Calibration of an RF/Microwave Phase Noise Meter with a Photonic Delay Line
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quadrature Lock Mechanism
2.2. Phase-to-Amplitude Conversion Factor Calibration
2.3. Phase Shifter and Phase Modulator
2.4. FFT Spectrum Analyzer and Anti-Aliasing Filter Response Correction
3. Results
3.1. Final Setup
3.2. Phase Noise Measurements
3.3. Noise Floor Evaluation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FFT | Fast Fourier transform |
DUT | Device-under-test |
OEO | Opto-electronic oscillator |
LNA | Low-noise amplifier |
LPF | Low-pass filter |
PRBS | Pseudo-random bit sequence |
MSA | Microwave spectrum analyzer |
VPS | Variable phase shifter |
EOM | Electro-optic modulator |
PM | Phase modulation |
VCXO | Voltage-controlled crystal oscillator |
LED | Light-emitting diode |
DFB | Distributed feedback |
HEMT | High-electron-mobility transistor |
FPLL | Fractional phase-locked loop |
MMIC | Monolithic microwave integrated circuit |
References
- Leeson, D.B. A simple model of feedback oscillator noise spectrum. Proc. IEEE 1966, 54, 329–330. [Google Scholar] [CrossRef] [Green Version]
- Rubiola, E. Phase Noise and Frequency Stability in Oscillators; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Rubiola, E.; Brendel, R. A generalization of the Leeson effect. arXiv 2010, arXiv:1004.5539.2010. [Google Scholar] [CrossRef]
- Vidmar, M. Extending Leeson’s Equation. Inf. MIDEM 2021, 51, 146. [Google Scholar] [CrossRef]
- Liu, A.; Dai, J.; Xu, K. Stable and Low-Spurs Optoelectronic Oscillators: A Review. Appl. Sci. 2018, 8, 2623. [Google Scholar] [CrossRef] [Green Version]
- Hong, F.L. Optical frequency standards for time and length applications. Meas. Sci. Technol. 2016, 28, 12002. [Google Scholar] [CrossRef]
- Zou, F.; Zou, L.; Yang, B.; Ma, Q.; Zou, X.; Zou, J.; Chen, S.; Milosevic, D.; Cao, Z.; Liu, H. Optoelectronic oscillator for 5G wireless networks and beyond. J. Phys. Appl. Phys. 2021, 54, 423002. [Google Scholar] [CrossRef]
- Rohde, U.L.; Poddar, A.K.; Apte, A.M. Getting Its Measure: Oscillator Phase Noise Measurement Techniques and Limitations. IEEE Microw. Mag. 2013, 14, 73–86. [Google Scholar] [CrossRef]
- Yao, X.S.; Maleki, L. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B 1996, 13, 1725–1735. [Google Scholar] [CrossRef]
- Rubiola, E.; Salik, E.; Huang, S.; Yu, N.; Maleki, L. Photonic-delay technique for phase noise measurement of microwave oscillators. J. Opt. Soc. Am. B 2005, 22, 987–997. [Google Scholar] [CrossRef]
- Volyanskiy, K.; Cussey, J.; Tavernier, H.; Salzenstein, P.; Sauvage, G.; Larger, L.; Rubiola, E. Applications of the optical fiber to the generation and measurement of low-phase noise microwave signals. J. Opt. Soc. Am. B 2008, 25, 2140–2150. [Google Scholar] [CrossRef] [Green Version]
- Eliyahu, D.; Seidel, D.; Maleki, L. Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system. In Proceedings of the 2008 IEEE International Frequency Control Symposium, Honolulu, HI, USA, 18–21 May 2008; pp. 811–814. [Google Scholar] [CrossRef]
- Salzenstein, P.; Pavlyuchenko, E.; Hmima, A.; Cholley, N.; Zarubin, M.; Galliou, S.; Chembo, Y.K.; Larger, L. Estimation of the uncertainty for a phase noise optoelectronic metrology system. Phys. Scr. 2012, T149, 14025. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Qiu, Q.; Su, J.; Zhang, T.; Lin, Y. Phase noise measurement of an optoelectronic oscillator based on the photonic-delay line cross-correlation method. Opt. Lett. 2019, 44, 1992–1995. [Google Scholar] [CrossRef]
- Zou, X.; Lu, B.; Pan, W.; Yan, L.; Stöhr, A.; Yao, J. Photonics for microwave measurements. Laser Photonics Rev. 2016, 10, 711–734. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Yao, J. Photonics-Based Broadband Microwave Measurement. J. Light. Technol. 2017, 35, 3498–3513. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, F.; Zhou, P.; Zhu, D.; Pan, S. Wideband Phase Noise Measurement Using a Multifunctional Microwave Photonic Processor. IEEE Photonics Technol. Lett. 2014, 26, 2434–2437. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, F.; Zhou, P.; Pan, S. Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter. Opt. Lett. 2015, 40, 1326–1329. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, D.; Pan, S. Photonic-assisted wideband phase noise measurement of microwave signal sources. Electron. Lett. 2015, 51, 1272–1274. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Zhou, P.; Jiang, Z.; Zhou, Z.; Li, N. Wideband Microwave Phase Noise Analyzer Based on All-Optical Microwave Signal Processing. IEEE Photonics J. 2022, 14, 1–7. [Google Scholar] [CrossRef]
- Gheidi, H.; Banai, A. Phase-Noise Measurement of Microwave Oscillators Using Phase-Shifterless Delay-Line Discriminator. IEEE Trans. Microw. Theory Tech. 2010, 58, 468–477. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, F.; Pan, S. Phase Noise Measurement of RF Signals by Photonic Time Delay and Digital Phase Demodulation. IEEE Trans. Microw. Theory Tech. 2018, 66, 4306–4315. [Google Scholar] [CrossRef]
- Zhang, F.; Shi, J.; Pan, S. Wideband microwave phase noise measurement based on photonic-assisted I/Q mixing and digital phase demodulation. Opt. Express 2017, 25, 22760–22768. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, F.; Ben, D.; Pan, S. Wideband Microwave Phase Noise Analyzer Based on an All-Optical Microwave I/Q Mixer. J. Light. Technol. 2018, 36, 4319–4325. [Google Scholar] [CrossRef]
- Kuse, N.; Fermann, M. Electro-optic comb based real time ultra-high sensitivity phase noise measurement system for high frequency microwaves. Sci. Rep. 2017, 7, 2847. [Google Scholar] [CrossRef]
- Zhang, F.; Shi, J.; Zhang, Y.; Ben, D.; Sun, L.; Pan, S. Self-calibrating and high-sensitivity microwave phase noise analyzer applying an optical frequency comb generator and an optical-hybrid-based I/Q detector. Opt. Lett. 2018, 43, 5029–5032. [Google Scholar] [CrossRef]
- Wada, M.; Hong, F.L.; Inaba, H. Frequency noise measurement and its uncertainty estimation of an optical frequency comb using a delay line interferometer. Meas. Sci. Technol. 2020, 31, 125012. [Google Scholar] [CrossRef]
- Wang, X.; Yao, X.S.; Hao, P.; Feng, T.; Chen, X.; Chong, Y. Ultra-Low Phase Noise Measurement of Microwave Sources Using Carrier Suppression Enabled by a Photonic Delay Line. J. Light. Technol. 2021, 39, 7028–7039. [Google Scholar] [CrossRef]
- IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology–Random Instabilities; IEEE: New York, NY, USA, 2009; pp. 1–50. [CrossRef]
- Riley, W.J. Handbook of Frequency Stability Analysis; National Institute of Standards and Technology, US Department of Commerce: Gaithersburg, MD, USA, 2008. [Google Scholar]
- Vidmar, M. Microstrip resonant phase shifters. Microw. J. Int. Ed. 1999, 42, 127–137. [Google Scholar]
- ElKhorassani, M.T.; Palomares-Caballero, A.; Alex-Amor, A.; Segura-Gómez, C.; Escobedo, P.; Valenzuela-Valdés, J.F.; Padilla, P. Electronically Controllable Phase Shifter with Progressive Impedance Transformation at K Band. Appl. Sci. 2019, 9, 5229. [Google Scholar] [CrossRef] [Green Version]
- Vidmar, M. Noise in radio/optical communications. In Proceedings of the 7th International Beam Instrumentation Conference (IBIC’18), Shanghai, China, 9–13 September 2018; Number 7 in International Beam Instrumentation Conference. JACoW Publishing: Geneva, Switzerland, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Lavrič, A.; Batagelj, B. An affordable laboratory photodiode up to 11.5 GHz for microwave photonics experiments. In Proceedings of the 2019 International Workshop on Fiber Optics in Access Networks (FOAN), Sarajevo, Bosnia and Herzegovina, 2–4 September 2019; pp. 47–50. [Google Scholar] [CrossRef]
- Eliyahu, D.; Seidel, D.; Maleki, L. RF Amplitude and Phase-Noise Reduction of an Optical Link and an Opto-Electronic Oscillator. IEEE Trans. Microw. Theory Tech. 2008, 56, 449–456. [Google Scholar] [CrossRef]
- Bogataj, L.; Vidmar, M.; Batagelj, B. A Feedback Control Loop for Frequency Stabilization in an Opto-Electronic Oscillator. J. Light. Technol. 2014, 32, 3690–3694. [Google Scholar] [CrossRef]
- Cho, J.H.; Jeong, H.S.; Sung, H.K. Spurious Tone Reduction and Signal Stabilization of Optoelectronic Oscillators by Low-Frequency RF Signal Modulation. Photonics 2022, 9, 339. [Google Scholar] [CrossRef]
- Salzenstein, P.; Pavlyuchenko, E. Uncertainty Evaluation on a 10.52 GHz (5 dBm) Optoelectronic Oscillator Phase Noise Performance. Micromachines 2021, 12, 474. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Yin, L. Photonic-delay homodyne technology for low-phase noise measurement. Optik 2014, 125, 1868–1870. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavrič, A.; Batagelj, B.; Vidmar, M. Calibration of an RF/Microwave Phase Noise Meter with a Photonic Delay Line. Photonics 2022, 9, 533. https://doi.org/10.3390/photonics9080533
Lavrič A, Batagelj B, Vidmar M. Calibration of an RF/Microwave Phase Noise Meter with a Photonic Delay Line. Photonics. 2022; 9(8):533. https://doi.org/10.3390/photonics9080533
Chicago/Turabian StyleLavrič, Andrej, Boštjan Batagelj, and Matjaž Vidmar. 2022. "Calibration of an RF/Microwave Phase Noise Meter with a Photonic Delay Line" Photonics 9, no. 8: 533. https://doi.org/10.3390/photonics9080533
APA StyleLavrič, A., Batagelj, B., & Vidmar, M. (2022). Calibration of an RF/Microwave Phase Noise Meter with a Photonic Delay Line. Photonics, 9(8), 533. https://doi.org/10.3390/photonics9080533