Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,128)

Search Parameters:
Keywords = personal network analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1318 KiB  
Review
A Genetically-Informed Network Model of Myelodysplastic Syndrome: From Splicing Aberrations to Therapeutic Vulnerabilities
by Sanghyeon Yu, Junghyun Kim and Man S. Kim
Genes 2025, 16(8), 928; https://doi.org/10.3390/genes16080928 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Myelodysplastic syndrome (MDS) is a heterogeneous clonal hematopoietic disorder characterized by ineffective hematopoiesis and leukemic transformation risk. Current therapies show limited efficacy, with ~50% of patients failing hypomethylating agents. This review aims to synthesize recent discoveries through an integrated network model and [...] Read more.
Background/Objectives: Myelodysplastic syndrome (MDS) is a heterogeneous clonal hematopoietic disorder characterized by ineffective hematopoiesis and leukemic transformation risk. Current therapies show limited efficacy, with ~50% of patients failing hypomethylating agents. This review aims to synthesize recent discoveries through an integrated network model and examine translation into precision therapeutic approaches. Methods: We reviewed breakthrough discoveries from the past three years, analyzing single-cell multi-omics technologies, epitranscriptomics, stem cell architecture analysis, and precision medicine approaches. We examined cell-type-specific splicing aberrations, distinct stem cell architectures, epitranscriptomic modifications, and microenvironmental alterations in MDS pathogenesis. Results: Four interconnected mechanisms drive MDS: genetic alterations (splicing factor mutations), aberrant stem cell architecture (CMP-pattern vs. GMP-pattern), epitranscriptomic dysregulation involving pseudouridine-modified tRNA-derived fragments, and microenvironmental changes. Splicing aberrations show cell-type specificity, with SF3B1 mutations preferentially affecting erythroid lineages. Stem cell architectures predict therapeutic responses, with CMP-pattern MDS achieving superior venetoclax response rates (>70%) versus GMP-pattern MDS (<30%). Epitranscriptomic alterations provide independent prognostic information, while microenvironmental changes mediate treatment resistance. Conclusions: These advances represent a paradigm shift toward personalized MDS medicine, moving from single-biomarker to comprehensive molecular profiling guiding multi-target strategies. While challenges remain in standardizing molecular profiling and developing clinical decision algorithms, this systems-level understanding provides a foundation for precision oncology implementation and overcoming current therapeutic limitations. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
23 pages, 3427 KiB  
Article
Visual Narratives and Digital Engagement: Decoding Seoul and Tokyo’s Tourism Identity Through Instagram Analytics
by Seung Chul Yoo and Seung Mi Kang
Tour. Hosp. 2025, 6(3), 149; https://doi.org/10.3390/tourhosp6030149 (registering DOI) - 1 Aug 2025
Abstract
Social media platforms like Instagram significantly shape destination images and influence tourist behavior. Understanding how different cities are represented and perceived on these platforms is crucial for effective tourism marketing. This study provides a comparative analysis of Instagram content and engagement patterns in [...] Read more.
Social media platforms like Instagram significantly shape destination images and influence tourist behavior. Understanding how different cities are represented and perceived on these platforms is crucial for effective tourism marketing. This study provides a comparative analysis of Instagram content and engagement patterns in Seoul and Tokyo, two major Asian metropolises, to derive actionable marketing insights. We collected and analyzed 59,944 public Instagram posts geotagged or location-tagged within Seoul (n = 29,985) and Tokyo (n = 29,959). We employed a mixed-methods approach involving content categorization using a fine-tuned convolutional neural network (CNN) model, engagement metric analysis (likes, comments), Valence Aware Dictionary and sEntiment Reasoner (VADER) sentiment analysis and thematic classification of comments, geospatial analysis (Kernel Density Estimation [KDE], Moran’s I), and predictive modeling (Gradient Boosting with SHapley Additive exPlanations [SHAP] value analysis). A validation analysis using balanced samples (n = 2000 each) was conducted to address Tokyo’s lower geotagged data proportion. While both cities showed ‘Person’ as the dominant content category, notable differences emerged. Tokyo exhibited higher like-based engagement across categories, particularly for ‘Animal’ and ‘Food’ content, while Seoul generated slightly more comments, often expressing stronger sentiment. Qualitative comment analysis revealed Seoul comments focused more on emotional reactions, whereas Tokyo comments were often shorter, appreciative remarks. Geospatial analysis identified distinct hotspots. The validation analysis confirmed these spatial patterns despite Tokyo’s data limitations. Predictive modeling highlighted hashtag counts as the key engagement driver in Seoul and the presence of people in Tokyo. Seoul and Tokyo project distinct visual narratives and elicit different engagement patterns on Instagram. These findings offer practical implications for destination marketers, suggesting tailored content strategies and location-based campaigns targeting identified hotspots and specific content themes. This study underscores the value of integrating quantitative and qualitative analyses of social media data for nuanced destination marketing insights. Full article
Show Figures

Figure 1

14 pages, 1502 KiB  
Review
A Bibliographic Analysis of Multi-Risk Assessment Methodologies for Natural Disaster Prevention
by Gilles Grandjean
GeoHazards 2025, 6(3), 41; https://doi.org/10.3390/geohazards6030041 (registering DOI) - 1 Aug 2025
Abstract
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the [...] Read more.
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the worsening of this situation. First, climate change has heightened the incidence and, in conjunction, the seriousness of geohazards that often occur with each other. Second, the complexity of these impacts on societies is drastically exacerbated by the interconnections between urban areas, industrial sites, power or water networks, and vulnerable ecosystems. In front of the recent research on this problem, and the necessity to figure out the best scientific positioning to address it, we propose, through this review analysis, to revisit existing literature on multi-risk assessment methodologies. By this means, we emphasize the new recent research frameworks able to produce determinant advances. Our selection corpus identifies pertinent scientific publications from various sources, including personal bibliographic databases, but also OpenAlex outputs and Web of Science contents. We evaluated these works from different criteria and key findings, using indicators inspired by the PRISMA bibliometric method. Through this comprehensive analysis of recent advances in multi-risk assessment approaches, we highlight main issues that the scientific community should address in the coming years, we identify the different kinds of geohazards concerned, the way to integrate them in a multi-risk approach, and the characteristics of the presented case studies. The results underscore the urgency of developing robust, adaptable methodologies, effectively able to capture the complexities of multi-risk scenarios. This challenge should be at the basis of the keys and solutions contributing to more resilient socioeconomic systems. Full article
Show Figures

Figure 1

29 pages, 959 KiB  
Review
Machine Learning-Driven Insights in Cancer Metabolomics: From Subtyping to Biomarker Discovery and Prognostic Modeling
by Amr Elguoshy, Hend Zedan and Suguru Saito
Metabolites 2025, 15(8), 514; https://doi.org/10.3390/metabo15080514 (registering DOI) - 1 Aug 2025
Abstract
Cancer metabolic reprogramming plays a critical role in tumor progression and therapeutic resistance, underscoring the need for advanced analytical strategies. Metabolomics, leveraging mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, offers a comprehensive and functional readout of tumor biochemistry. By enabling both targeted [...] Read more.
Cancer metabolic reprogramming plays a critical role in tumor progression and therapeutic resistance, underscoring the need for advanced analytical strategies. Metabolomics, leveraging mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, offers a comprehensive and functional readout of tumor biochemistry. By enabling both targeted metabolite quantification and untargeted profiling, metabolomics captures the dynamic metabolic alterations associated with cancer. The integration of metabolomics with machine learning (ML) approaches further enhances the interpretation of these complex, high-dimensional datasets, providing powerful insights into cancer biology from biomarker discovery to therapeutic targeting. This review systematically examines the transformative role of ML in cancer metabolomics. We discuss how various ML methodologies—including supervised algorithms (e.g., Support Vector Machine, Random Forest), unsupervised techniques (e.g., Principal Component Analysis, t-SNE), and deep learning frameworks—are advancing cancer research. Specifically, we highlight three major applications of ML–metabolomics integration: (1) cancer subtyping, exemplified by the use of Similarity Network Fusion (SNF) and LASSO regression to classify triple-negative breast cancer into subtypes with distinct survival outcomes; (2) biomarker discovery, where Random Forest and Partial Least Squares Discriminant Analysis (PLS-DA) models have achieved >90% accuracy in detecting breast and colorectal cancers through biofluid metabolomics; and (3) prognostic modeling, demonstrated by the identification of race-specific metabolic signatures in breast cancer and the prediction of clinical outcomes in lung and ovarian cancers. Beyond these areas, we explore applications across prostate, thyroid, and pancreatic cancers, where ML-driven metabolomics is contributing to earlier detection, improved risk stratification, and personalized treatment planning. We also address critical challenges, including issues of data quality (e.g., batch effects, missing values), model interpretability, and barriers to clinical translation. Emerging solutions, such as explainable artificial intelligence (XAI) approaches and standardized multi-omics integration pipelines, are discussed as pathways to overcome these hurdles. By synthesizing recent advances, this review illustrates how ML-enhanced metabolomics bridges the gap between fundamental cancer metabolism research and clinical application, offering new avenues for precision oncology through improved diagnosis, prognosis, and tailored therapeutic strategies. Full article
(This article belongs to the Special Issue Nutritional Metabolomics in Cancer)
Show Figures

Figure 1

49 pages, 5272 KiB  
Article
Redefining Urban Boundaries for Health Planning Through an Equity Lens: A Socio-Demographic Spatial Analysis Model in the City of Rome
by Elena Mazzalai, Susanna Caminada, Lorenzo Paglione and Livia Maria Salvatori
Land 2025, 14(8), 1574; https://doi.org/10.3390/land14081574 - 31 Jul 2025
Abstract
Urban health planning requires a multi-scalar understanding of the territory, capable of capturing socio-economic inequalities and health needs at the local level. In the case of Rome, current administrative subdivisions—Urban Zones (Zone Urbanistiche)—are too large and internally heterogeneous to serve as [...] Read more.
Urban health planning requires a multi-scalar understanding of the territory, capable of capturing socio-economic inequalities and health needs at the local level. In the case of Rome, current administrative subdivisions—Urban Zones (Zone Urbanistiche)—are too large and internally heterogeneous to serve as effective units for equitable health planning. This study presents a methodology for the territorial redefinition of Rome’s Municipality III, aimed at supporting healthcare planning through an integrated analysis of census sections. These were grouped using a combination of census-based socio-demographic indicators (educational attainment, employment status, single-person households) and real estate values (OMI data), alongside administrative and road network data. The resulting territorial units—21 newly defined Mesoareas—are smaller than Urban Zones but larger than individual census sections and correspond to socio-territorially homogeneous neighborhoods; this structure enables a more nuanced spatial understanding of health-related inequalities. The proposed model is replicable, adaptable to other urban contexts, and offers a solid analytical basis for more equitable and targeted health planning, as well as for broader urban policy interventions aimed at promoting spatial justice. Full article
22 pages, 1945 KiB  
Review
A Bibliometric Analysis of Chrononutrition, Cardiometabolic Risk, and Public Health in International Research (1957–2025)
by Emily Gabriela Burgos-García, Katiuska Mederos-Mollineda, Darley Jhosue Burgos-Angulo, David Job Morales-Neira and Dennis Alfredo Peralta-Gamboa
Int. J. Environ. Res. Public Health 2025, 22(8), 1205; https://doi.org/10.3390/ijerph22081205 - 31 Jul 2025
Abstract
Introduction: Breakfast has emerged as a critical factor in preventing cardiovascular diseases, driven not only by its nutritional content but also by its alignment with circadian rhythms. However, gaps remain in the literature regarding its clinical impact and thematic evolution. Objective: [...] Read more.
Introduction: Breakfast has emerged as a critical factor in preventing cardiovascular diseases, driven not only by its nutritional content but also by its alignment with circadian rhythms. However, gaps remain in the literature regarding its clinical impact and thematic evolution. Objective: To characterize the global scientific output on the relationship between breakfast quality and cardiovascular health through a systematic bibliometric analysis. Methodology: The PRISMA 2020 protocol was applied to select 1436 original articles indexed in Scopus and Web of Science (1957–2025). Bibliometric tools, including R (v4.4.2) and VOSviewer (v1.6.19) were used to map productivity, impact, collaboration networks, and emerging thematic areas. Results: Scientific output has grown exponentially since 2000. The most influential journals are the American Journal of Clinical Nutrition, Nutrients, and Diabetes Care. The United States, United Kingdom, and Japan lead in publication volume and citations, with increasing participation from Latin American countries. Thematic trends have shifted from traditional clinical markers to innovative approaches such as chrononutrition, digital health, and personalized nutrition. However, methodological gaps persist, including a predominance of observational studies and an underrepresentation of vulnerable populations. Conclusions: Breakfast is a dietary practice with profound implications for cardiometabolic health. This study provides a comprehensive overview of scientific literature, highlighting both advancements and challenges. Strengthening international collaboration networks, standardizing definitions of a healthy breakfast, and promoting evidence-based interventions in school, clinical, and community settings are recommended. Full article
26 pages, 2325 KiB  
Review
Personalization of AI-Based Digital Twins to Optimize Adaptation in Industrial Design and Manufacturing—Review
by Izabela Rojek, Dariusz Mikołajewski, Ewa Dostatni, Jan Cybulski and Mirosław Kozielski
Appl. Sci. 2025, 15(15), 8525; https://doi.org/10.3390/app15158525 (registering DOI) - 31 Jul 2025
Abstract
The growing scale of big data and artificial intelligence (AI)-based models has heightened the urgency of developing real-time digital twins (DTs), particularly those capable of simulating personalized behavior in dynamic environments. In this study, we examine the personalization of AI-based digital twins (DTs), [...] Read more.
The growing scale of big data and artificial intelligence (AI)-based models has heightened the urgency of developing real-time digital twins (DTs), particularly those capable of simulating personalized behavior in dynamic environments. In this study, we examine the personalization of AI-based digital twins (DTs), with a focus on overcoming computational latencies that hinder real-time responses—especially in complex, large-scale systems and networks. We use bibliometric analysis to map current trends, prevailing themes, and technical challenges in this field. The key findings highlight the growing emphasis on scalable model architectures, multimodal data integration, and the use of high-performance computing platforms. While existing research has focused on model decomposition, structural optimization, and algorithmic integration, there remains a need for fast DT platforms that support diverse user requirements. This review synthesizes these insights to outline new directions for accelerating adaptation and enhancing personalization. By providing a structured overview of the current research landscape, this study contributes to a better understanding of how AI and edge computing can drive the development of the next generation of real-time personalized DTs. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

21 pages, 651 KiB  
Article
PAD-MPFN: Dynamic Fusion with Popularity Decay for News Recommendation
by Biyang Ma, Yiwei Deng and Huifan Gao
Electronics 2025, 14(15), 3057; https://doi.org/10.3390/electronics14153057 - 30 Jul 2025
Abstract
News recommendation systems must simultaneously address multiple challenges, including dynamic user interest modeling, nonlinear popularity patterns, and diversity recommendation in cold-start scenarios. We present a Popularity-Aware Dynamic Multi-Perspective Fusion Network (PAD-MPFN) that innovatively integrates three key components: adaptive subspace projection for multi-source interest [...] Read more.
News recommendation systems must simultaneously address multiple challenges, including dynamic user interest modeling, nonlinear popularity patterns, and diversity recommendation in cold-start scenarios. We present a Popularity-Aware Dynamic Multi-Perspective Fusion Network (PAD-MPFN) that innovatively integrates three key components: adaptive subspace projection for multi-source interest fusion, logarithmic time-decay factors for popularity bias mitigation, and dynamic gating mechanisms for personalized recommendation weighting. The framework uniquely combines sequential behavior analysis, social graph propagation, and temporal popularity modeling through a unified architecture. Experimental results on the MIND dataset, an open-source version of MSN News, demonstrate that PAD-MPFN outperforms existing methods in terms of recommendation performance and cold-start scenarios while effectively alleviating information overload. This study offers a new solution for dynamic interest modeling and diverse recommendation. Full article
(This article belongs to the Special Issue Data-Driven Intelligence in Autonomous Systems)
Show Figures

Figure 1

22 pages, 1588 KiB  
Article
Scaffold-Free Functional Deconvolution Identifies Clinically Relevant Metastatic Melanoma EV Biomarkers
by Shin-La Shu, Shawna Benjamin-Davalos, Xue Wang, Eriko Katsuta, Megan Fitzgerald, Marina Koroleva, Cheryl L. Allen, Flora Qu, Gyorgy Paragh, Hans Minderman, Pawel Kalinski, Kazuaki Takabe and Marc S. Ernstoff
Cancers 2025, 17(15), 2509; https://doi.org/10.3390/cancers17152509 - 30 Jul 2025
Viewed by 56
Abstract
Background: Melanoma metastasis, driven by tumor microenvironment (TME)-mediated crosstalk facilitated by extracellular vesicles (EVs), remains a major therapeutic challenge. A critical barrier to clinical translation is the overlap in protein cargo between tumor-derived and healthy cell EVs. Objective: To address this, we developed [...] Read more.
Background: Melanoma metastasis, driven by tumor microenvironment (TME)-mediated crosstalk facilitated by extracellular vesicles (EVs), remains a major therapeutic challenge. A critical barrier to clinical translation is the overlap in protein cargo between tumor-derived and healthy cell EVs. Objective: To address this, we developed Scaffold-free Functional Deconvolution (SFD), a novel computational approach that leverages a comprehensive healthy cell EV protein database to deconvolute non-oncogenic background signals. Methods: Beginning with 1915 proteins (identified by MS/MS analysis on an Orbitrap Fusion Lumos Mass Spectrometer using the IonStar workflow) from melanoma EVs isolated using REIUS, SFD applies four sequential filters: exclusion of normal melanocyte EV proteins, prioritization of metastasis-linked entries (HCMDB), refinement via melanocyte-specific databases, and validation against TCGA survival data. Results: This workflow identified 21 high-confidence targets implicated in metabolic-associated acidification, immune modulation, and oncogenesis, and were analyzed for reduced disease-free and overall survival. SFD’s versatility was further demonstrated by surfaceome profiling, confirming enrichment of H7-B3 (CD276), ICAM1, and MIC-1 (GDF-15) in metastatic melanoma EV via Western blot and flow cytometry. Meta-analysis using Vesiclepedia and STRING categorized these targets into metabolic, immune, and oncogenic drivers, revealing a dense interaction network. Conclusions: Our results highlight SFD as a powerful tool for identifying clinically relevant biomarkers and therapeutic targets within melanoma EVs, with potential applications in drug development and personalized medicine. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

21 pages, 763 KiB  
Review
Pathway Analysis Interpretation in the Multi-Omic Era
by William G. Ryan V., Smita Sahay, John Vergis, Corey Weistuch, Jarek Meller and Robert E. McCullumsmith
BioTech 2025, 14(3), 58; https://doi.org/10.3390/biotech14030058 - 29 Jul 2025
Viewed by 114
Abstract
In bioinformatics, pathway analyses are used to interpret biological data by mapping measured molecules with known pathways to discover their functional processes and relationships. Pathway analysis has become an essential tool for interpreting large-scale omics data, translating complex gene sets into actionable experimental [...] Read more.
In bioinformatics, pathway analyses are used to interpret biological data by mapping measured molecules with known pathways to discover their functional processes and relationships. Pathway analysis has become an essential tool for interpreting large-scale omics data, translating complex gene sets into actionable experimental insights. However, issues inherent to pathway databases and misinterpretations of pathway relevance often result in “pathway fails,” where findings, though statistically significant, lack biological applicability. For example, the Tumor Necrosis Factor (TNF) pathway was originally annotated based on its association with observed tumor necrosis, while it is multifunctional across diverse physiological processes in the body. This review broadly evaluates pathway analysis interpretation, including embedding-based, semantic similarity-based, and network-based approaches to clarify their ideal use-case scenarios. Each method for interpretation is assessed for its strengths, such as high-quality visualizations and ease of use, as well as its limitations, including data redundancy and database compatibility challenges. Despite advancements in the field, the principle of “garbage in, garbage out” (GIGO) shows that input quality and method choice are critical for reliable and biologically meaningful results. Methodological standardization, scalability improvements, and integration with diverse data sources remain areas for further development. By providing critical guidance with contextual examples such as TNF, we aim to help researchers align their objectives with the appropriate method. Advancing pathway analysis interpretation will further enhance the utility of pathway analysis, ultimately propelling progress in systems biology and personalized medicine. Full article
(This article belongs to the Topic Computational Intelligence and Bioinformatics (CIB))
Show Figures

Graphical abstract

12 pages, 1515 KiB  
Article
From Myofascial Chains to the Polyconnective Network: A Novel Approach to Biomechanics and Rehabilitation Based on Graph Theory
by Daniele Della Posta, Immacolata Belviso, Jacopo Junio Valerio Branca, Ferdinando Paternostro and Carla Stecco
Life 2025, 15(8), 1200; https://doi.org/10.3390/life15081200 - 28 Jul 2025
Viewed by 257
Abstract
In recent years, the concept of the myofascial network has transformed biomechanical understanding by emphasizing the body as an integrated, multidirectional system. This study advances that paradigm by applying graph theory to model the osteo-myofascial system as an anatomical network, enabling the identification [...] Read more.
In recent years, the concept of the myofascial network has transformed biomechanical understanding by emphasizing the body as an integrated, multidirectional system. This study advances that paradigm by applying graph theory to model the osteo-myofascial system as an anatomical network, enabling the identification of topologically central nodes involved in force transmission, stability, and coordination. Using the aNETomy model and the BIOMECH 3.4 database, we constructed an undirected network of 2208 anatomical nodes and 7377 biomechanical relationships. Centrality analysis (degree, betweenness, and closeness) revealed that structures such as the sacrum and thoracolumbar fascia exhibit high connectivity and strategic importance within the network. These findings, while derived from a theoretical modeling approach, suggest that such key nodes may inform targeted treatment strategies, particularly in complex or compensatory musculoskeletal conditions. The proposed concept of a polyconnective skeleton (PCS) synthesizes the most influential anatomical hubs into a functional core of the system. This framework may support future clinical and technological applications, including integration with imaging modalities, real-time monitoring, and predictive modeling for personalized and preventive medicine. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

19 pages, 2698 KiB  
Article
Orga-Dete: An Improved Lightweight Deep Learning Model for Lung Organoid Detection and Classification
by Xuan Huang, Qin Gao, Hanwen Zhang, Fuhong Min, Dong Li and Gangyin Luo
Appl. Sci. 2025, 15(15), 8377; https://doi.org/10.3390/app15158377 - 28 Jul 2025
Viewed by 187
Abstract
Lung organoids play a crucial role in modeling drug responses in pulmonary diseases. However, their morphological analysis remains hindered by manual detection inefficiencies and the high computational cost of existing algorithms. To overcome these challenges, this study proposes Orga-Dete—a lightweight, high-precision detection model [...] Read more.
Lung organoids play a crucial role in modeling drug responses in pulmonary diseases. However, their morphological analysis remains hindered by manual detection inefficiencies and the high computational cost of existing algorithms. To overcome these challenges, this study proposes Orga-Dete—a lightweight, high-precision detection model based on YOLOv11n—which first employs data augmentation to mitigate the small-scale dataset and class imbalance issues, then optimizes via a triple co-optimization strategy: a bi-directional feature pyramid network for enhanced multi-scale feature fusion, MPCA for stronger micro-organoid feature response, and EMASlideLoss to address class imbalance. Validated on a lung organoid microscopy dataset, Orga-Dete achieves 81.4% mAP@0.5 with only 2.25 M parameters and 6.3 GFLOPs, surpassing the baseline model YOLOv11n by 3.5%. Ablation experiments confirm the synergistic effects of these modules in enhancing morphological feature extraction. With its balance of precision and efficiency, Orga-Dete offers a scalable solution for high-throughput organoid analysis, underscoring its potential for personalized medicine and drug screening. Full article
Show Figures

Figure 1

20 pages, 9458 KiB  
Review
Systematic Bibliometric Analysis of Entrepreneurial Intention and Behavior Research
by Jiahao Zhuang and Hongyi Sun
Adm. Sci. 2025, 15(8), 290; https://doi.org/10.3390/admsci15080290 - 24 Jul 2025
Viewed by 252
Abstract
Entrepreneurship serves as a vital engine of economic development, yet the mechanisms translating entrepreneurial intention into behavior have gradually emerged. This study employs bibliometric analysis of 61 SSCI-indexed articles (2014–2024) using CiteSpace to examine co-authorship networks, co-citation patterns, and research hotspots. Our findings [...] Read more.
Entrepreneurship serves as a vital engine of economic development, yet the mechanisms translating entrepreneurial intention into behavior have gradually emerged. This study employs bibliometric analysis of 61 SSCI-indexed articles (2014–2024) using CiteSpace to examine co-authorship networks, co-citation patterns, and research hotspots. Our findings demonstrate that individual-level factors (personality traits, entrepreneurial self-efficacy, and entrepreneurship education) drive both entrepreneurial intention and entrepreneurial behavior. More importantly, environmental factors (university milieu, regional social legitimacy, and national cultural dimensions) moderate the relationship between entrepreneurial intention and behavior. The study also identifies a temporal pattern in the entrepreneurial intention–behavior correlation. These results advance theoretical understanding of the intention–behavior transition and offer practical insights for entrepreneurship education and policy design. Full article
Show Figures

Figure 1

17 pages, 1840 KiB  
Article
Epigenomic Interactions Between Chronic Pain and Recurrent Pressure Injuries After Spinal Cord Injury
by Letitia Y. Graves, Melissa R. Alcorn, E. Ricky Chan, Katelyn Schwartz, M. Kristi Henzel, Marinella Galea, Anna M. Toth, Christine M. Olney and Kath M. Bogie
Epigenomes 2025, 9(3), 26; https://doi.org/10.3390/epigenomes9030026 - 23 Jul 2025
Viewed by 255
Abstract
Background/Objectives: This study investigated variations in DNA methylation patterns associated with chronic pain and propensity for recurrent pressure injuries (PrI) in persons with spinal cord injury (SCI). Methods: Whole blood was collected from 81 individuals with SCI. DNA methylation was quantified using Illumina [...] Read more.
Background/Objectives: This study investigated variations in DNA methylation patterns associated with chronic pain and propensity for recurrent pressure injuries (PrI) in persons with spinal cord injury (SCI). Methods: Whole blood was collected from 81 individuals with SCI. DNA methylation was quantified using Illumina genome-wide arrays (EPIC and EPICv2). Comprehensive clinical profiles collected included secondary health complications, in particular current PrI and chronic pain. Relationships between recurrent PrI and chronic pain and whether the co-occurrence of both traits was mediated by changes in DNA methylation were investigated using R packages limma, DMRcate and mCSEA. Results: Three differentially methylated positions (DMPs) (cg09867095, cg26559694, cg24890286) and one region in the micro-imprinted locus for BLCAP/NNAT are associated with chronic pain in persons with SCI. The study cohort was stratified by PrI status to identify any sites associated with chronic pain and while the same three sites and region were replicated in the group with no recurrent PrI, two novel, hypermethylated (cg21756558, cg26217441) sites and one region in the protein-coding gene FDFT1 were identified in the group with recurrent PrI. Gene enrichment and genes associated with specific promoters using MetaScape identified several shared disorders and ontology terms between independent phenotypes of pain and recurrent PrI and interactive sub-groups. Conclusions: DMR analysis using mCSEA identified several shared genes, promoter-associated regions and CGI associated with overall pain and PrI history, as well as sub-groups based on recurrent PrI history. These findings suggest that a much larger gene regulatory network is associated with each phenotype. These findings require further validation. Full article
(This article belongs to the Special Issue Features Papers in Epigenomes 2025)
Show Figures

Figure 1

16 pages, 502 KiB  
Article
Artificial Intelligence in Digital Marketing: Enhancing Consumer Engagement and Supporting Sustainable Behavior Through Social and Mobile Networks
by Carmen Acatrinei, Ingrid Georgeta Apostol, Lucia Nicoleta Barbu, Raluca-Giorgiana Chivu (Popa) and Mihai-Cristian Orzan
Sustainability 2025, 17(14), 6638; https://doi.org/10.3390/su17146638 - 21 Jul 2025
Viewed by 618
Abstract
This article explores the integration of artificial intelligence (AI) in digital marketing through social and mobile networks and its role in fostering sustainable consumer behavior. AI enhances personalization, sentiment analysis, and campaign automation, reshaping marketing dynamics and enabling brands to engage interactively with [...] Read more.
This article explores the integration of artificial intelligence (AI) in digital marketing through social and mobile networks and its role in fostering sustainable consumer behavior. AI enhances personalization, sentiment analysis, and campaign automation, reshaping marketing dynamics and enabling brands to engage interactively with users. A quantitative study conducted on 501 social media users evaluates how perceived benefits, risks, trust, transparency, satisfaction, and social norms influence the acceptance of AI-driven marketing tools. Using structural equation modeling (SEM), the findings show that social norms and perceived transparency significantly enhance trust in AI, while perceived benefits and satisfaction drive user acceptance; conversely, perceived risks and negative emotions undermine trust. From a sustainability perspective, AI supports the efficient targeting and personalization of eco-conscious content, aligning marketing with environmentally responsible practices. This study contributes to ethical AI and sustainable digital strategies by offering empirical evidence and practical insights for responsible AI integration in marketing. Full article
Show Figures

Figure 1

Back to TopTop