Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = petawatt laser

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9331 KiB  
Article
Non-Ideal Hall MHD Rayleigh–Taylor Instability in Plasma Induced by Nanosecond and Intense Femtosecond Laser Pulses
by Roman S. Zemskov, Maxim V. Barkov, Evgeniy S. Blinov, Konstantin F. Burdonov, Vladislav N. Ginzburg, Anton A. Kochetkov, Aleksandr V. Kotov, Alexey A. Kuzmin, Sergey E. Perevalov, Il’ya A. Shaikin, Sergey E. Stukachev, Ivan V. Yakovlev, Alexander A. Soloviev, Andrey A. Shaykin, Efim A. Khazanov, Julien Fuchs and Mikhail V. Starodubtsev
Plasma 2025, 8(2), 23; https://doi.org/10.3390/plasma8020023 - 10 Jun 2025
Viewed by 1372
Abstract
A pioneering detailed comparative study of the dynamics of plasma flows generated by high-power nanosecond and high-intensity femtosecond laser pulses with similar fluences of up to 3×104 J/cm2 is presented. The experiments were conducted on the petawatt laser facility [...] Read more.
A pioneering detailed comparative study of the dynamics of plasma flows generated by high-power nanosecond and high-intensity femtosecond laser pulses with similar fluences of up to 3×104 J/cm2 is presented. The experiments were conducted on the petawatt laser facility PEARL using two types of high-power laser radiation: femtosecond pulses with energy exceeding 10 J and a duration less than 60 fs, and nanosecond pulses with energy exceeding 10 J and a duration on the order of 1 ns. In the experiments, high-velocity (>100 km/s) flows of «femtosecond» (created by femtosecond laser pulses) and «nanosecond» plasmas propagated in a vacuum across a uniform magnetic field with a strength over 14 T. A significant difference in the dynamics of «femtosecond» and «nanosecond» plasma flows was observed: (i) The «femtosecond» plasma initially propagated in a vacuum (no B-field) as a collimated flow, while the «nanosecond» flow diverged. (ii) The «nanosecond» plasma interacting with external magnetic field formed a quasi-spherical cavity with Rayleigh–Taylor instability flutes. In the case of «femtosecond» plasma, such flutes were not observed, and the flow was immediately redirected into a narrow plasma sheet (or «tongue») propagating across the magnetic field at an approximately constant velocity. (iii) Elongated «nanosecond» and «femtosecond» plasma slabs interacting with a transverse magnetic field broke up into Rayleigh–Taylor «tongues». (iv) The ends of these «tongues» in the femtosecond case twisted into vortex structures aligned with the ion motion in the external magnetic field, whereas the «tongues» in the nanosecond case were randomly oriented. It was suggested that the twisting of femtosecond «tongues» is related to Hall effects. The experimental results are complemented by and consistent with numerical 3D magnetohydrodynamic simulations. The potential applications of these findings for astrophysical objects, such as short bursts in active galactic nuclei, are discussed. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

15 pages, 3359 KiB  
Article
Design and Implementation of an Energy Selector for Laser-Accelerated Protons
by Alicia Reija, David Esteban, Aarón Alejo, Jon Imanol Apiñaniz, Adrián Bembibre, José Benlliure, Michael Ehret, Javier García López, M. Carmen Jiménez-Ramos, Jessica Juan-Morales, Cruz Méndez, David Pascual, M. Dolores Rodríguez Frías, Mauricio Rodríguez Ramos and Michael Seimetz
Instruments 2024, 8(3), 36; https://doi.org/10.3390/instruments8030036 - 29 Jun 2024
Cited by 1 | Viewed by 1611
Abstract
Highly intense bunches of protons and ions with energies of several MeV/u can be generated with ultra-short laser pulses focused on solid targets. In the most common interaction regime, target normal sheath acceleration, the spectra of these particles are spread over a [...] Read more.
Highly intense bunches of protons and ions with energies of several MeV/u can be generated with ultra-short laser pulses focused on solid targets. In the most common interaction regime, target normal sheath acceleration, the spectra of these particles are spread over a wide range following a Maxwellian distribution. We report on the design and testing of a magnetic chicane for the selection of protons within a limited energy window. This consisted of two successive, anti-parallel dipole fields generated by cost-effective permanent C-magnets with customized configuration and longitudinal positions. The chicane was implemented into the target vessel of a petawatt laser facility with constraints on the direction of the incoming laser beam and guidance of the outgoing particles through a vacuum port. The separation of protons and carbon ions within distinct energy intervals was demonstrated and compared to a ray tracing code. Measurements with radiochromic film stacks indicated the selection of protons within [2.4, 6.9] MeV, [5.0, 8.4] MeV, or ≥6.9 MeV depending on the lateral dispersion. A narrow peak at 4.8 MeV was observed with a time-of-flight detector. Full article
Show Figures

Figure 1

18 pages, 30776 KiB  
Article
Classical Scattering of High-Energy Electrons off Ultra-Intense Laser Beams Taking into Account Radiation Reaction
by Ignacio Pastor, Ramón F. Álvarez-Estrada, Luis Roso and Francisco Castejón
Photonics 2024, 11(2), 113; https://doi.org/10.3390/photonics11020113 - 26 Jan 2024
Cited by 2 | Viewed by 2147
Abstract
The head-on scattering of electrons with energies from a few MeV to 5 GeV off ultrashort and ultra-intense laser pulses at petawatt intensities is investigated. Radiation reaction (RR) effects are included through the correction terms given by the Landau–Lifshitz equation. Full paraxial fields [...] Read more.
The head-on scattering of electrons with energies from a few MeV to 5 GeV off ultrashort and ultra-intense laser pulses at petawatt intensities is investigated. Radiation reaction (RR) effects are included through the correction terms given by the Landau–Lifshitz equation. Full paraxial fields for the laser are used, including their longitudinal electric and magnetic components, and both the fundamental Gaussian TEM00 mode as well as the orbital angular momentum (OAM) mode with (l,p)=(1,0) are studied. We compare the expected behavior, as regards the influence of RR, at near-infrared (NIR) and at vacuum ultraviolet (VUV) or X-ray wavelengths. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

15 pages, 11531 KiB  
Article
Laser Output Performance and Temporal Quality Enhancement at the J-KAREN-P Petawatt Laser Facility
by Hiromitsu Kiriyama, Yasuhiro Miyasaka, Akira Kon, Mamiko Nishiuchi, Akito Sagisaka, Hajime Sasao, Alexander S. Pirozhkov, Yuji Fukuda, Koichi Ogura, Kotaro Kondo, Nobuhiko Nakanii, Yuji Mashiba, Nicholas P. Dover, Liu Chang, Masaki Kando, Stefan Bock, Tim Ziegler, Thomas Püschel, Hans-Peter Schlenvoigt, Karl Zeil and Ulrich Schrammadd Show full author list remove Hide full author list
Photonics 2023, 10(9), 997; https://doi.org/10.3390/photonics10090997 - 31 Aug 2023
Cited by 21 | Viewed by 2977
Abstract
We described the output performance and temporal quality enhancement of the J-KAREN-P petawatt laser facility. After wavefront correction using a deformable mirror, focusing with an f/1.3 off-axis parabolic mirror delivered a peak intensity of 1022 W/cm2 at 0.3 PW power levels. [...] Read more.
We described the output performance and temporal quality enhancement of the J-KAREN-P petawatt laser facility. After wavefront correction using a deformable mirror, focusing with an f/1.3 off-axis parabolic mirror delivered a peak intensity of 1022 W/cm2 at 0.3 PW power levels. Technologies to improve the temporal contrast were investigated and tested. The origins of pre-pulses generated by post-pulses were identified and the elimination of most pre-pulses by removal of the post-pulses with wedged optics was achieved. A cascaded femtosecond optical parametric amplifier based on the utilization of the idler pulse rather than the signal pulse was developed for the complete elimination of the remaining pre-pulses. The orders of magnitude enhancement of the pedestal before the main pulse were obtained by using a higher surface quality of the convex mirror in the Öffner stretcher. A single plasma mirror was installed in the J-KAREN-P laser beam line for further contrast improvement of three orders of magnitude. The above developments indicate, although it has not been directly measured, the contrast can be as high as approximately 1015 up to 40 ps before the main pulse. We also showed an overview of the digital transformation (DX) of the system, enabling remote and automated operation of the J-KAREN-P laser facility. Full article
(This article belongs to the Special Issue Ultrashort Ultra-Intense (Petawatt) Laser)
Show Figures

Figure 1

11 pages, 2390 KiB  
Article
Multistage Smoothing Compressor for Multistep Pulse Compressors
by Shuman Du, Xiong Shen, Wenhai Liang, Peng Wang and Jun Liu
Appl. Sci. 2023, 13(9), 5518; https://doi.org/10.3390/app13095518 - 28 Apr 2023
Viewed by 1629
Abstract
Ultrahigh peak-power lasers are important scientific tools for frontier laser physics research, in which both the peak power improvement and operating safety are very important. Based on spatial-chirp-induced beam smoothing in both the near field and far field, a multistage-smoothing-based multistep pulse compressor [...] Read more.
Ultrahigh peak-power lasers are important scientific tools for frontier laser physics research, in which both the peak power improvement and operating safety are very important. Based on spatial-chirp-induced beam smoothing in both the near field and far field, a multistage-smoothing-based multistep pulse compressor (MS-MPC) is proposed here to further improve safety and operating convenience. In the MS-MPC, beam smoothing is not simply executed in the pre-compressor or main compressor but is separated into multiple stages. As a result, important and expensive optics are directly protected in every stage. The prism-pair-based pre-compressor induces a small spatial chirp, making it both easier to achieve than the previous multistep pulse compressor and sufficient to protect the first grating directly. Furthermore, the asymmetric four-grating compressor, which serves as the main compressor, induces a spatial chirp that further smooths the laser beam, protecting the last grating. In this way, a 10 s to 100 s petawatt laser pulse can be compressed with a single laser beam using the currently available optics. Additionally, an extra beam-smoothing stage can be added before the main amplifier to safeguard the largest amplification crystal from damage. The MS-MPC can be easily integrated into all existing PW laser facilities to improve their potential compressed pulse energy and operational safety. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

11 pages, 1645 KiB  
Communication
Pulse Measurement from a Polluted Frequency Resolved Optical Gating Trace Based on Half-Trace Retrieval Algorithm
by Liangze Pan, Xiaoping Ouyang, Xuejie Zhang, Cheng Liu and Jianqiang Zhu
Photonics 2023, 10(3), 255; https://doi.org/10.3390/photonics10030255 - 28 Feb 2023
Viewed by 2048
Abstract
A half-trace retrieval algorithm based on an extended-ptychographical iterative engine algorithm is proposed to reconstruct the temporal structure of pulse from a polluted and recorded frequency-resolved optical gating (FROG) trace that was modulated by poor spatial profile of output pulses, stray light, or [...] Read more.
A half-trace retrieval algorithm based on an extended-ptychographical iterative engine algorithm is proposed to reconstruct the temporal structure of pulse from a polluted and recorded frequency-resolved optical gating (FROG) trace that was modulated by poor spatial profile of output pulses, stray light, or misalignment of the measurement setup. In the proposed algorithm, the probe pulse and the gated pulse were retrieved simultaneously from a recorded FROG trace with a half-delay range, and the measured pulse was obtained by combining the different edges of the probe pulse and the gated pulse. Numerical simulations were carried out to verify the feasibility of the proposed algorithm. A single-shot picoseconds (ps)−THG−FROG setup with a 100-μJ ps laser system and an online ps−SHG−FROG setup in PW laser system were built to test the proposed algorithm experimentally. The results show that the temporal structure of pulses retrieved by the half-trace retrieval algorithm is closer to the real temporal structure than that retrieved by the conventional ptychographical algorithm when the recorded FROG trace is badly polluted. Full article
Show Figures

Figure 1

9 pages, 1901 KiB  
Article
High-Contrast Frontend for Petawatt-Scale Lasers Using an Optically Synchronized Picosecond Optical Parametric Chirped Pulse Amplification
by Hao Xue, Meizhi Sun, Linjun Li, Lijuan Qiu, Zhantao Lu, Xinglong Xie, Guoli Zhang, Xiao Liang, Ping Zhu, Xiangbing Zhu, Qingwei Yang, Ailin Guo, Haidong Zhu, Jun Kang and Dongjun Zhang
Photonics 2022, 9(12), 945; https://doi.org/10.3390/photonics9120945 - 7 Dec 2022
Cited by 1 | Viewed by 2304
Abstract
We present a new scheme of picosecond optical parametric chirped pulse amplification (OPCPA) in which a Fourier-transform-limit 5.0 ps pulse is optically sheared from a single-longitudinal-mode 1064 nm CW laser. The pulse is amplified and frequency-doubled as the pump in order to maintain [...] Read more.
We present a new scheme of picosecond optical parametric chirped pulse amplification (OPCPA) in which a Fourier-transform-limit 5.0 ps pulse is optically sheared from a single-longitudinal-mode 1064 nm CW laser. The pulse is amplified and frequency-doubled as the pump in order to maintain the pump narrow bandwidth and picosecond duration simultaneously, which is very important to ensure the high temporal contrast for an OPCPA amplifier. Combined with the cross-polarized wave generation (XPW), a compound frontend for the high-power femtosecond laser system that delivers a 1 Hz chirped pulse train is established. The experiments provide an output pulse energy of 17.1 mJ, a spectrum bandwidth 71 nm (FWHM), and a pulse duration 16.4 fs. The pulse contrast reaches 1:10−12 several picoseconds before the peak of the main pulse, which is the best value of the available measuring instruments. Full article
Show Figures

Figure 1

12 pages, 10921 KiB  
Article
Beam Smoothing Based on Prism Pair for Multistep Pulse Compressor in PW Lasers
by Shuman Du, Xiong Shen, Wenhai Liang, Peng Wang and Jun Liu
Photonics 2022, 9(7), 445; https://doi.org/10.3390/photonics9070445 - 23 Jun 2022
Cited by 5 | Viewed by 2930
Abstract
Ultra-short, ultra-intense lasers provide unprecedented experimental tools and extreme physical conditions, enabling the exploration of the frontiers of basic physics. Recently, a multistep pulse compressor (MPC) method was proposed to overcome the limitations of the size and the damage threshold of gratings in [...] Read more.
Ultra-short, ultra-intense lasers provide unprecedented experimental tools and extreme physical conditions, enabling the exploration of the frontiers of basic physics. Recently, a multistep pulse compressor (MPC) method was proposed to overcome the limitations of the size and the damage threshold of gratings in the compressor for the realization of a higher-peak-power laser. In the MPC method, beam smoothing is an important process in the pre-compressor. In this study, beam smoothing based on prism pairs is investigated, and the spatial profiles, as well as spectral dispersion properties, are analyzed. The simulation results demonstrate that the prism pair can effectively smooth the laser beam. Furthermore, beam smoothing is found to be more efficient with a shorter separation distance if two prism pairs are arranged to induce spatial dispersion in one or two directions. The beam smoothing results obtained in this study will help optimize optical designs in petawatt (PW) laser systems, thereby improving their output and operational safety. Full article
Show Figures

Figure 1

22 pages, 3415 KiB  
Article
Ultrafast Laser Material Damage Simulation—A New Look at an Old Problem
by Simin Zhang, Carmen Menoni, Vitaly Gruzdev and Enam Chowdhury
Nanomaterials 2022, 12(8), 1259; https://doi.org/10.3390/nano12081259 - 8 Apr 2022
Cited by 20 | Viewed by 3580
Abstract
The chirped pulse amplification technique has enabled the generation of pulses of a few femtosecond duration with peak powers multi-Tera and Peta–Watt in the near infrared. Its implementation to realize even shorter pulse duration, higher energy, and higher repetition rate laser systems relies [...] Read more.
The chirped pulse amplification technique has enabled the generation of pulses of a few femtosecond duration with peak powers multi-Tera and Peta–Watt in the near infrared. Its implementation to realize even shorter pulse duration, higher energy, and higher repetition rate laser systems relies on overcoming the limitations imposed by laser damage of critical components. In particular, the laser damage of coatings in the amplifiers and in post-compression optics have become a bottleneck. The robustness of optical coatings is typically evaluated numerically through steady-state simulations of electric field enhancement in multilayer stacks. However, this approach cannot capture crucial characteristics of femtosecond laser induced damage (LID), as it only considers the geometry of the multilayer stack and the optical properties of the materials composing the stack. This approach neglects that in the interaction of an ultrashort pulse and the materials there is plasma generation and associated material modifications. Here, we present a numerical approach to estimate the LID threshold of dielectric multilayer coatings based on strong field electronic dynamics. In this dynamic scheme, the electric field propagation, photoionization, impact ionization, and electron heating are incorporated through a finite-difference time-domain algorithm. We applied our method to simulate the LID threshold of bulk fused silica, and of multilayer dielectric mirrors and gratings. The results are then compared with experimental measurements. The salient aspects of our model, such as the implementation of the Keldysh photoionization model, the impact ionization model, the electron collision model for ‘low’-temperature, dense plasma, and the LID threshold criterion for few-cycle pulses are discussed. Full article
Show Figures

Figure 1

11 pages, 4534 KiB  
Article
Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration
by Meng Liu, Jia-Xiang Gao, Wei-Min Wang and Yu-Tong Li
Appl. Sci. 2022, 12(6), 2924; https://doi.org/10.3390/app12062924 - 13 Mar 2022
Cited by 3 | Viewed by 2791
Abstract
Laser-driven radiation pressure acceleration (RPA) is one of the most promising candidates to achieve quasi-monoenergetic ion beams. In particular, many petawatt systems are under construction or in the planning phase. Here, a stable radiation pressure acceleration (SRPA) scheme is investigated, in which a [...] Read more.
Laser-driven radiation pressure acceleration (RPA) is one of the most promising candidates to achieve quasi-monoenergetic ion beams. In particular, many petawatt systems are under construction or in the planning phase. Here, a stable radiation pressure acceleration (SRPA) scheme is investigated, in which a circularly-polarized (CP) laser pulse illuminates a CH2 thin foil followed by a large-scale near-critical-density (NCD) plasma. In the laser-foil interaction, a longitudinal charge-separated electric field is excited to accelerate ions together with the heating of electrons. The heating can be alleviated by the continuous replenishment of cold electrons of the NCD plasma as the laser pulse and the pre-accelerated ions enter into the NCD plasma. With the relativistically transparent propagation of the pulse in the NCD plasma, the accelerating field with large amplitude is persistent, and its propagating speed becomes relatively low, which further accelerates the pre-accelerated ions. Our particle-in-cell (PIC) simulation shows that the SRPA scheme works efficiently with the laser intensity ranging from 6.85×1021 W cm2 to 4.38×1023 W cm2, e.g., a well-collimated quasi-monoenergetic proton beam with peak energy ∼1.2 GeV can be generated by a 2.74 × 1022 W cm2 pulse, and the energy conversion efficiency from the laser pulse to the proton beam is about 16%. The QED effects have slight influence on this SRPA scheme. Full article
(This article belongs to the Special Issue Progress on Laser Plasma Interaction)
Show Figures

Figure 1

8 pages, 3362 KiB  
Article
Wide-Aperture Bimorph Deformable Mirror for Beam Focusing in 4.2 PW Ti:Sa Laser
by Vadim Samarkin, Alexander Alexandrov, Ilya Galaktionov, Alexis Kudryashov, Alexander Nikitin, Alexey Rukosuev, Vladimir Toporovsky and Julia Sheldakova
Appl. Sci. 2022, 12(3), 1144; https://doi.org/10.3390/app12031144 - 22 Jan 2022
Cited by 25 | Viewed by 2804
Abstract
The bimorph deformable mirror with a diameter of 320 mm, including 127 control electrodes, has been developed and tested. The flatness of the initial mirror surface of about 1 μm (P-V) was achieved by mechanically adjusting the mirror substrate fixed in the metal [...] Read more.
The bimorph deformable mirror with a diameter of 320 mm, including 127 control electrodes, has been developed and tested. The flatness of the initial mirror surface of about 1 μm (P-V) was achieved by mechanically adjusting the mirror substrate fixed in the metal mount. To correct for the aberrations and improve the beam focusing in the petawatt Ti:Sa laser, the wide-aperture adaptive optical system with the deformable mirror and Shack–Hartmann wavefront sensor was developed. Correction of the wavefront aberrations in the 4.2 PW Ti:Sa laser using the adaptive system provided increases the intensity in the focusing plane to a value of 1.1 × 1023 W/cm2 Full article
(This article belongs to the Special Issue Recent Advances and Applications of Adaptive Optics)
Show Figures

Figure 1

21 pages, 5622 KiB  
Article
Towards High-Repetition-Rate Fast Neutron Sources Using Novel Enabling Technologies
by Franziska Treffert, Chandra B. Curry, Todd Ditmire, Griffin D. Glenn, Hernan J. Quevedo, Markus Roth, Christopher Schoenwaelder, Marc Zimmer, Siegfried H. Glenzer and Maxence Gauthier
Instruments 2021, 5(4), 38; https://doi.org/10.3390/instruments5040038 - 3 Dec 2021
Cited by 13 | Viewed by 5480 | Correction
Abstract
High-flux, high-repetition-rate neutron sources are of interest in studying neutron-induced damage processes in materials relevant to fusion, ultimately guiding designs for future fusion reactors. Existing and upcoming petawatt laser systems show great potential to fulfill this need. Here, we present a platform for [...] Read more.
High-flux, high-repetition-rate neutron sources are of interest in studying neutron-induced damage processes in materials relevant to fusion, ultimately guiding designs for future fusion reactors. Existing and upcoming petawatt laser systems show great potential to fulfill this need. Here, we present a platform for producing laser-driven neutron beams based on a high-repetition-rate cryogenic liquid jet target and an adaptable stacked lithium and beryllium converter. Selected ion and neutron diagnostics enable monitoring of the key parameters of both beams. A first single-shot proof-of-principle experiment successfully implemented the presented platform at the Texas Petawatt Laser facility, achieving efficient generation of a forward-directed neutron beam. This work lays the foundation for future high-repetition-rate experiments towards pulsed, high-flux, fast neutron sources for radiation-induced effect studies relevant for fusion science and applications that require neutron beams with short pulse duration. Full article
Show Figures

Figure 1

19 pages, 4094 KiB  
Article
Numerical Simulations of Laser-Induced Shock Experiments on Graphite
by Alberto Morena and Lorenzo Peroni
Materials 2021, 14(22), 7079; https://doi.org/10.3390/ma14227079 - 22 Nov 2021
Cited by 5 | Viewed by 3023
Abstract
The development of particle accelerators with ever increasing energies is raising the standards of the structures which could interact with the particle beams. These structures could be subjected to strong shockwaves in accidental scenarios. In order to test materials in such conditions, one [...] Read more.
The development of particle accelerators with ever increasing energies is raising the standards of the structures which could interact with the particle beams. These structures could be subjected to strong shockwaves in accidental scenarios. In order to test materials in such conditions, one of the most promising techniques is the impact with high-power lasers. In view of the setting up of future experimental campaigns within the Petawatt High-Energy Laser for Heavy Ion Experiments (PHELIX), the present work aims at the development of a numerical approach for the simulation of graphite impacted by laser beams. In particular, the focus is on the spallation damage caused by shockwave reflection: a sufficiently intense laser beam could ablate the matter until plasma conditions, hence producing a shockwave which could travel inside the material and reach a free surface. A numerical model to properly describe the spall fragmentation of graphite has been calibrated on the basis of literature-available experimental data. The numerical approach is a ‘two-step’ procedure: the first step is the definition of the laser–matter interaction and the second one concerns the description of the shockwave evolution into matter. The simulations satisfactorily reproduce the dynamic response of graphite impacted by two different laser sources with various intensities, despite the difficulties of characterising a phenomenon which is extremely fast and chaotic. Full article
(This article belongs to the Special Issue Materials and Modelling for Extreme Loading Conditions)
Show Figures

Figure 1

12 pages, 2585 KiB  
Review
Multi-GeV Laser Wakefield Electron Acceleration with PW Lasers
by Hyung Taek Kim, Vishwa Bandhu Pathak, Calin Ioan Hojbota, Mohammad Mirzaie, Ki Hong Pae, Chul Min Kim, Jin Woo Yoon, Jae Hee Sung and Seong Ku Lee
Appl. Sci. 2021, 11(13), 5831; https://doi.org/10.3390/app11135831 - 23 Jun 2021
Cited by 26 | Viewed by 8638
Abstract
Laser wakefield electron acceleration (LWFA) is an emerging technology for the next generation of electron accelerators. As intense laser technology has rapidly developed, LWFA has overcome its limitations and has proven its possibilities to facilitate compact high-energy electron beams. Since high-power lasers reach [...] Read more.
Laser wakefield electron acceleration (LWFA) is an emerging technology for the next generation of electron accelerators. As intense laser technology has rapidly developed, LWFA has overcome its limitations and has proven its possibilities to facilitate compact high-energy electron beams. Since high-power lasers reach peak power beyond petawatts (PW), LWFA has a new chance to explore the multi-GeV energy regime. In this article, we review the recent development of multi-GeV electron acceleration with PW lasers and discuss the limitations and perspectives of the LWFA with high-power lasers. Full article
(This article belongs to the Special Issue Laser-Driven Accelerators, Radiations, and Their Applications)
Show Figures

Figure 1

9 pages, 3308 KiB  
Article
Effect of Electric Field Regulation on Laser Damage of Composite Low-Dispersion Mirrors
by Yuhui Zhang, Yanzhi Wang, Hongbo He, Ruiyi Chen, Zhihao Wang, Dawei Li, Meiping Zhu, Yuanan Zhao, Yunxia Jin, Kui Yi, Yuchuan Shao, Yuxin Leng, Ruxin Li and Jianda Shao
Coatings 2021, 11(1), 65; https://doi.org/10.3390/coatings11010065 - 8 Jan 2021
Cited by 6 | Viewed by 2825
Abstract
Low dispersion mirrors are important because of their potential use in petawatt (PW) laser systems. The following two methods are known to increase the laser-induced damage threshold of low dispersion optical components: use of a wide-bandgap-material protective layer and control of electric field [...] Read more.
Low dispersion mirrors are important because of their potential use in petawatt (PW) laser systems. The following two methods are known to increase the laser-induced damage threshold of low dispersion optical components: use of a wide-bandgap-material protective layer and control of electric field distribution. By controlling the electric field distribution of composite low-dispersion mirrors (CLDM), we shift the electric field peaks from the material interface into the wide-bandgap material. However, the damage threshold of modified-electric-field composite low dispersion mirror (E-CLDM) does not increase. Damage morphology shows that the initial damaged layer is Ta2O5. An immediate cause is the enhancement of the electric field in internal layers caused by surface electric field regulation. Theoretical calculations show that the damage threshold of CLDM or E-CLDM is determined by the competition results of bandgap and the electric field of layer materials. The CLDM with different materials or different protective layer periods can be optimally designed according to the electric field competition effect in the future. Full article
Show Figures

Figure 1

Back to TopTop