achieve meter-level positioning accuracy after convergence. Full article
Show Figures

Figure 1

24 pages, 10388 KB  
Article
Carrier Phase Ranging with DTMB Signals for Urban Pedestrian Localization and GNSS Aiding
by Zhenhang Jiao, Liang Chen, Xiangchen Lu, Zhaoliang Liu, Xin Zhou, Yuan Zhuang and Guangyi Guo
Remote Sens. 2023, 15(2), 423; https://doi.org/10.3390/rs15020423 - 10 Jan 2023
Cited by 22 | Viewed by 3348
Abstract
China developed its Digital Television (DTV) standard in 2006, known as Digital Television Terrestrial Multimedia Broadcasting (DTMB), which employs time-domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) as the modulation method. In contrast to Global Navigation Satellite Systems (GNSSs), DTV signals have higher transmitting [...] Read more.
China developed its Digital Television (DTV) standard in 2006, known as Digital Television Terrestrial Multimedia Broadcasting (DTMB), which employs time-domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) as the modulation method. In contrast to Global Navigation Satellite Systems (GNSSs), DTV signals have higher transmitting power, wider coverage, larger bandwidth, and fixed transmitter location. This paper explores the positioning performance of DTMB signals, and the potential to improve GNSS positioning accuracy in urban environments. Specifically, a solution is proposed, and a software-defined radio receiver is developed for wireless localization. Without changing the current signal structure, the pseudorandom noise (PN) sequences in the signal are used for signal acquisition and carrier phase ranging. The carrier phase of the first arrived path is extracted by the least squares matching pursuit method. Both static and dynamic field tests were conducted to verify the proposed ranging and positioning method. Centimeter-level ranging accuracy was achieved in the static scenario, while meter-level ranging accuracy was achieved in the dynamic scenario. As one possible application, the proposed ranging method was combined with GPS pseudorange measurements to achieve higher accuracy position results in an urban pedestrian scenario, especially when there is only a limited number of visible satellites. Full article
Show Figures

Figure 1

18 pages, 6798 KB  
Article
Surface Displacement Measurements of Artworks: New Data Processing for Speckle Pattern Interferometry
by Jessica Auber--Le Saux, Vincent Detalle, Xueshi Bai, Michalis Andrianakis, Nicolas Wilkie-Chancellier and Vivi Tornari
Appl. Sci. 2022, 12(23), 11969; https://doi.org/10.3390/app122311969 - 23 Nov 2022
Cited by 1 | Viewed by 1645
Abstract
Curators have developed preventive conservation strategies and usually try to control the temperature (T) and relative humidity (RH) variations in the museum rooms to stabilise the artworks. The control systems chosen by museums depend on the size and age of the building, the [...] Read more.
Curators have developed preventive conservation strategies and usually try to control the temperature (T) and relative humidity (RH) variations in the museum rooms to stabilise the artworks. The control systems chosen by museums depend on the size and age of the building, the financial means and the strategies that can be adapted. However, there is a lack of methods that can monitor mechanical changes or chemical reactions of objects in real-time or regularly. It would therefore ideally be preferable to monitor each of them to alert them to preserve them. For this purpose, a non-destructive, non-contact, full-field technique, Digital Holographic Speckle Pattern Interferometry (DHSPI), has already been developed and allows direct tracking of changes on the surface of artworks. This technique is based on phase-shifting speckle interferometry and gives the deformation of the surface below the level of the micro-meter of the analysed object. In order to monitor the deformation continuously, a large number of images are acquired by DHSPI and have to be processed. The existing process consists of removing noise from the interferogram, unwrapping this image, and deriving and displaying a 2D or 3D deformation map. In order to improve the time and accuracy of processing the imaging data, a simpler and faster processing method is developed. Using Matlab®, a denoising methodology for the interference pattern generated during data acquisition is created, based on a stationary wavelet transform. The unwrapped image is calculated using the CPULSI (Calibrated Phase Unwrapping based on Least-Squares and Iterations) algorithm as it gives the fastest results among the tested methods. The unwrapped phase is then transformed into surface displacement. This process performs these steps for each interferogram automatically. It allows access to 2D or 3D deformation maps. Full article
(This article belongs to the Special Issue Scientific Methods for Cultural Heritage)
Show Figures

Figure 1

13 pages, 1534 KB  
Article
Calibration of an RF/Microwave Phase Noise Meter with a Photonic Delay Line
by Andrej Lavrič, Boštjan Batagelj and Matjaž Vidmar
Photonics 2022, 9(8), 533; https://doi.org/10.3390/photonics9080533 - 29 Jul 2022
Cited by 13 | Viewed by 2945
Abstract
The main advantage of phase noise meters with photonic (fiber) delay lines is that they do not require high-performance, low-noise reference oscillators. On the other hand, some additional calibrations are required, which are the subject of this paper. First, the quadrature must be [...] Read more.
The main advantage of phase noise meters with photonic (fiber) delay lines is that they do not require high-performance, low-noise reference oscillators. On the other hand, some additional calibrations are required, which are the subject of this paper. First, the quadrature must be maintained on the mixer by precise adjustment of the phase and/or delay. Next, since the response of the mixer is proportional to the square of the input test signal, a precise amplitude calibration is required. Finally, the frequency response of the FFT spectrum analyzer and its corresponding anti-aliasing low-pass filter needs to be known precisely. In this paper, to the best of our knowledge, we present innovative solutions for all three calibrations. All three calibrations were built in and tested in our phase noise meter. The result is a simple and robust phase noise meter suitable for non-laboratory environments. Full article
Show Figures

Figure 1

21 pages, 18252 KB  
Article
Digital Tri-Axis Accelerometer with X/Y-Axial Resonators and Z-Axial Capacitive Seesaw
by Dunzhu Xia, Mohan Yao and Jinhui Li
Micromachines 2022, 13(8), 1174; https://doi.org/10.3390/mi13081174 - 25 Jul 2022
Cited by 1 | Viewed by 2912
Abstract
A tri-axis accelerometer with a digital readout circuit and communication system is introduced. It is composed of two resonant accelerometers in the x and y-axis, and a seesaw capacitive one in the z-axis. The device is encapsulated in air to ensure that the [...] Read more.
A tri-axis accelerometer with a digital readout circuit and communication system is introduced. It is composed of two resonant accelerometers in the x and y-axis, and a seesaw capacitive one in the z-axis. The device is encapsulated in air to ensure that the z-axis works in an over-damped state. Moreover, the closed-loop drive circuit establishes the x-axis and y-axis in resonant mode, and the z-axis in force balance mode. A miniaturized measurement based on FPGA is designed to collect these output signals. The phase noise of the resonance part and the amplitude noise of the seesaw part are studied by simulation. The model can predict the contribution of each part to the measurement error and Allan variance. Multiplied clock and Kalman filter in sliding window are used to reduce the frequency error. The test results show that the accelerometer has low bias instability (<30 μg), low cross-coupling error (<0.5%), and low nonlinearity (<0.1%). The tri-axis digital accelerometer with serial ports is more valuable than the previous works with large commercial instruments. Full article
(This article belongs to the Special Issue MEMS Inertial Sensors)
Show Figures

Figure 1

25 pages, 849 KB  
Article
Research on Linear Combination Models of BDS Multi-Frequency Observations and Their Characteristics
by Zhongchen Guo, Xuexiang Yu, Chao Hu, Chuang Jiang and Mingfei Zhu
Sustainability 2022, 14(14), 8644; https://doi.org/10.3390/su14148644 - 14 Jul 2022
Cited by 9 | Viewed by 2101
Abstract
The linear combination of multi-frequency carrier-phase and pseudorange observations can form the combined observations with special properties. The type and number of combined frequencies will directly affect the characteristics of the combined observations. BDS-2 and BDS-3 broadcast three and five signals, respectively, and [...] Read more.
The linear combination of multi-frequency carrier-phase and pseudorange observations can form the combined observations with special properties. The type and number of combined frequencies will directly affect the characteristics of the combined observations. BDS-2 and BDS-3 broadcast three and five signals, respectively, and the study of their linear combination is of great significance for precision positioning. In this contribution, the linear combination form of multi-frequency carrier-phase observations in cycles and meters is sorted out. Seven frequency combination modes are formed, and some special combinations for positioning are searched. Then, based on the principle of minimum combined noise, a simpler search method for the optimal real coefficients of ionosphere-free (IF) combination based on the least squares (LS) principle is proposed. The general analytical expressions of optimal real coefficients for multi-frequency geometry-based and ionosphere-free (GBIF), geometry-free and ionosphere-free (GFIF), and pseudorange multipath (PMP) combinations with the first-order ionosphere delay taken into account are derived. And the expression derivation process is given when both the first-order and second-order ionospheric delays are eliminated. Based on this, the characteristics of the optimal real coefficient combination in various modes are compared and discussed. The various combinations reflect that the accuracy of the combined observations from dual-frequency (DF) to five-frequency (FF) is gradually improving. The combination coefficient becomes significantly larger after taking the second-order ionospheric delay into account. In addition, the combined accuracy of BDS-3 is better than that of BDS-2. When only the first-order ionosphere is considered, the combination attribute of (B1C, B1I, B2a) is the best among the triple-frequency (TF) combinations of BDS-3. When both the first-order and second-order ionospheric delays are considered, the (B1C, B3I, B2a) combination is recommended. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

19 pages, 3839 KB  
Article
Performance Evaluation of Single-Frequency Precise Point Positioning and Its Use in the Android Smartphone
by Min Li, Zhuo Lei, Wenwen Li, Kecai Jiang, Tengda Huang, Jiawei Zheng and Qile Zhao
Remote Sens. 2021, 13(23), 4894; https://doi.org/10.3390/rs13234894 - 2 Dec 2021
Cited by 20 | Viewed by 3855
Abstract
The opening access of global navigation satellite system (GNSS) raw data in Android smart devices has led to numerous studies on precise point positioning on mobile phones, among which single-frequency precise point positioning (SF-PPP) has become popular because smartphone-based dual-frequency data still suffer [...] Read more.
The opening access of global navigation satellite system (GNSS) raw data in Android smart devices has led to numerous studies on precise point positioning on mobile phones, among which single-frequency precise point positioning (SF-PPP) has become popular because smartphone-based dual-frequency data still suffer from poor observational quality. As the ionospheric delay is a dominant factor in SF-PPP, we first evaluated two SF-PPP approaches with the MGEX (Multi-GNSS Experiment) stations, the Group and Phase Ionospheric Correction (GRAPHIC) approach and the uncombined approach, and then applied them to a Huawei P40 smartphone. For MGEX stations, both approaches achieved less than 0.1 m and 0.2 m accuracy in horizontal and vertical components, respectively. Uncombined SF-PPP manifested a significant decrease in the convergence time by 40.7%, 20.0%, and 13.8% in the east, north, and up components, respectively. For P40 data, the SF-PPP performance was analyzed using data collected with both a built-in antenna and an external geodetic antenna. The P40 data collected with the built-in antenna showed lower carrier-to-noise ratio (C/N0) values, and the pseudorange noise reached 0.67 m, which is about 67% larger than that with a geodetic antenna. Because the P40 pseudorange noise presented a strong correlation with C/N0, a C/N0-dependent weight model was constructed and used for the P40 data with the built-in antenna. The convergence of uncombined SF-PPP approach was faster than the GRAPHIC model for both the internal and external antenna datasets. The root mean square (RMS) errors for the uncombined SF-PPP solutions of P40 with an external antenna were 0.14 m, 0.15 m, and 0.33 m in the east, north, and up directions, respectively. In contrast, the P40 with an embedded antenna could only reach 0.72 m, 0.51 m, and 0.66 m, respectively, indicating severe positioning degradation due to antenna issues. The results indicate that the two SF-PPP models both can achieve sub-meter level positioning accuracy utilizing multi-GNSS single-frequency observations from mobile smartphones. Full article
Show Figures

Graphical abstract

13 pages, 635 KB  
Article
Electromagnetic Interference of Power Converter with Random Modulation on the Power Line Communication System
by Abduselam Hamid Beshir, Lu Wan, Flavia Grassi, Paolo Stefano Crovetti, Xiaokang Liu, Xinglong Wu, Waseem El Sayed, Giordano Spadacini and Sergio Amedeo Pignari
Electronics 2021, 10(23), 2979; https://doi.org/10.3390/electronics10232979 - 30 Nov 2021
Cited by 12 | Viewed by 3352
Abstract
Random Pulse Width Modulation (RPWM) allows controlling the switching signal of power converters in order to reduce the harmonic peaks by spreading the noise spectrum. Currently, many manufacturers of power converters are deploying this modulation scheme in order to comply with Electromagnetic Compatibility [...] Read more.
Random Pulse Width Modulation (RPWM) allows controlling the switching signal of power converters in order to reduce the harmonic peaks by spreading the noise spectrum. Currently, many manufacturers of power converters are deploying this modulation scheme in order to comply with Electromagnetic Compatibility (EMC) test requirements. However, when the converters coexist with Power Line Communication (PLC) systems, such as in Smart Grid (SG) applications, resorting to RPWM needs further investigations since it potentially affects the communication channel by increasing the bit error rate. This possible detrimental effect is investigated in this work, by considering a PLC system for automatic meter reading (AMR) implemented in a SG application. To this end, the model of a complete PLC system is implemented in SIMULINK, and Quadrature Phase Shift Keying (QPSK) modulation is used to model the PLC modems in the communication channel. Results show that, even if the deployment of RPWM techniques may lead to an appreciable reduction/spreading of the peaks in the noise spectrum, it may also lead to an increase of the bit error rate on the PLC system. Full article
Show Figures

Figure 1

24 pages, 11310 KB  
Article
A Multi-Sensor Comparative Analysis on the Suitability of Generated DEM from Sentinel-1 SAR Interferometry Using Statistical and Hydrological Models
by Ayub Mohammadi, Sadra Karimzadeh, Shazad Jamal Jalal, Khalil Valizadeh Kamran, Himan Shahabi, Saeid Homayouni and Nadhir Al-Ansari
Sensors 2020, 20(24), 7214; https://doi.org/10.3390/s20247214 - 16 Dec 2020
Cited by 22 | Viewed by 6341
Abstract
Digital elevation model (DEM) plays a vital role in hydrological modelling and environmental studies. Many essential layers can be extracted from this land surface information, including slope, aspect, rivers, and curvature. Therefore, DEM quality and accuracy will affect the extracted features and the [...] Read more.
Digital elevation model (DEM) plays a vital role in hydrological modelling and environmental studies. Many essential layers can be extracted from this land surface information, including slope, aspect, rivers, and curvature. Therefore, DEM quality and accuracy will affect the extracted features and the whole process of modeling. Despite freely available DEMs from various sources, many researchers generate this information for their areas from various observations. Sentinal-1 synthetic aperture radar (SAR) images are among the best Earth observations for DEM generation thanks to their availabilities, high-resolution, and C-band sensitivity to surface structure. This paper presents a comparative study, from a hydrological point of view, on the quality and reliability of the DEMs generated from Sentinel-1 data and DEMs from other sources such as AIRSAR, ALOS-PALSAR, TanDEM-X, and SRTM. To this end, pair of Sentinel-1 data were acquired and processed using the SAR interferometry technique to produce a DEM for two different study areas of a part of the Cameron Highlands, Pahang, Malaysia, a part of Sanandaj, Iran. Based on the estimated linear regression and standard errors, generating DEM from Sentinel-1 did not yield promising results. The river streams for all DEMs were extracted using geospatial analysis tool in a geographic information system (GIS) environment. The results indicated that because of the higher spatial resolution (compared to SRTM and TanDEM-X), more stream orders were delineated from AIRSAR and Sentinel-1 DEMs. Due to the shorter perpendicular baseline, the phase decorrelation in the created DEM resulted in a lot of noise. At the same time, results from ground control points (GCPs) showed that the created DEM from Sentinel-1 is not promising. Therefore, other DEMs’ performance, such as 90-meters’ TanDEM-X and 30-meters’ SRTM, are better than Sentinel-1 DEM (with a better spatial resolution). Full article
(This article belongs to the Special Issue Multi-Sensor Techniques for Topographic Mapping)
Show Figures

Figure 1

Back to TopTop