Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (381)

Search Parameters:
Keywords = peroxiredoxin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 10340 KB  
Article
Silencing the cyp314a1 and cyp315a1 Genes in the Aedes albopictus 20E Synthetic Pathway for Mosquito Control and Assessing Algal Blooms Induced by Recombinant RNAi Microalgae
by Xiaodong Deng, Changhao He, Chunmei Xue, Dianlong Xu, Juncai Li and Xiaowen Fei
Insects 2025, 16(10), 1033; https://doi.org/10.3390/insects16101033 - 7 Oct 2025
Viewed by 730
Abstract
As one of the key vectors for the transmission of Dengue fever, Aedes albopictus is highly ecologically adaptable. The development of environmentally compatible biological defence and control technologies has therefore become an urgent need for vector biological control worldwide. This study constructed and [...] Read more.
As one of the key vectors for the transmission of Dengue fever, Aedes albopictus is highly ecologically adaptable. The development of environmentally compatible biological defence and control technologies has therefore become an urgent need for vector biological control worldwide. This study constructed and used double-stranded RNA (dsRNA) expression vectors targeting the cyp314a1 and cyp315a1 genes of Ae. albopictus to transform Chlamydomonas reinhardtii and Chlorella vulgaris, achieving RNA interference (RNAi)-mediated gene silencing. The efficacy of the RNAi recombinant algal strain biocide against Ae. albopictus was evaluated by administering it to Ae. albopictus larvae. The results showed that the oral administration of the cyp314a1 and cyp315a1 RNAi recombinant C. reinhardtii/C. vulgaris strains was lethal to Ae. albopictus larvae and severely affected their pupation and emergence. The recombinant algal strains triggered a burst of ROS (Reactive Oxygen Species) in the mosquitoes’ bodies, resulting in significant increases in the activities of the superoxide dismutase (SOD), peroxiredoxin (POD) and catalase (CAT), as well as significant upregulation of the mRNA levels of the CME pathway genes in larvae. In the simulated field experiment, the number of Ae. albopictus was reduced from 1000 to 0 in 16 weeks by the RNAi recombinant Chlorella, which effectively controlled the population of mosquitoes. Meanwhile, the levels of nitrogen (N), phosphorus (P), nitrate, nitrite, ammonia and COD (Chemical Oxygen Demand) in the test water decreased significantly. High-throughput sequencing analyses of 18S rDNA and 16S rDNA showed that, with the release of RNAi recombinant Chlorella into the test water, the biotic community restructuring dominated by resource competition caused by algal bloom, as well as the proliferation of anaerobic bacteria and the decline of aerobic bacteria triggered by anaerobic conditions, are the main trends in the changes in the test water. This study is an important addition to the use of RNAi recombinant microalgae as a biocide. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

13 pages, 1082 KB  
Article
Targeting CTC Heterogeneity: Aptamer-Based Liquid Biopsy Predicts Outcome in Lung Cancer
by Alexey V. Krat, Galina S. Zamay, Dmitry V. Veprintsev, Daria A. Kirichenko, Olga S. Kolovskaya, Tatiana N. Zamay, Yury E. Glazyrin, Zoran Minic, Semen A. Sidorov, Valeria A. Komissarova, Ruslan A. Zukov, Maxim V. Berezovski and Anna S. Kichkailo
Cancers 2025, 17(19), 3244; https://doi.org/10.3390/cancers17193244 - 6 Oct 2025
Viewed by 639
Abstract
Background: The detection of circulating tumor cells (CTCs) holds significant promise for the diagnosis and monitoring of lung cancer (LC). However, the clinical utility of CTCs is limited by the heterogeneity of their phenotypes and the shortcomings of existing detection methods, which often [...] Read more.
Background: The detection of circulating tumor cells (CTCs) holds significant promise for the diagnosis and monitoring of lung cancer (LC). However, the clinical utility of CTCs is limited by the heterogeneity of their phenotypes and the shortcomings of existing detection methods, which often rely on epithelial markers like EpCAM. DNA aptamers offer a promising alternative due to their high affinity, stability, and ability to recognize diverse cancer-specific biomarkers. Methods: This study utilized DNA aptamers LC-17 and LC-18, previously selected against primary lung tumor tissue, to isolate and detect CTCs in the peripheral blood of 43 non-small cell lung cancer (NSCLC) patients. Mass spectrometry (LC-MS/MS) was employed to identify the target proteins of aptamer LC-17. CTCs from patients’ blood and healthy donors were isolated via filtration after erythrocyte and lymphocyte lysis and stained with FAM-labeled LC-17 and LC-18 aptamers for detection using fluorescence and light microscopy. Results: Mass spectrometry identified neutrophil defensin 1 (DEFA1) and peroxiredoxin-2 (PRDX2) as the primary protein targets of aptamer LC-17 in CTCs, both of which were absent in healthy donor samples. CTC enumeration revealed statistically significant correlations between elevated CTC counts (>3 cells/4 mL blood) and advanced primary tumor size (T4 vs. T1–T3, p = 0.012), extensive regional lymph node metastasis (N3 vs. N1–N2, p = 0.014), and shorter overall survival (median 24 vs. 32 months, p < 0.05). Conclusions: The developed aptamer-based liquid biopsy method effectively captures heterogeneous CTC populations independent of EpCAM expression. The strong correlation of CTC counts with disease progression and survival underscores their clinical relevance as a prognostic biomarker in NSCLC. This approach presents a viable, non-invasive tool for disease monitoring and stratification of NSCLC patients, with potential for integration into clinical practice. Full article
(This article belongs to the Section Cancer Causes, Screening and Diagnosis)
Show Figures

Figure 1

38 pages, 2022 KB  
Review
Beyond Antioxidants: How Redox Pathways Shape Cellular Signaling and Disease Outcomes
by Abdallah Alhaj Sulaiman and Vladimir L. Katanaev
Antioxidants 2025, 14(9), 1142; https://doi.org/10.3390/antiox14091142 - 22 Sep 2025
Viewed by 1311
Abstract
Cellular redox pathways are critical regulators of various biological processes, including the intricate modulation of intracellular signaling pathways. This review explores how major redox enzymes—such as catalase, superoxide dismutases, glutathione peroxidases, thioredoxins, and peroxiredoxins—interact with key cellular signaling pathways, including receptor tyrosine kinase, [...] Read more.
Cellular redox pathways are critical regulators of various biological processes, including the intricate modulation of intracellular signaling pathways. This review explores how major redox enzymes—such as catalase, superoxide dismutases, glutathione peroxidases, thioredoxins, and peroxiredoxins—interact with key cellular signaling pathways, including receptor tyrosine kinase, mTORC1/AMPK, Wnt/β-catenin, TGF-β/SMAD, NF-κB, Hedgehog, Notch, and GPCR signaling. By investigating mechanisms such as ROS-mediated activation, cysteine oxidation, spatial enzyme localization, and phosphatase regulation, we demonstrate the extensive influence of redox balance on cellular signaling dynamics. Understanding these redox-dependent interactions provides insights into pathophysiological conditions ranging from cancer to fibrosis, offering novel therapeutic opportunities. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

16 pages, 3431 KB  
Article
Effects of Ozone Treatment on Reactive Oxygen Species Metabolism and Storage Quality of Flat Jujubes (Ziziphus jujuba Mill. cv. Panzao)
by Xuyang Peng, Pufan Zheng, Xiaoxue Li, Cunkun Chen, Chenghu Dong, Na Zhang, Haipeng Ji, Jinze Yu, Ying Gao, Tinghu Ju, Yinxing Zhang, Ruixiang Yan and Aiqiang Chen
Horticulturae 2025, 11(9), 1142; https://doi.org/10.3390/horticulturae11091142 - 19 Sep 2025
Viewed by 704
Abstract
Moderate ozone exposure has emerged as a sustainable strategy to enhance postharvest quality in perishable fruits. This study investigated the effects of ozone treatment (2.14–19.27 mg/m3) on flat jujube during 70-day cold storage (0 °C). Results demonstrated that following 70 days [...] Read more.
Moderate ozone exposure has emerged as a sustainable strategy to enhance postharvest quality in perishable fruits. This study investigated the effects of ozone treatment (2.14–19.27 mg/m3) on flat jujube during 70-day cold storage (0 °C). Results demonstrated that following 70 days of storage, the ideal ozone concentration (10.72 mg/m3, T2) led to a decrease in weight loss of 44.8% and preserved 66.7% firmness when compared to the control check (CK) group. The T2 group suppressed the respiration rate and delayed declines in total soluble solids (TSSs) and titratable acid (TA). Mechanistically, ozone enhances enzymatic activity, with T2 elevating superoxide dismutase (SOD), catalase (CAT), and peroxiredoxin (POD) activities while reducing the accumulation of reactive oxygen species (ROS) and lipid peroxidation. Total phenolics and flavonoids in T2 remained 42% and 52% higher than CK at 56 days, correlating with elevated 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) scavenging activities. Browning inhibition (25% lower than the CK group) is linked to suppressed polyphenol oxidase (PPO) activity and phenolic oxidation. Principal component analysis (PCA) confirmed ozone’s efficacy in delaying senescence via ROS homeostasis and antioxidant synergy. These findings establish moderate ozone as a novel, eco-friendly intervention to extend jujubes’ shelf life, emphasizing its dual role in quality preservation and oxidative stress regulation. Full article
Show Figures

Figure 1

21 pages, 12855 KB  
Article
Identification of Novel Lactylation-Related Biomarkers for COPD Diagnosis Through Machine Learning and Experimental Validation
by Chundi Hu, Weiliang Qian, Runling Wei, Gengluan Liu, Qin Jiang, Zhenglong Sun and Hui Li
Biomedicines 2025, 13(8), 2006; https://doi.org/10.3390/biomedicines13082006 - 18 Aug 2025
Viewed by 1247
Abstract
Objective: This study aims to identify clinically relevant lactylation-related biomarkers in chronic obstructive pulmonary disease (COPD) and investigate their potential mechanistic roles in COPD pathogenesis. Methods: Differentially expressed genes (DEGs) were identified from the GSE21359 dataset, followed by weighted gene co-expression network analysis [...] Read more.
Objective: This study aims to identify clinically relevant lactylation-related biomarkers in chronic obstructive pulmonary disease (COPD) and investigate their potential mechanistic roles in COPD pathogenesis. Methods: Differentially expressed genes (DEGs) were identified from the GSE21359 dataset, followed by weighted gene co-expression network analysis (WGCNA) to detect COPD-associated modules. Least absolute shrinkage and selection operator (LASSO) regression and support vector machine–recursive feature elimination (SVM–RFE) algorithms were applied to screen lactylation-related biomarkers, with diagnostic performance evaluated through the ROC curve. Candidates were validated in the GSE76925 dataset for expression and diagnostic robustness. Immune cell infiltration patterns were exhibited using EPIC deconvolution. Single-cell transcriptomics (from GSE173896) were processed via the ‘Seurat’ package encompassing quality control, dimensionality reduction, and cell type annotation. Cell-type-specific markers and intercellular communication networks were delineated using the ‘FindAllMarkers’ package and the ‘CellChat’ R package, respectively. In vitro validation was conducted using a cigarette smoke extract (CSE)-induced COPD model. Results: Integrated transcriptomic approaches and multi-algorithm screening (LASSO/Boruta/SVM–RFE) revealed carbonyl reductase 1 (CBR1) and peroxiredoxin 1 (PRDX1) as core COPD biomarkers enriched in oxidation–reduction and inflammatory pathways, with high diagnostic accuracy (AUC > 0.85). Immune profiling and scRNA-seq delineated macrophage and cancer-associated fibroblasts (CAFs) infiltration with oxidative-redox transcriptional dominance in COPD. CBR1 was significantly upregulated in T cells, neutrophils, and mast cells; and PRDX1 showed significant upregulation in endothelial, macrophage, and ciliated cells. Experimental validation in CSE-induced models confirmed significant upregulation of both biomarkers via transcription PCR (qRT-PCR) and immunofluorescence. Conclusions: CBR1 and PRDX1 are lactylation-associated diagnostic markers, with lactylation-driven redox imbalance implicated in COPD progression. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

12 pages, 1447 KB  
Article
Serum Peroxiredoxins Reflect Oxidative Stress and Predict Renal Outcomes in Patients with Glomerulonephritis
by Natalia Wiewiórska-Krata, Barbara Moszczuk, Julia Tańska, Emilia Knioła, Ewelina Grywalska, Leszek Pączek, Bartosz Foroncewicz and Krzysztof Mucha
Int. J. Mol. Sci. 2025, 26(16), 7708; https://doi.org/10.3390/ijms26167708 - 9 Aug 2025
Viewed by 710
Abstract
Oxidative stress (OS), defined as an imbalance between pro-oxidant and antioxidant mechanisms, contributes to DNA and protein oxidation as well as cellular injury, and plays a pivotal role in the pathogenesis of chronic kidney disease (CKD). Peroxiredoxins (PRDXs) are key antioxidant enzymes that [...] Read more.
Oxidative stress (OS), defined as an imbalance between pro-oxidant and antioxidant mechanisms, contributes to DNA and protein oxidation as well as cellular injury, and plays a pivotal role in the pathogenesis of chronic kidney disease (CKD). Peroxiredoxins (PRDXs) are key antioxidant enzymes that regulate intracellular peroxide levels and maintain redox homeostasis. Beyond its renal implications, OS is closely intertwined with hypertension and atherosclerosis, both common comorbidities that accelerate CKD progression. As previously reported, serum concentrations of PRDXs 1-5 may help to differentiate between IgA nephropathy (IgAN), membranous nephropathy (MN), and lupus nephritis (LN). This study aimed to assess the utility of baseline serum PRDX levels in predicting longitudinal changes in kidney function and proteinuria in patients with IgAN, MN, and LN. We analyzed data from 80 patients (IgAN, n = 36; MN, n = 23; LN, n = 21) drawn from an initial cohort of 108 in whom baseline serum concentrations of PRDX 1–5 were measured. Patients were stratified into low, medium, and high PRDX level groups at baseline, and associations between these strata and longitudinal changes in eGFR and proteinuria were assessed over a follow-up period of up to five years. Across all groups, the follow-up eGFR was significantly associated with low baseline serum PRDX 1, 2, 3, and 5 (p = 0.043; p = 0.001; p = 0.036; p = 0.007, respectively). Significant associations were also observed between 24 h follow-up proteinuria and low baseline serum PRDX 2, 3, and 5 (p = 0.025; p = 0.025; p = 0.005, respectively), medium PRDX 4 (p = 0.010), and high PRDX 2 (p = 0.019). No significant associations were found within the study groups; however, these associations were more pronounced in IgAN and MN patients. These findings suggest a potential role for PRDXs in predicting and monitoring CKD progression, especially eGFR decline. Full article
(This article belongs to the Special Issue Antioxidants: The Molecular Guardians Against Oxidative Stress)
Show Figures

Figure 1

55 pages, 2103 KB  
Review
Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics
by Manisha Nigam, Bajrang Punia, Deen Bandhu Dimri, Abhay Prakash Mishra, Andrei-Flavius Radu and Gabriela Bungau
Cells 2025, 14(15), 1207; https://doi.org/10.3390/cells14151207 - 6 Aug 2025
Cited by 3 | Viewed by 4700
Abstract
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment [...] Read more.
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment dynamics remain unclear. Specifically, the spatial and temporal aspects of ROS regulation (i.e., the distinct effects of mitochondrial versus cytosolic ROS on the PI3K/Akt and NF-κB pathways, and the differential cellular outcomes driven by acute versus chronic ROS exposure) have been underexplored. Additionally, the specific contributions of ROS-generating enzymes, like NOX isoforms and xanthine oxidase, to tumor microenvironment remodeling and immune modulation remain poorly understood. This review synthesizes current findings with a focus on these critical gaps, offering novel mechanistic insights into the dualistic nature of ROS in cancer biology. By systematically integrating data on ROS source-specific functions and redox-sensitive signaling pathways, the complex interplay between ROS concentration, localization, and persistence is elucidated, revealing how these factors dictate the paradoxical support of tumor progression or induction of cancer cell death. Particular attention is given to antioxidant mechanisms, including NRF2-mediated responses, that may undermine the efficacy of ROS-targeted therapies. Recent breakthroughs in redox biosensors (i.e., redox-sensitive fluorescent proteins, HyPer variants, and peroxiredoxin–FRET constructs) enable precise, real-time ROS imaging across subcellular compartments. Translational advances, including redox-modulating drugs and synthetic lethality strategies targeting glutathione or NADPH dependencies, further highlight actionable vulnerabilities. This refined understanding advances the field by highlighting context-specific vulnerabilities in tumor redox biology and guiding more precise therapeutic strategies. Continued research on redox-regulated signaling and its interplay with inflammation and therapy resistance is essential to unravel ROS dynamics in tumors and develop targeted, context-specific interventions harnessing their dual roles. Full article
Show Figures

Graphical abstract

17 pages, 3272 KB  
Review
Timing Is Everything: The Fungal Circadian Clock as a Master Regulator of Stress Response and Pathogenesis
by Victor Coca-Ruiz and Daniel Boy-Ruiz
Stresses 2025, 5(3), 47; https://doi.org/10.3390/stresses5030047 - 1 Aug 2025
Viewed by 971
Abstract
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological [...] Read more.
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological relevance of fungal circadian systems, moving beyond the canonical Neurospora crassa model to explore the broader phylogenetic diversity of timekeeping mechanisms. We examine the core transcription-translation feedback loop (TTFL) centered on the FREQUENCY/WHITE COLLAR (FRQ/WCC) system and contrast it with divergent and non-canonical oscillators, including the metabolic rhythms of yeasts and the universally conserved peroxiredoxin (PRX) oxidation cycles. A central theme is the clock’s role in gating cellular defenses against oxidative, osmotic, and nutritional stress, enabling fungi to anticipate and withstand environmental insults through proactive regulation. We provide a detailed analysis of chrono-pathogenesis, where the circadian control of virulence factors aligns fungal attacks with windows of host vulnerability, with a focus on experimental evidence from pathogens like Botrytis cinerea, Fusarium oxysporum, and Magnaporthe oryzae. The review explores the downstream pathways—including transcriptional cascades, post-translational modifications, and epigenetic regulation—that translate temporal signals into physiological outputs such as developmental rhythms in conidiation and hyphal branching. Finally, we highlight critical knowledge gaps, particularly in understudied phyla like Basidiomycota, and discuss future research directions. This includes the exploration of novel clock architectures and the emerging, though speculative, hypothesis of “chrono-therapeutics”—interventions designed to disrupt fungal clocks—as a forward-looking concept for managing fungal infections. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

19 pages, 42627 KB  
Article
Molecular Remodeling of the Sperm Proteome Following Varicocele Sclero-Embolization: Implications for Semen Quality Improvement
by Domenico Milardi, Edoardo Vergani, Francesca Mancini, Fiorella Di Nicuolo, Emanuela Teveroni, Emanuele Pierpaolo Vodola, Alessandro Oliva, Giuseppe Grande, Alessandro Cina, Roberto Iezzi, Michela Cicchinelli, Federica Iavarone, Silvia Baroni, Alberto Ferlin, Andrea Urbani and Alfredo Pontecorvi
Proteomes 2025, 13(3), 34; https://doi.org/10.3390/proteomes13030034 - 15 Jul 2025
Viewed by 1296
Abstract
Background: Varicocele is a common condition involving the dilation of veins in the scrotum, often linked to male infertility and testicular dysfunction. This study aimed to elucidate the molecular effects of successful varicocele treatment on sperm proteomes following percutaneous sclero-embolization. Methods: High-resolution tandem [...] Read more.
Background: Varicocele is a common condition involving the dilation of veins in the scrotum, often linked to male infertility and testicular dysfunction. This study aimed to elucidate the molecular effects of successful varicocele treatment on sperm proteomes following percutaneous sclero-embolization. Methods: High-resolution tandem mass spectrometry was performed for proteomic profiling of pooled sperm lysates from five patients exhibiting improved semen parameters before and after (3 and 6 months) varicocele sclero-embolization. Data were validated by Western blot analysis. Results: Seven proteins were found exclusively in varicocele patients before surgery—such as stathmin, IFT20, selenide, and ADAM21—linked to inflammation and oxidative stress. After sclero-embolization, 55 new proteins emerged, including antioxidant enzymes like selenoprotein P and GPX3. Thioredoxin (TXN) and peroxiredoxin (PRDX3) were upregulated, indicating restoration of key antioxidant pathways. Additionally, the downregulation of some histones and the autophagy-related protein ATG9A suggests a shift toward an improved chromatin organization and a healthier cellular environment post-treatment. Conclusions: Varicocele treatment that improves sperm quality and fertility parameters leads to significant proteome modulation. These changes include reduced oxidative stress and broadly restored sperm maturation. Despite the limited patient cohort analyzed, these preliminary findings provide valuable insights into how varicocele treatment might enhance male fertility and suggest potential biomarkers for improved male infertility treatment strategies. Full article
(This article belongs to the Section Proteomics of Human Diseases and Their Treatments)
Show Figures

Graphical abstract

20 pages, 1227 KB  
Review
Oxidative Stress Defense Module in Lung Cancers: Molecular Pathways and Therapeutic Approaches
by Eunsun Lee and Jeong Hee Hong
Antioxidants 2025, 14(7), 857; https://doi.org/10.3390/antiox14070857 - 13 Jul 2025
Viewed by 1215
Abstract
The regulation of oxidative stress is an effective strategy for treating cancers. Therapeutic strategies for modulating an undesirable redox balance against cancers have included the enhancement of oxidative components, reducing the action of antioxidant systems, and the combined application of radiation and redox-modulating [...] Read more.
The regulation of oxidative stress is an effective strategy for treating cancers. Therapeutic strategies for modulating an undesirable redox balance against cancers have included the enhancement of oxidative components, reducing the action of antioxidant systems, and the combined application of radiation and redox-modulating drugs. A precise understanding of redox regulation is required to treat different kinds of cancer. This review focuses on the redox regulation and oxidative stress defense systems of lung cancers. Thus, we highlighted several enzymatic antioxidant components, such as superoxide dismutase, catalase, heme oxygenase-1, peroxiredoxin, glutaredoxin, thioredoxin, thioredoxin reductase, glutathione peroxidase, and antioxidant components, including glutathione, nuclear factor erythroid 2–related factor 2, 8-oxo-7,8-dihydro-2′-deoxyguanosine, and mitochondrial citrate carrier SLC25A1, based on PubMed and Scopus-indexed literature. Understanding the oxidative stress defense system in lung cancer would be beneficial for developing and expanding therapeutic strategies, such as drug development, drug design, and advanced delivery platforms. Full article
Show Figures

Figure 1

20 pages, 4345 KB  
Article
Identification of Peroxiredoxin (PRX) Genes from Pepper Fruits: Involvement in Ripening and Modulation by Nitric Oxide (NO)
by Fátima Ramírez-Mellado, Salvador González-Gordo, José M. Palma and Francisco J. Corpas
Antioxidants 2025, 14(7), 817; https://doi.org/10.3390/antiox14070817 - 2 Jul 2025
Viewed by 739
Abstract
Peroxiredoxins (Prxs; EC 1.11.1.15) are a group of thiol peroxidases that catalyze the detoxification of H2O2 and other organic hydroperoxides. The ripening of pepper (Capsicum annuum L.) fruit involves significant phenotypic, physiological, and biochemical changes. Based on the available [...] Read more.
Peroxiredoxins (Prxs; EC 1.11.1.15) are a group of thiol peroxidases that catalyze the detoxification of H2O2 and other organic hydroperoxides. The ripening of pepper (Capsicum annuum L.) fruit involves significant phenotypic, physiological, and biochemical changes. Based on the available pepper plant genome, eight PRX genes were identified and named CaPRX1, CaPRX1-Cys, CaPRX2B, CaPRX2E, CaPRX2F, CaPRX2-CysBAS1, CaPRX2-CysBAS2, and CaPRX Q. Among these, only CaPRX1-Cys was not detected in the transcriptome (RNA-Seq) of sweet pepper fruits reported previously. This study analyzes the modulation of these seven CaPRX genes during ripening and after treating fruits with nitric oxide (NO) gas. A time-course expression analysis of sweet pepper fruit during ripening revealed that two genes were upregulated (CaPRX1 and CaPRX2E), two were downregulated (CaPRX2B and PRX Q), and three were unaffected (CaPRX2F, CaPRX2-CysBAS1, and CaPRX2-CysBAS2). Gene expression was also studied in three hot pepper varieties with varying capsaicin contents (Piquillo < Padrón < Alegría riojana), showing a differential expression pattern during ripening. Furthermore, NO treatment of sweet pepper fruits triggered the upregulation of CaPRX2B and CaPRXQ genes and the downregulation of CaPRX1 and CaPRX2-CysBAS1 genes, while the other three remained unaffected. Among the CaPrx proteins, four (CaPrx2B, CaPrx2-CysBAS1, CaPrx2-CysBAS2, and CaPrx2E) were identified as susceptible to S-nitrosation, as determined by immunoprecipitation assays with an antibody against S-nitrocysteine and further mass spectrometry analyses. These findings indicate the diversification of PRX genes in pepper fruits and how some of them are regulated by NO, either at the level of gene expression or through protein S-nitrosation, a NO-promoting post-translational modification (PTM). Given that Prxs play a crucial role in stress tolerance, these data suggest that Prxs are vital components of the antioxidant system during pepper fruit ripening, an event that is accompanied by physiological nitro-oxidative stress. Full article
(This article belongs to the Special Issue Reactive Oxygen and Nitrogen Species in Plants―2nd Edition)
Show Figures

Figure 1

28 pages, 5449 KB  
Article
The Impact of Peroxiredoxin 3 on Molecular Testing, Diagnosis, and Prognosis in Human Pancreatic Ductal Adenocarcinoma
by Anna Kakehashi, Shugo Suzuki, Yusaku Nishidoi, Atsushi Hagihara, Hiroko Ikenaga, Masayuki Shiota, Guiyu Qiu, Ikue Noura, Yuko Kuwae, Arpamas Vachiraarunwong, Masaki Fujioka, Min Gi, Norifumi Kawada and Hideki Wanibuchi
Cancers 2025, 17(13), 2212; https://doi.org/10.3390/cancers17132212 - 1 Jul 2025
Cited by 1 | Viewed by 860
Abstract
Background/Objective: Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer death and tumors with an extremely poor prognosis. In the present study, novel biomarker candidates useful for the early diagnosis and prognosis of human invasive PDAC were investigated. Methods: Biomarker [...] Read more.
Background/Objective: Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer death and tumors with an extremely poor prognosis. In the present study, novel biomarker candidates useful for the early diagnosis and prognosis of human invasive PDAC were investigated. Methods: Biomarker candidates were first selected based on the proteomic/bioinformatic and clinico-pathological analyses of 10 and 100 patients with PDAC, respectively, operated at Osaka Metropolitan University Hospital (Exp. 1). Next, the expression and secretion of the target protein and its EV mRNA were investigated in pancreatic cancer cells in vitro and in a Balb/c nude mouse model. In addition, the protein and EV mRNA levels of candidate molecules were measured in the blood serum of 36 PDAC and 10 IPMN patients, and diagnostic significance was assessed (Exp. 2). Results: A significant elevation of peroxiredoxin 3 (PRX3), a mitochondrial matrix protein, was found in PDAC via LC-Ms/Ms analysis. In Exp. 1, PRX3 overexpression was found in PDAC and PanIN lesions and was associated with a tumor infiltrative growth pattern (INFc) and poor overall 1-year patient survival. The prognostic value was significantly improved when PRX3 was combined with serum SPan-1 and DUPAN-2 markers in survival analyses. Furthermore, the PRX3 protein and its extracellular vesicle (EV: exosome and oncosome)-incorporated mRNA were secreted at detectable levels from PANC-1, MIAPaCa-2, and SW1990 cells into the blood of Balb/c nude mice bearing tumors. The overexpression of PRX3 was positively correlated with that of cancer stem cell marker CD44 variant 9 (CD44v9), P-Nrf2, and FOXO3a, as well as the generation of reactive oxygen species. In Exp. 2, a significant increase in PRX3 protein and EV mRNA was detected in the blood serum of PDAC subjects compared to IPMN patients and healthy controls. Significantly higher PRX3 protein levels were found in the IPMN group. The elevation of PRX3 EV mRNA was significantly associated with poor patient survival. Conclusions: These results indicate that PRX3 may become a novel early biomarker for PDAC diagnosis and prognosis. Full article
Show Figures

Figure 1

39 pages, 2145 KB  
Review
NLRP3 Inflammasome and Inflammatory Response in Aging Disorders: The Entanglement of Redox Modulation in Different Outcomes
by Bhavana Chhunchha, Eri Kubo, Deepali Lehri and Dhirendra P. Singh
Cells 2025, 14(13), 994; https://doi.org/10.3390/cells14130994 - 29 Jun 2025
Cited by 2 | Viewed by 3991
Abstract
Increasing evidence reveals that the deregulation of cellular antioxidant response with advancing age, resulting in the continuing amplification of oxidative stress-induced inflammatory response, is a pre-eminent cause for the onset of aging-related disease states, including blinding diseases. However, several safeguards, like an antioxidant [...] Read more.
Increasing evidence reveals that the deregulation of cellular antioxidant response with advancing age, resulting in the continuing amplification of oxidative stress-induced inflammatory response, is a pre-eminent cause for the onset of aging-related disease states, including blinding diseases. However, several safeguards, like an antioxidant defense system, are genetically in place to maintain redox homeostasis. Nonetheless, if the homeostatic capacity of such systems fails (like in aging), an inflammatory pathway elicited by excessive oxidative stress-evoked aberrant NLRP3 (NOD, LRR- and pyrin domain-containing protein 3) inflammasome activation can become pathogenic and lead to disease states. Among all known inflammasomes, NLRP3 is the most studied and acts as an intracellular sensor to detect danger(s). Upon activation, NLRP3 recruits apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization and facilitates the recruitment of activated Caspase-1 (Cas-1), which results in the release of inflammatory cytokines, IL-1β and IL-18 and the activation of GasderminD, an executor of pyroptosis. NLRP3 inflammasome is tightly regulated in favor of cell health. However, when and how the activation of NLRP3 and its inflammatory components goes awry, leading to cellular derangement, and what regulatory factors are involved in the normal physiological and aging/oxidative conditions will be included in this review. Also, we address the latest findings to highlight the connection between oxidative stress, antioxidants, and NLRP3 activation as this begets aging diseases and explore the cellular pathways that are in place to regulate oxidative-induced inflammations and the pathobiological consequences of dysregulated inflammatory responses and vice versa. Full article
Show Figures

Graphical abstract

17 pages, 685 KB  
Review
Insect Peroxiredoxins: A Comprehensive Review of Their Classification, Distribution, Structural Features, Expression Profiles and Physiological Functions
by Li Yang, Shaohua Lu, Yujie Lu, Mingshun Chen and Sufen Cui
Insects 2025, 16(7), 678; https://doi.org/10.3390/insects16070678 - 28 Jun 2025
Viewed by 710
Abstract
With the development of technology, an increasing amount of literature regarding the expression profiles and physiological functions of Prxs has been published. Despite this growing interest, there is currently no systematic review of expression profiles in different insects. Here, we performed a systematic [...] Read more.
With the development of technology, an increasing amount of literature regarding the expression profiles and physiological functions of Prxs has been published. Despite this growing interest, there is currently no systematic review of expression profiles in different insects. Here, we performed a systematic review of the available literature on the location and expression of Prxs in different tissues, developmental stages and sexes in insects. Recent studies on the structure, expression profiles and functional characterization of Prxs provide valuable insights into the molecular mechanisms and functional pathways of this important enzyme family. In insects, Prxs are crucial for antioxidant defense, development, stress adaptation, cell apoptosis, immune response and insecticide resistance. This systematic review provides an overview of the various functions of Prxs as reported in the literature and highlights that many environmental stresses induce changes in Prxs expression levels. Furthermore, we present perspectives on future research directions regarding insect Prxs and discuss their potential applications in pest control. Full article
(This article belongs to the Special Issue Ecology, Behaviour, and Monitoring of Stored Product Insects)
Show Figures

Figure 1

20 pages, 4100 KB  
Article
Inhibition of CD38 by 78c Enhanced NAD+, Alleviated Inflammation, and Decreased Oxidative Stress in Old Murine Macrophages Induced by Oral Pathogens
by Kimberly Cao, Nityananda Chowdhury, Bridgette Wellslager, William D. Hill, Özlem Yilmaz and Hong Yu
Int. J. Mol. Sci. 2025, 26(13), 6180; https://doi.org/10.3390/ijms26136180 - 26 Jun 2025
Viewed by 1783
Abstract
CD38, a nicotinamide adenine dinucleotide (NAD+) glycohydrolase, increases in old murine macrophages after infection compared to young controls. We aimed to determine whether the increase in CD38 in old murine macrophages after infection is directly associated with enhanced inflammation induced by [...] Read more.
CD38, a nicotinamide adenine dinucleotide (NAD+) glycohydrolase, increases in old murine macrophages after infection compared to young controls. We aimed to determine whether the increase in CD38 in old murine macrophages after infection is directly associated with enhanced inflammation induced by the oral pathogens Aggregatibacter actinomycetemcomitans (Aa) or Porphyromonas gingivalis (Pg) when compared to young controls. Additionally, we determined the effects of a specific CD38 inhibitor (78c) on CD38, NAD+, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α expressions, and anti-oxidative responses in old murine macrophages induced by oral pathogens. Old and young murine macrophages were either uninfected or infected with the oral pathogens Aa or Pg for 1 to 24 h. Protein levels of CD38 and protein kinases, including nuclear factor kappa-B (NF-κB), phosphoinositide 3-kinase (PI3K), and mitogen-activated protein kinases (MAPKs), NAD+, and inflammatory cytokine (IL-1β, IL-6, TNF-α) levels were evaluated. Additionally, old murine macrophages were treated with a vehicle or a CD38 inhibitor (78c) and cells were either uninfected or infected with Aa or Pg. CD38, NAD+, cytokine (IL-1β, IL-6, TNF-α) levels, reactive oxygen species (ROS), NAPDH oxidase 1 (Nox1), and anti-oxidative enzymes, including superoxide dismutase1 (Sod1), glutathione peroxidase 4 (Gpx4), Peroxiredoxin 1 (Prdx1), thioredoxin reductase 1 (Txnrd1), and catalase (Cat), were evaluated. The results showed that old murine macrophages significantly enhanced CD38 and reduced NAD+ levels 24 h after Aa or Pg infection compared to young controls. This enhanced CD38 in old murine macrophages was not directly correlated with the activation of protein kinases (NF-κB, PI3K, and MAPKs), nor the (IL-1β, IL-6, TNF-α) levels in macrophages. The inhibition of CD38 by 78c reduced CD38, enhanced NAD+ levels, attenuated IL-1β, IL-6 and TNF-α pro-inflammatory cytokine levels, reduced ROS and Nox1 expressions, and enhanced expressions of Sod1, Gpx4, Prdx1, Txnrd1, and Cat in old murine macrophages infected with Aa or Pg. These results suggest that the inhibition of CD38 by 78c is a promising therapeutic strategy to treat aging-associated periodontitis. Full article
Show Figures

Figure 1

Back to TopTop