Performance of Smartphone BDS-3/GPS/Galileo Multi-Frequency Ionosphere-Free Precise Code Positioning
Abstract
:1. Introduction
2. Data Quality Characteristic Analysis
2.1. Data Description
2.2. Satellite Visibility
2.3. Signal Power
2.4. Observation Noise of Pseudo-Range
3. Methodology for Precise Code Positioning
3.1. General Code Observation Model
3.2. Doppler-Smoothed-Code Method
3.3. Reference Satellite Selection Method
3.4. Precise Code Positioning Models
4. Results and Discussion
4.1. Static Test
4.2. Dynamic Test
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, S.; Xu, Y.; Xu, T.; Jiang, N. Analysis on the PPP Performance of Android Smart-Phone: A Case Study of Huawei P40 Pro. In Proceedings of the China Satellite Navigation Conference (CSNC 2022) Proceedings, Beijing, China, 22–25 May 2022; Yang, C., Xie, J., Eds.; Springer Nature: Singapore, 2022; pp. 363–373. [Google Scholar]
- Zangenehnejad, F.; Gao, Y. GNSS Smartphones Positioning: Advances, Challenges, Opportunities, and Future Perspectives. Satell. Navig. 2021, 2, 24. [Google Scholar] [CrossRef]
- Liu, W.; Wu, M.; Zhang, X.; Wang, W.; Ke, W.; Zhu, Z. Single-Epoch RTK Performance Assessment of Tightly Combined BDS-2 and Newly Complete BDS-3. Satell. Navig. 2021, 2, 6. [Google Scholar] [CrossRef]
- Odolinski, R.; Teunissen, P.J.G.; Odijk, D. Combined BDS, Galileo, QZSS and GPS Single-Frequency RTK. GPS Solut. 2015, 19, 151–163. [Google Scholar] [CrossRef]
- Banville, S.; Van Diggelen, F. Precise Positioning Using Raw GPS Measurements from Android Smartphones. GPS World 2016, 27, 43–48. [Google Scholar]
- Zhang, K.; Jiao, F.; Li, J. The Assessment of GNSS Measurements from Android Smartphones. In China Satellite Navigation Conference (CSNC) 2018 Proceedings; Sun, J., Yang, C., Guo, S., Eds.; Lecture Notes in Electrical Engineering; Springer: Singapore, 2018; Volume 499, pp. 147–157. ISBN 9789811300288. [Google Scholar]
- Zhang, X.; Tao, X.; Zhu, F.; Shi, X.; Wang, F. Quality Assessment of GNSS Observations from an Android N Smartphone and Positioning Performance Analysis Using Time-Differenced Filtering Approach. GPS Solut. 2018, 22, 70. [Google Scholar] [CrossRef]
- Liu, W.; Shi, X.; Zhu, F.; Tao, X.; Wang, F. Quality Analysis of Multi-GNSS Raw Observations and a Velocity-Aided Positioning Approach Based on Smartphones. Adv. Space Res. 2019, 63, 2358–2377. [Google Scholar] [CrossRef]
- Robustelli, U.; Paziewski, J.; Pugliano, G. Observation Quality Assessment and Performance of GNSS Standalone Positioning with Code Pseudoranges of Dual-Frequency Android Smartphones. Sensors 2021, 21, 2125. [Google Scholar] [CrossRef] [PubMed]
- Banville, S.; Lachapelle, G.; Ghoddousi-Fard, R.; Gratton, P. Automated Processing of Low-Cost GNSS Receiver Data. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, FL, USA, 16–20 September 2019; pp. 3636–3652. [Google Scholar]
- Lachapelle, G.; Gratton, P.; Horrelt, J.; Lemieux, E.; Broumandan, A. Evaluation of a Low Cost Hand Held Unit with GNSS Raw Data Capability and Comparison with an Android Smartphone. Sensors 2018, 18, 4185. [Google Scholar] [CrossRef]
- Privat, A.; Pascaud, M.; Laurichesse, D. Innovative Smartphone Applications for Precise Point Positioning. In Proceedings of the 2018 SpaceOps Conference; American Institute of Aeronautics and Astronautics, Marseille, France, 28 May 2018. [Google Scholar]
- Aggrey, J.; Bisnath, S.; Naciri, N.; Shinghal, G.; Yang, S. Multi-GNSS Precise Point Positioning with next-Generation Smartphone Measurements. J. Spat. Sci. 2020, 65, 79–98. [Google Scholar] [CrossRef]
- Gill, M.; Bisnath, S.; Aggrey, J.; Seepersad, G. Precise Point Positioning (PPP) Using Low-Cost and Ultra-Low-Cost GNSS Receivers. In Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, USA, 25–29 September 2017; pp. 226–236. [Google Scholar]
- Guo, L.; Wang, F.; Sang, J.; Lin, X.; Gong, X.; Zhang, W. Characteristics Analysis of Raw Multi-GNSS Measurement from Xiaomi Mi 8 and Positioning Performance Improvement with L5/E5 Frequency in an Urban Environment. Remote Sens. 2020, 12, 744. [Google Scholar] [CrossRef]
- Fortunato, M.; Critchley-Marrows, J.; Siutkowska, M.; Ivanovici, M.L.; Benedetti, E.; Roberts, W. Enabling High Accuracy Dynamic Applications in Urban Environments Using PPP and RTK on Android Multi-Frequency and Multi-GNSS Smartphones. In Proceedings of the 2019 European Navigation Conference (ENC), Warsaw, Poland, 9–12 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–9. [Google Scholar]
- Roberts, W.; Critchley-Marrows, J.; Fortunato, M.; Ivanovici, M.; Callewaert, K.; Tavares, T.; Arzel, L.; Pomies, A. FLAMINGO-Fulfilling Enhanced Location Accuracy in the Mass-Market through Initial Galileo Services. In Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, FL, USA, 24–28 September 2018; pp. 489–502. [Google Scholar]
- Robustelli, U.; Baiocchi, V.; Pugliano, G. Assessment of Dual Frequency GNSS Observations from a Xiaomi Mi 8 Android Smartphone and Positioning Performance Analysis. Electronics 2019, 8, 91. [Google Scholar] [CrossRef]
- Elmezayen, A.; El-Rabbany, A. Precise Point Positioning Using World’s First Dual-Frequency GPS/GALILEO Smartphone. Sensors 2019, 19, 2593. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Sun, M.; Zhou, C.; Zhang, P. Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone. Sensors 2019, 19, 2189. [Google Scholar] [CrossRef] [PubMed]
- Aggrey, J.; Bisnath, S.; Naciri, N.; Shinghal, G.; Yang, S. Use of PPP Processing for Next-Generation Smartphone GNSS Chips: Key Benefits and Challenges. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, FL, USA, 16–20 September 2019; pp. 3862–3878. [Google Scholar]
- Psychas, D.; Bruno, J.; Massarweh, L.; Darugna, F. Towards Sub-Meter Positioning Using Android Raw GNSS Measurements. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, FL, USA, 16–20 September 2019; pp. 3917–3931. [Google Scholar]
- Laurichesse, D.; Privat, A. An Open-Source PPP Client Implementation for the CNES PPP-WIZARD Demonstrator. In Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2015), Tampa, FL, USA, 14–18 September 2015; pp. 2780–2789. [Google Scholar]
- Geng, J.; Jiang, E.; Li, G.; Xin, S.; Wei, N. An Improved Hatch Filter Algorithm towards Sub-Meter Positioning Using Only Android Raw GNSS Measurements without External Augmentation Corrections. Remote Sens. 2019, 11, 1679. [Google Scholar] [CrossRef]
- Li, G.; Long, C.; Wang, F. Synchronizing and Integrating Android Multi-GNSS/Accelerometer Sensors to Capture Broadband Vibrations at Sub-Centimeter Resolution. In Proceedings of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), Online, 22–25 September 2020; pp. 3612–3625. [Google Scholar]
- Paziewski, J.; Sieradzki, R.; Baryla, R. Signal Characterization and Assessment of Code GNSS Positioning with Low-Power Consumption Smartphones. GPS Solut. 2019, 23, 98. [Google Scholar] [CrossRef]
- Zeng, S.; Kuang, C.; Yu, W. Evaluation of Real-Time Kinematic Positioning and Deformation Monitoring Using Xiaomi Mi 8 Smartphone. Appl. Sci. 2022, 12, 435. [Google Scholar] [CrossRef]
- Shang, R.; Gao, C.; Gan, L.; Zhang, R.; Gao, W.; Meng, X. Multi-GNSS Differential Inter-System Bias Estimation for Smartphone RTK Positioning: Feasibility Analysis and Performance. Remote Sens. 2023, 15, 1476. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Zhao, J.; Zhou, K.; Wang, Z.; Yuan, H. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services. Sensors 2016, 16, 2201. [Google Scholar] [CrossRef]
- Zhang, K.; Jiao, W.; Wang, L.; Li, Z.; Li, J.; Zhou, K. Smart-RTK: Multi-GNSS Kinematic Positioning Approach on Android Smart Devices with Doppler-Smoothed-Code Filter and Constant Acceleration Model. Adv. Space Res. 2019, 64, 1662–1674. [Google Scholar] [CrossRef]
- Geng, J.; Long, C.; Li, G. A Robust Android Gnss Rtk Positioning Scheme Using Factor Graph Optimization. IEEE Sens. J. 2023, 23, 13280–13291. [Google Scholar] [CrossRef]
- Jiang, Y.; Gao, Y.; Ding, W.; Liu, F.; Gao, Y. An Improved Ambiguity Resolution Algorithm for Smartphone RTK Positioning. Sensors 2023, 23, 5292. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Liu, W.; Wang, Y.; Li, L.; Zhu, F.; Zhang, X. Smartphone RTK Positioning with Multi-Frequency and Multi-Constellation Raw Observations: GPS L1/L5, Galileo E1/E5a, BDS B1I/B1C/B2a. J. Geod. 2023, 97, 43. [Google Scholar] [CrossRef]
- GSA. Using GNSS Raw Measurements on Android Devices; The GSA GNSS Raw Measurements Task Force: Prague, Czech Republic, 2017. [Google Scholar]
- Li, G.; Geng, J. Characteristics of Raw Multi-GNSS Measurement Error from Google Android Smart Devices. GPS Solut. 2019, 23, 90. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, P.; Liu, Q.; Wang, Y. MEMS-Based IMU Assisted Real Time Difference Using Raw Measurements from Smartphone. In Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, FL, USA, 24–28 September 2018; pp. 445–454. [Google Scholar]
- Li, G. Theory and Method of GNSS Ambiguity Resolution for Smartphones; Wuhan University: Wuhan, China, 2021. [Google Scholar]
- Wu, Z.; Wang, Q.; Hu, C.; Yu, Z.; Wu, W. Modeling and Assessment of Five-Frequency BDS Precise Point Positioning. Satell. Navig. 2022, 3, 8. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Q.; Wu, Z.; Guo, Z. A Mixed Multi-Frequency Precise Point Positioning Strategy Based on the Combination of BDS-3 and GNSS Multi-Frequency Observations. Meas. Sci. Technol. 2023, 34, 025008. [Google Scholar] [CrossRef]
- Saastamoinen, J. Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites. In The Use of Artificial Satellites for Geodesy; American Geophysical Union (AGU): Washington, DC, USA, 1972; pp. 247–251. ISBN 978-1-118-66364-6. [Google Scholar]
- Nie, Z.; Liu, F.; Gao, Y. Real-Time Precise Point Positioning with a Low-Cost Dual-Frequency GNSS Device. GPS Solut. 2020, 24, 9. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Hauschild, A. Broadcast versus Precise Ephemerides: A Multi-GNSS Perspective. GPS Solut. 2015, 19, 321–333. [Google Scholar] [CrossRef]
- Chen, L.; Li, M.; Zhao, Y.; Hu, Z.; Zheng, F.; Shi, C. Multi-GNSS Real-Time Precise Clock Estimation Considering the Correction of Inter-Satellite Code Biases. GPS Solut. 2021, 25, 32. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, X.; Guo, F.; Liu, J. GPS Inter-Frequency Clock Bias Estimation for Both Uncombined and Ionospheric-Free Combined Triple-Frequency Precise Point Positioning. J. Geod. 2019, 93, 473–487. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, R.; Wang, Y.; Hu, C.; Liu, B. Modelling and Assessment of a New Triple-Frequency IF1213 PPP with BDS/GPS. Remote Sens. 2022, 14, 4509. [Google Scholar] [CrossRef]
- Wanninger, L.; Heßelbarth, A. GNSS Code and Carrier Phase Observations of a Huawei P30 Smartphone: Quality Assessment and Centimeter-Accurate Positioning. GPS Solut. 2020, 24, 64. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, B. Optimal Doppler-Aided Smoothing Strategy for GNSS Navigation. GPS Solut. 2017, 21, 197–210. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Wang, N.; Wang, Z. Real-Time GNSS Precise Point Positioning for Low-Cost Smart Devices. GPS Solut. 2021, 25, 69. [Google Scholar] [CrossRef]
- Schmid, R.; Steigenberger, P.; Gendt, G.; Ge, M.; Rothacher, M. Generation of a Consistent Absolute Phase-Center Correction Model for GPS Receiver and Satellite Antennas. J. Geod. 2007, 81, 781–798. [Google Scholar] [CrossRef]
Device | B1C | B2a | B1I | B1C&B2a | B1C&B2a&B1I | L1 | L5 | L1&L5 | E1 | E5a | E1&E5a |
---|---|---|---|---|---|---|---|---|---|---|---|
HP40 | 7 | 8 | 9 | 6 | 6 | 6 | 1 | 1 | 5 | 5 | 5 |
Mi11 | 9 | 10 | 12 | 9 | 9 | 8 | 5 | 5 | 8 | 8 | 8 |
Device | B1C | B2a | B1I | L1 | L5 | E1 | E5a |
---|---|---|---|---|---|---|---|
HP40 | 38.32 | 27.54 | 39.77 | 40.04 | 32.01 | 35.70 | 25.33 |
Mi11 | 41.06 | 33.64 | 39.59 | 39.07 | 35.90 | 35.84 | 32.50 |
Device | B1C | B2a | B1I | L1 | L5 | E1 | E5a |
---|---|---|---|---|---|---|---|
HP40 | / | / | 38.1440 | 56.8366 | / | 39.6208 | 64.9179 |
Mi11 | 10.8937 | 13.0953 | 24.5704 | 15.7396 | 6.1299 | 12.9456 | 18.8156 |
Number | BDS-3 | GPS | Galileo |
---|---|---|---|
1 | B1C (1575.42) | L1 (1575.42) | E1 (1575.42) |
2 | B2a (1176.45) | L5 (1176.45) | E5a (1176.45) |
3 | B1I (1561.01) | / | / |
Items | Strategy |
---|---|
Model | SPP, IF-P and IFUC models |
Estimator | Kalman filter and Least Squares filter (only SPP) |
Weighting scheme | CNR weight |
Satellite elevation mask | 15°and 0° (only static open-sky scenario) |
CNR mask | 25 dB-Hz |
Satellite orbit and clock | Products from GFZ |
Satellite PCO/PCV | igs14.atx according to Schmid et al. [49] |
Satellite DCB corrections | Corrected with MGEX DCB products from CAS. |
Tropospheric delay | Zenith hydrostatic delays are corrected using the Saastamonien model, and zenith wet delays are estimated using a random walk. |
Station coordinates | Static: estimated as constants; dynamic: estimated using white noise process. |
Device | Model | RMSE (m) | Imp | ||||
---|---|---|---|---|---|---|---|
E | N | U | E | N | U | ||
HP40 | SPP-P1I | 1.76 | 2.17 | 4.33 | / | / | / |
DF-P1I | 0.12 | 0.47 | 0.99 | 93.04% | 78.08% | 77.08% | |
IFUC1P1I | 0.12 | 0.46 | 0.99 | 93.04% | 78.08% | 77.08% | |
IFUC12P1I | 0.13 | 0.46 | 1.00 | 92.97% | 78.55% | 77.05% | |
Mi11 | SPP-P1I | 1.88 | 2.03 | 4.87 | / | / | / |
DF-P1I | 0.30 | 0.34 | 4.33 | 84.09% | 83.01% | 11.14% | |
TF-P1I | 8.61 | 0.54 | 3.36 | −357.37% | 73.50% | 30.96% | |
IFUC1P1I | 0.41 | 0.25 | 3.56 | 78.30% | 87.52% | 27.02% | |
IFUC12P1I | 0.24 | 0.38 | 3.96 | 87.42% | 81.47% | 18.64% | |
IFUC123P1I | 0.16 | 0.29 | 3.80 | 91.42% | 85.61% | 21.96% | |
Mi11 | SPP-P1C | 1.89 | 2.09 | 4.98 | / | / | / |
DF-P1C | 0.22 | 0.19 | 4.99 | 88.09% | 90.91% | −0.31% | |
TF-P1C | 0.92 | 0.47 | 18.41 | 51.33% | 77.34% | −270.08% | |
IFUC1P1C | 0.36 | 0.19 | 4.07 | 80.99% | 90.79% | 18.20% | |
IFUC12P1C | 0.20 | 0.28 | 4.39 | 89.60% | 86.54% | 11.70% | |
IFUC123P1C | 0.27 | 0.20 | 3.97 | 85.45% | 90.31% | 20.16% |
Device | Model | RMSE (m) | Imp | ||||
---|---|---|---|---|---|---|---|
E | N | U | E | N | U | ||
HP40 | SPP-P1I | 4.72 | 3.49 | 10.97 | / | / | / |
DF-P1I | 0.28 | 0.96 | 1.26 | 94.13% | 72.52% | 88.55% | |
IFUC1P1I | 0.28 | 0.96 | 1.26 | 94.13% | 72.52% | 88.55% | |
IFUC12P1I | 0.24 | 1.02 | 1.27 | 95.02% | 70.68% | 88.39% | |
Mi11 | SPP-P1I | 5.54 | 4.27 | 14.42 | / | / | / |
DF-P1I | 2.20 | 1.20 | 1.21 | 60.33% | 71.94% | 91.63% | |
TF-P1I | 2.08 | 1.52 | 4.66 | 62.42% | 64.36% | 67.67% | |
IFUC1P1I | 2.08 | 1.56 | 1.52 | 62.44% | 63.43% | 89.43% | |
IFUC12P1I | 1.80 | 1.09 | 1.23 | 67.50% | 74.43% | 91.50% | |
IFUC123P1I | 1.55 | 0.79 | 1.21 | 71.92% | 81.54% | 91.59% | |
Mi11 | SPP-P1C | 5.40 | 4.11 | 14.75 | / | / | / |
DF-P1C | 1.73 | 0.99 | 1.97 | 67.97% | 75.82% | 86.66% | |
TF-P1C | 1.66 | 1.29 | 2.54 | 69.33% | 68.68% | 82.77% | |
IFUC1P1C | 1.64 | 1.12 | 1.60 | 69.60% | 72.65% | 89.15% | |
IFUC12P1C | 1.43 | 0.72 | 1.24 | 73.45% | 82.53% | 91.59% | |
IFUC123P1C | 1.57 | 0.60 | 1.16 | 70.98% | 85.35% | 92.17% |
Device | Model | RMSE (m) | Imp | ||
---|---|---|---|---|---|
Horizontal | U | Horizontal | U | ||
HP40 | SPP-P1I | 8.23 | 5.82 | / | / |
DF-P1I | 8.13 | 6.58 | 1.21% | −13.10% | |
IFUC1P1I | 8.15 | 6.58 | 0.90% | −13.10% | |
IFUC12P1I | 8.15 | 6.52 | 0.90% | −12.10% | |
Mi11 | SPP-P1I | 5.43 | 7.81 | / | / |
DF-P1I | 5.54 | 8.05 | −2.01% | −3.09% | |
TF-P1I | 5.98 | 8.48 | −10.14% | −8.64% | |
IFUC1P1I | 5.17 | 7.59 | 4.81% | 2.82% | |
IFUC12P1I | 4.96 | 6.34 | 8.60% | 18.77% | |
IFUC123P1I | 4.94 | 6.26 | 9.03% | 19.84% | |
Mi11 | SPP-P1C | 5.36 | 6.85 | / | / |
DF-P1C | 5.54 | 7.89 | −3.41% | −15.24% | |
TF-P1C | 5.81 | 8.20 | −8.38% | −19.72% | |
IFUC1P1C | 5.07 | 7.30 | 5.31% | −6.68% | |
IFUC12P1C | 4.91 | 6.09 | 8.30% | 11.04% | |
IFUC123P1C | 4.91 | 6.08 | 8.34% | 11.14% |
Device | Model | RMSE (m) | Imp | ||
---|---|---|---|---|---|
Horizontal | U | Horizontal | U | ||
HP40 | SPP-P1I | 9.17 | 11.76 | / | / |
DF-P1I | 8.41 | 12.06 | 8.27% | −2.55% | |
IFUC1P1I | 8.43 | 12.02 | 8.07% | −2.23% | |
IFUC12P1I | 8.40 | 11.96 | 8.40% | −1.69% | |
Mi11 | SPP-P1I | 6.04 | 11.75 | / | / |
DF-P1I | 5.90 | 13.24 | 2.28% | −12.73% | |
TF-P1I | 7.01 | 15.15 | −16.17% | −28.92% | |
IFUC1P1I | 5.54 | 12.35 | 8.19% | −5.11% | |
IFUC12P1I | 5.53 | 11.73 | 8.42% | 0.21% | |
IFUC123P1I | 5.47 | 11.97 | 9.42% | −1.84% | |
Mi11 | SPP-P1C | 5.95 | 12.16 | / | / |
DF-P1C | 5.59 | 13.15 | 6.02% | −8.13% | |
TF-P1C | 6.70 | 14.94 | −12.62% | −22.87% | |
IFUC1P1C | 5.47 | 13.01 | 8.05% | −6.95% | |
IFUC12P1C | 5.45 | 12.32 | 8.45% | −1.35% | |
IFUC123P1C | 5.46 | 12.06 | 8.31% | 0.85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Hu, C.; Wang, Z.; Yuan, F.; Wang, Y. Performance of Smartphone BDS-3/GPS/Galileo Multi-Frequency Ionosphere-Free Precise Code Positioning. Remote Sens. 2023, 15, 5371. https://doi.org/10.3390/rs15225371
Wang R, Hu C, Wang Z, Yuan F, Wang Y. Performance of Smartphone BDS-3/GPS/Galileo Multi-Frequency Ionosphere-Free Precise Code Positioning. Remote Sensing. 2023; 15(22):5371. https://doi.org/10.3390/rs15225371
Chicago/Turabian StyleWang, Ruiguang, Chao Hu, Zhongyuan Wang, Fang Yuan, and Yangyang Wang. 2023. "Performance of Smartphone BDS-3/GPS/Galileo Multi-Frequency Ionosphere-Free Precise Code Positioning" Remote Sensing 15, no. 22: 5371. https://doi.org/10.3390/rs15225371
APA StyleWang, R., Hu, C., Wang, Z., Yuan, F., & Wang, Y. (2023). Performance of Smartphone BDS-3/GPS/Galileo Multi-Frequency Ionosphere-Free Precise Code Positioning. Remote Sensing, 15(22), 5371. https://doi.org/10.3390/rs15225371