High-Contrast Frontend for Petawatt-Scale Lasers Using an Optically Synchronized Picosecond Optical Parametric Chirped Pulse Amplification
Abstract
:1. Introduction
2. Experimental Setup and Results
3. Discussion and Outlook
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perry, M.D.; Pennington, D.; Stuart, B.C.; Tietbohl, G.; Brown, J.A.; Herman, S.; Golick, B.; Kartz, M.; Miller, J.; Powell, H.T.; et al. Petawatt laser pulses. Opt. Lett. 1999, 24, 160–163. [Google Scholar] [CrossRef]
- Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.-C.F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 2019, 7, e54. [Google Scholar] [CrossRef]
- Dabu, R. High power femtosecond lasers at ELI-NP. AIP Conf. Proc. 2015, 1645, 219. [Google Scholar]
- Lureau, F.; Laux, S.; Casagrande, O.; Chalus, O.; Pellegrina, A.; Matras, G.; Radier, C.; Rey, G.; Ricaud, S.; Herriot, S.; et al. Latest results of 10 petawatt laser beamline for ELi nuclear physics infrastructure. Proc. SPIE 2016, 9726, 972613. [Google Scholar]
- Rus, B.; Bakule, P.; Kramer, D.; Naylon, J.; Thoma, J.; Fibrich, M.; Green, J.T.; Lagron, J.C.; Antipenkov, R.; Bartoníček, J.; et al. ELI-Beamlines: Progress in development of next generation short-pulse laser systems. Proc. SPIE 2017, 10241, 102410J. [Google Scholar]
- Kühn, S.; Dumergue, M.; Kahaly, S.; Mondal, S.; Füle, M.; Csizmadia, T.; Farkas, B.; Major, B.; Várallyay, Z.; Cormier, E.; et al. The ELI-ALPS facility: The next generation of attosecond sources. J. Phys. B At. Mol. Opt. Phys. 2017, 13, 132002. [Google Scholar] [CrossRef]
- Hernandez-Gomez, C.; Blake, S.; Chekhlov, O.; Clarke, R.; Dunne, A.; Galimberti, M.; Hancock, S.; Heathcote, R.; Holligan, P.; Lyachev, A.; et al. The vulcan 10 pw project. J. Phys. Conf. Ser. 2010, 244, 32006. [Google Scholar] [CrossRef] [Green Version]
- Lozhkarev, V.; Freidman, G.; Ginzburg, V.; Katin, E.; Khazanov, E.; Kirsanov, A.; Luchinin, G.; Mal’shakov, A.N.; Martyanov, M.A.; Palashov, O.V.; et al. Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD* P crystals. Laser Phys. Lett. 2007, 4, 421–427. [Google Scholar] [CrossRef]
- Zou, J.P.; Le Blanc, C.; Papadopoulos, D.N.; Ch´eriaux, G.; Georges, P.; Mennerat, G.; Druon, F.; Lecherbourg, L.; Pellegrina, A.; Ramirez, P.; et al. Design and current progress of the Apollon 10 PW project. High Power Laser Sci. Eng. 2015, 3, e2. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, D.N.; Zou, J.P.; Le Blanc, C.; Ch´eriaux, G.; Georges, P.; Druon, F.; Mennerat, G.; Ramirez, P.; Martin, L.; Fr´eneaux, A.; et al. The Apollon 10 PW laser: Experimental and theoretical investigation of the temporal characteristics. High Power Laser Sci. Eng. 2016, 4, e34. [Google Scholar] [CrossRef]
- Papadopoulos, D.N.; Ramirez, P.; Genevrier, K.; Ranc, L.; Lebas, N.; Pellegrina, A.; Le Blanc, C.; Monot, P.; Martin, L.; Zou, J.P.; et al. High-contrast 10 fs OPCPA-based frontend for multi-PW laser chains. Opt. Lett. 2017, 42, 3530–3533. [Google Scholar] [CrossRef]
- Meyerhofer, D.D. OMEGA EP OPAL: A Path to a 75-PW Laser System. In Proceedings of the 56th Annual Meeting of the American Physical Society, Division of Plasma Physics, New Orleans, LA, USA, 27–31 October 2014. [Google Scholar]
- Xie, X.; Zhu, J.; Yang, Q.; Kang, J.; Zhu, H.; Guo, A.; Zhu, P.; Gao, Q. Multi Petawatt Laser Design for the SHENGUANG II Laser Facility. Proc. SPIE 2015, 9513, 95130A. [Google Scholar]
- Zhu, J.; Xie, X.; Sun, M.; Kang, J.; Yang, Q.; Guo, A.; Zhu, H.; Zhu, P.; Gao, Q.; Liang, X.; et al. Analysis and Construction Status of SG-Ⅱ 5PW Laser Facility. High Power Laser Sci. Eng. 2018, 6, e29. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Zhou, K.; Zuo, Y.; Zhu, Q.; Su, J.; Wang, X.; Wang, X.; Huang, X.; Jiang, X.; Jiang, D.; et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification. Opt. Lett. 2017, 42, 2014–2017. [Google Scholar] [CrossRef]
- Chu, Y.; Gan, Z.; Liang, X.; Yu, L.; Lu, X.; Wang, C.; Wang, X.; Xu, L.; Lu, H.; Yin, D.; et al. High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses. Opt. Lett. 2015, 40, 5011–5014. [Google Scholar] [CrossRef]
- Sun, J.H.; Lee, H.W.; Yoo, J.Y.; Yoon, J.W.; Lee, C.W.; Yang, J.M.; Son, Y.J.; Jang, Y.H.; Lee, S.K.; Nam, C.H. 4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz. Opt. Lett. 2017, 42, 2058. [Google Scholar]
- Yoon, J.W.; Jeon, C.; Shin, J.; Lee, S.K.; Lee, H.W.; Choi, I.W.; Kim, H.T.; Sung, J.H.; Nam, C.H. Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser. Opt. Express 2019, 27, 20412–20420. [Google Scholar] [CrossRef]
- François, L.; Matras, G.; Chalus, O.; Derycke, C.; Morbieu, T.; Radier, C.; Casagrande, O.; Laux, S.; Ricaud, S.; Rey, G.; et al. High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability. High Power Laser Sci. Eng. 2020, 8. [Google Scholar]
- Yu, L.; Xu, Y.; Liu, Y.; Li, Y.; Li, S.; Liu, Z.; Li, W.; Wu, F.; Yang, X.; Yang, Y.; et al. High-contrast front end based on cascaded XPWG and femtosecond OPA for 10-PW-level Ti: Sapphire laser. Opt. Express 2018, 26, 2625–2633. [Google Scholar] [CrossRef]
- Thaury, C.; Quéré, F.; Geindre, J.P.; Levy, A.; Ceccotti, T.; Monot, P.; Bougeard, M.; Réau, F.; d’Oliveira, P.; Audebert, P.; et al. Plasma mirrors for ultrahigh-intensity optics. Nat. Phys. 2007, 3, 424–429. [Google Scholar] [CrossRef]
- Fourmaux, S.; Payeur, S.; Buffechoux, S.; Lassonde, P.; St-Pierre, C.; Martin, F.; Kieffer, J.C. Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system. Opt. Express 2011, 19, 8486–8497. [Google Scholar] [CrossRef]
- Liu, J.; Okamura, K.; Kida, Y.; Kobayashi, T. Temporal contrast enhancement of femtosecond pulses by a self-diffraction process in a bulk Kerr medium. Opt. Express 2010, 18, 22245–22254. [Google Scholar] [CrossRef]
- Chvykov, V.; Rousseau, P.; Reed, S.; Kalinchenko, G.; Yanovsky, V. Generation of 1011 contrast 50 TW laser pulses. Opt. Lett. 2006, 31, 1456–1458. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.; Li, W.; Zhang, Q.; Han, H.; Teng, H.; Wei, Z. Contrast enhancement in a Ti:sapphire chirped-pulse amplification laser system with a noncollinear femtosecond optical-parametric amplifier. Opt. Lett. 2010, 35, 3096–3098. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A.M.; Cirmi, G.; Brida, D.; Kärtner, F.X.; Cerullo, G. Generation of <7 fs pulses at 800 nm from ablue-pumped optical parametric amplifier at degeneracy. Opt. Lett. 2009, 34, 3592–3594. [Google Scholar]
- Huang, Y.; Zhang, C.; Xu, Y.; Li, D.; Leng, Y.; Li, R.; Xu, Z. Ultrashort pulse temporal contrast enhancement based on noncollinear optical-parametric amplification. Opt. Lett. 2011, 36, 781–783. [Google Scholar] [CrossRef] [Green Version]
- Chalus, O.; Pellegrina, A.; Ricaud, S.; Casagrande, O.; Derycke, C.; Soujaeff, A.; Rey, G.; Radier, C.; Matras, G.; Boudjemaa, L.; et al. High contrast broadband seeder for multi-PW laser system. Proc. SPIE 2016, 9726, 972611, Solid State Lasers XXV: Technology and Devices, (16 March 2016). [Google Scholar] [CrossRef]
- Diouf, M.; Lin, Z.; Harling, M.; Toussaint, K.C., Jr. Demonstration of speckle resistance using space–Time light sheets. Sci. Rep. 2022, 12, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Pan, X.; Li, X.-C.; Lin, Z.-Q. Optimization of Pulse Temporal Contrast in Optical Parametric Chirped Pulse Amplification. Chin. Phys. Lett. 2009, 26, 24211. [Google Scholar]
- Indra, L.; Batysta, F.; Hříbek, P.; Novák, J.; Hubka, Z.; Green, J.T.; Antipenkov, R.; Boge, R.; Naylon, J.A.; Bakule, P.; et al. Picosecond pulse generated supercontinuum as a stable seed for OPCPA. Opt. Lett. 2017, 42, 843–846. [Google Scholar] [CrossRef]
- Lv, S.; Lu, S.; Chen, M. Suppressing self-focusing effect in high peak power Nd: YAG picosecond Laser amplifier system. Infrared Laser Eng. 2019, 48, 69–76. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, H.; Sun, M.; Li, L.; Qiu, L.; Lu, Z.; Xie, X.; Zhang, G.; Liang, X.; Zhu, P.; Zhu, X.; et al. High-Contrast Frontend for Petawatt-Scale Lasers Using an Optically Synchronized Picosecond Optical Parametric Chirped Pulse Amplification. Photonics 2022, 9, 945. https://doi.org/10.3390/photonics9120945
Xue H, Sun M, Li L, Qiu L, Lu Z, Xie X, Zhang G, Liang X, Zhu P, Zhu X, et al. High-Contrast Frontend for Petawatt-Scale Lasers Using an Optically Synchronized Picosecond Optical Parametric Chirped Pulse Amplification. Photonics. 2022; 9(12):945. https://doi.org/10.3390/photonics9120945
Chicago/Turabian StyleXue, Hao, Meizhi Sun, Linjun Li, Lijuan Qiu, Zhantao Lu, Xinglong Xie, Guoli Zhang, Xiao Liang, Ping Zhu, Xiangbing Zhu, and et al. 2022. "High-Contrast Frontend for Petawatt-Scale Lasers Using an Optically Synchronized Picosecond Optical Parametric Chirped Pulse Amplification" Photonics 9, no. 12: 945. https://doi.org/10.3390/photonics9120945
APA StyleXue, H., Sun, M., Li, L., Qiu, L., Lu, Z., Xie, X., Zhang, G., Liang, X., Zhu, P., Zhu, X., Yang, Q., Guo, A., Zhu, H., Kang, J., & Zhang, D. (2022). High-Contrast Frontend for Petawatt-Scale Lasers Using an Optically Synchronized Picosecond Optical Parametric Chirped Pulse Amplification. Photonics, 9(12), 945. https://doi.org/10.3390/photonics9120945