Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = peripheral blood island

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 691 KB  
Article
Epigenetic Signatures in an Italian Cohort of Parkinson’s Disease Patients from Sicily
by Maria Grazia Salluzzo, Francesca Ferraresi, Luca Marcolungo, Chiara Pirazzini, Katarzyna Malgorzata Kwiatkowska, Daniele Dall’Olio, Gastone Castellani, Claudia Sala, Elisa Zago, Davide Gentilini, Francesca A. Schillaci, Michele Salemi, Giuseppe Lanza, Raffaele Ferri and Paolo Garagnani
Brain Sci. 2026, 16(1), 31; https://doi.org/10.3390/brainsci16010031 - 25 Dec 2025
Viewed by 296
Abstract
Background/Objectives: Parkinson’s disease (PD) is an adult-onset neurodegenerative disorder whose pathogenesis is still not completely understood. Several lines of evidence suggest that alterations in epigenetic architecture may contribute to the development of this condition. Here, we present a pilot DNA methylation study [...] Read more.
Background/Objectives: Parkinson’s disease (PD) is an adult-onset neurodegenerative disorder whose pathogenesis is still not completely understood. Several lines of evidence suggest that alterations in epigenetic architecture may contribute to the development of this condition. Here, we present a pilot DNA methylation study from peripheral blood in a cohort of Sicilian PD patients and matched controls. Peripheral tissue analysis has previously been shown to reflect molecular and functional profiles relevant to neurological diseases, supporting their validity as a proxy for studying brain-related epigenetic mechanisms. Methods: We analyzed 20 PD patients and 20 healthy controls (19 males and 21 females overall), matched for sex, with an age range of 60–87 years (mean 72.3 years). Peripheral blood DNA was extracted and processed using the Illumina Infinium MethylationEPIC v2.0 BeadChip, which interrogates over 935,000 CpG sites across the genome, including promoters, enhancers, CpG islands, and other regulatory elements. The assay relies on sodium bisulfite conversion of DNA to detect methylation status at single-base resolution. Results: Epigenome-wide association study (EWAS) data allowed for multiple levels of analysis, including immune cell-type deconvolution, estimation of biological age (epigenetic clocks), quantification of stochastic epigenetic mutations (SEMs) as a measure of epigenomic stability, and differential methylation profiling. Immune cell-type inference revealed an increased but not significant proportion of monocytes in PD patients, consistent with previous reports. In contrast, epigenetic clock analysis did not reveal significant differences in biological age acceleration between cases and controls, partially at odds with earlier studies—likely due to the limited sample size. SEMs burden did not differ significantly between groups. Epivariations reveal genes involved in pathways known to be altered in dopaminergic neuron dysfunction and α-synuclein toxicity. Differential methylation analysis, however, yielded 167 CpG sites, of which 55 were located within genes, corresponding to 54 unique loci. Gene Ontology enrichment analysis highlighted significant overrepresentation of pathways with neurological relevance, including regulation of synapse structure and activity, axonogenesis, neuron migration, and synapse organization. Notably, alterations in KIAA0319, a gene involved in neuronal migration, synaptic formation, and cortical development, have previously been associated with Parkinson’s disease at the gene expression level, while methylation changes in FAM50B have been reported in neurotoxic and cognitive contexts; our data suggest, for the first time, a potential epigenetic involvement of both genes in Parkinson’s disease. Conclusions: This pilot study on a Sicilian population provides further evidence that DNA methylation profiling can yield valuable molecular insights into PD. Despite the small sample size, our results confirm previously reported findings and highlight biological pathways relevant to neuronal structure and function that may contribute to disease pathogenesis. These data support the potential of epigenetic profiling of peripheral blood as a tool to advance the understanding of PD and generate hypotheses for future large-scale studies. Full article
Show Figures

Figure 1

14 pages, 1138 KB  
Article
Carbon Dioxide (CO2) Dietary Emissions Are Related to Oxidative and Inflammatory Status in Adult Population
by Margalida Monserrat-Mesquida, Cristina Bouzas, Silvia García, Maria Magdalena Quetglas-Llabrés, David Mateos, Lucía Ugarriza, Cristina Gómez, Antoni Sureda and Josep A. Tur
Nutrients 2023, 15(24), 5050; https://doi.org/10.3390/nu15245050 - 8 Dec 2023
Cited by 2 | Viewed by 2730
Abstract
Background: Carbon dioxide (CO2) is a primary greenhouse gas (GHG) causing global temperature to rise. Unsustainable diets induce an increment in the risk of obesity and noncommunicable diseases but also contribute to the global GSG burden. Objective: To assess whether CO [...] Read more.
Background: Carbon dioxide (CO2) is a primary greenhouse gas (GHG) causing global temperature to rise. Unsustainable diets induce an increment in the risk of obesity and noncommunicable diseases but also contribute to the global GSG burden. Objective: To assess whether CO2 dietary emissions influence the inflammatory and oxidative status of subjects with metabolic syndrome (MetS). Methods: As part of the PREDIMED-Plus study, 100 adults (55–75 years old) from the Balearic Islands, Spain, were recruited and classified according to their dietary CO2 emissions. Anthropometric parameters were determined, fasting blood samples were collected and plasma, neutrophils, and peripheral blood mononuclear cells (PBMCs) were obtained. Dietary inflammatory index (DII), adherence to a Mediterranean diet (ADM), fatty liver index (FLI), and estimated glomerular filtration (eGFR) were calculated. Clinical biochemical parameters, blood count, and oxidative stress and inflammatory biomarker levels were also determined. Results: DII was higher in participants with high dietary CO2 emissions. Adherence to the MedDiet was inversely associated with CO2 emissions. Malondialdehyde (MDA) levels were higher in urine and plasma samples from subjects with high dietary CO2 emissions. Reactive oxygen species (ROS) production by PBMCs was greater in participants with high CO2 emissions. Interleukin-15, resistin, and leptin plasma levels were increased in participants with high dietary CO2 emissions. Conclusion: Dietary CO2 emissions influence oxidative status and inflammation in relation to the increased prooxidative and proinflammatory status in PBMCs and plasma. These biomarkers were useful for monitoring diet sustainability and health. Full article
(This article belongs to the Special Issue The Optimal Diet for a Sustainable Future)
Show Figures

Figure 1

17 pages, 952 KB  
Article
Difference in Methylation and Expression of Brain-Derived Neurotrophic Factor in Alzheimer’s Disease and Mild Cognitive Impairment
by Katarina Kouter, Matea Nikolac Perkovic, Gordana Nedic Erjavec, Tina Milos, Lucija Tudor, Suzana Uzun, Ninoslav Mimica, Nela Pivac and Alja Videtic Paska
Biomedicines 2023, 11(2), 235; https://doi.org/10.3390/biomedicines11020235 - 17 Jan 2023
Cited by 11 | Viewed by 3151
Abstract
Due to the increasing number of progressive dementias in the population, numerous studies are being conducted that seek to determine risk factors, biomarkers and pathological mechanisms that could help to differentiate between normal symptoms of aging, mild cognitive impairment (MCI) and dementia. The [...] Read more.
Due to the increasing number of progressive dementias in the population, numerous studies are being conducted that seek to determine risk factors, biomarkers and pathological mechanisms that could help to differentiate between normal symptoms of aging, mild cognitive impairment (MCI) and dementia. The aim of this study was to investigate the possible association of levels of BDNF and COMT gene expression and methylation in peripheral blood cells with the development of Alzheimer’s disease (AD). Our results revealed higher expression levels of BDNF (p < 0.001) in MCI subjects compared to individuals diagnosed with AD. However, no difference in COMT gene expression (p = 0.366) was detected. DNA methylation of the CpG islands and other sequences with potential effects on gene expression regulation revealed just one region (BDNF_9) in the BDNF gene (p = 0.078) with marginally lower levels of methylation in the AD compared to MCI subjects. Here, we show that the level of BDNF expression in the periphery is decreased in subjects with AD compared to individuals with MCI. The combined results from the gene expression analysis and DNA methylation analysis point to the potential of BDNF as a marker that could help distinguish between MCI and AD patients. Full article
(This article belongs to the Special Issue Molecular Research of Neurodegenerative and Psychiatric Diseases)
Show Figures

Figure 1

11 pages, 1329 KB  
Case Report
A Fatal Case of Native Valve Endocarditis with Multiple Embolic Phenomena and Invasive Methicillin-Resistant Staphylococcus aureus Bacteremia: A Case Report from the Maldives
by Ali Shafeeq, Hisham Ahmed Imad, Ahmed Azhad, Migdhaadh Shareef, Mohamed Shaneez Najmy, Mohamed Mausool Siraj, Mohamed Sunil, Rimsha Rafeeu, Aishath Sofa Moosa, Ahmed Shaheed, Thundon Ngamprasertchai, Wasin Matsee, Pyae Linn Aung, Wang Nguitragool and Tatsuo Shioda
Trop. Med. Infect. Dis. 2023, 8(1), 53; https://doi.org/10.3390/tropicalmed8010053 - 10 Jan 2023
Cited by 1 | Viewed by 4151
Abstract
Infective endocarditis (IE) is a life-threatening condition caused by infection within the endocardium of the heart and commonly involves the valves. The subsequent cascading inflammation leads to the appearance of a highly friable thrombus that is large enough to become lodged within the [...] Read more.
Infective endocarditis (IE) is a life-threatening condition caused by infection within the endocardium of the heart and commonly involves the valves. The subsequent cascading inflammation leads to the appearance of a highly friable thrombus that is large enough to become lodged within the heart chambers. As a result, fever, fatigue, heart murmurs, and embolization phenomena may be seen in patients with IE. Embolization results in the seeding of bacteria and obstruction of circulation, causing cell ischemia. Of concern, bacteria with the potential to gain pan-drug resistance, such as methicillin-resistant Staphylococcus aureus (MRSA), are increasingly being identified as the causative agent of IE in hospitals and among intravenous drug abusers. We retrospectively reviewed de-identified clinical data to summarize the clinical course of a patient with MRSA isolated using an automated blood culture system. At the time of presentation, the patient showed a poor consciousness level, and the calculated Glasgow scale was 10/15. A high-grade fever with circulatory shock indicated an occult infection, and a systolic murmur was observed with peripheral signs of embolization. This case demonstrated the emerging threat of antimicrobial resistance in the community and revealed clinical findings of IE that may be helpful to clinicians for the early recognition of the disease. The management of such cases requires a multi-specialty approach, which is not widely available in small-island developing states such as the Maldives. Full article
Show Figures

Figure 1

18 pages, 3029 KB  
Article
Downregulation of Circulating Hsa-miR-200c-3p Correlates with Dyslipidemia in Patients with Stable Coronary Artery Disease
by Chiara Vancheri, Elena Morini, Francesca Romana Prandi, Francesco Barillà, Francesco Romeo, Giuseppe Novelli and Francesca Amati
Int. J. Mol. Sci. 2023, 24(2), 1112; https://doi.org/10.3390/ijms24021112 - 6 Jan 2023
Cited by 5 | Viewed by 2845
Abstract
Coronary heart disease (CHD), one of the leading causes of disability and death worldwide, is a multifactorial disease whose early diagnosis is demanding. Thus, biomarkers predicting the occurrence of this pathology are of great importance from a clinical and therapeutic standpoint. By means [...] Read more.
Coronary heart disease (CHD), one of the leading causes of disability and death worldwide, is a multifactorial disease whose early diagnosis is demanding. Thus, biomarkers predicting the occurrence of this pathology are of great importance from a clinical and therapeutic standpoint. By means of a pilot study on peripheral blood cells (PBMCs) of subjects with no coronary lesions (CTR; n = 2) and patients with stable CAD (CAD; n = 2), we revealed 61 differentially methylated regions (DMRs) (18 promoter regions, 24 genes and 19 CpG islands) and 14.997 differentially methylated single CpG sites (DMCs) in CAD patients. MiRNA-seq results displayed a peculiar miRNAs profile in CAD patients with 18 upregulated and 32 downregulated miRNAs (FC ≥ ±1.5, p ≤ 0.05). An integrated analysis of genome-wide DNA methylation and miRNA-seq results indicated a significant downregulation of hsa-miR-200c-3p (FCCAD = −2.97, p ≤ 0.05) associated to the hypermethylation of two sites (genomic coordinates: chr12:7073122-7073122 and chr12:7072599-7072599) located intragenic to the miR-200c/141 genomic locus (encoding hsa-miR-200c-3p) (p-value = 0.009) in CAD patients. We extended the hsa-miR-200c-3p expression study in a larger cohort (CAD = 72, CTR = 24), confirming its reduced expression level in CAD patients (FCCAD = −2; p = 0.02). However, when we analyzed the methylation status of the two CpG sites in the same cohort, we failed to identify significant differences. A ROC curve analysis showed good performance of hsa-miR-200c-3p expression level (AUC = 0.65; p = 0.02) in distinguishing CAD from CTR. Moreover, we found a significant positive correlation between hsa-miR-200c-3p expression and creatinine clearance (R2 = 0.212, p < 0.005, Pearson r = 0.461) in CAD patients. Finally, a phenotypic correlation performed in the CAD group revealed lower hsa-miR-200c-3p expression levels in CAD patients affected by dyslipidemia (+DLP, n = 58) (p < 0.01). These results indicate hsa-miR-200c-3p as potential epi-biomarker for the diagnosis and clinical progression of CAD and highlight the importance of deeper studies on the expression of this miRNA to understand its functional role in coronary artery disease development. Full article
(This article belongs to the Special Issue Molecular Research in Cardiovascular and Cerebrovascular Diseases)
Show Figures

Figure 1

13 pages, 878 KB  
Article
Prospective DNA Methylation Analysis of the CpG GABRA2 Receptor Subunit in Alcohol Dependence during Detoxification
by Ulrich W. Preuss, Gabriele Koller and Peter Zill
Medicina 2022, 58(11), 1653; https://doi.org/10.3390/medicina58111653 - 15 Nov 2022
Viewed by 2249
Abstract
Background and Objectives: Variants of GABRA2 have been repeatedly associated with alcohol dependence risk. However, no study investigated potential epigenetic alterations in the GABRA2 gene in alcohol-dependent (AD) subjects during alcohol withdrawal. We investigated DNA methylation pattern in the regulatory region of GABRA2 [...] Read more.
Background and Objectives: Variants of GABRA2 have been repeatedly associated with alcohol dependence risk. However, no study investigated potential epigenetic alterations in the GABRA2 gene in alcohol-dependent (AD) subjects during alcohol withdrawal. We investigated DNA methylation pattern in the regulatory region of GABRA2 gene in peripheral leukocytes of AD patients and controls. Further, GABRA2 methylation patterns were analysed in neuroblastoma cells under ethanol exposure and withdrawal. Materials and Methods: In the present study, blood samples were obtained from 41 AD subjects on the day of inpatient admission, after the first and second week of inpatient treatment. The comparison group included 47 healthy controls. GABRA2 methylation of 4 CpG sites in the CpG island was compared to neuroblastoma cells which were exposed to 100 mM of ethanol for 2, 5 and 9 days, followed by a withdrawal interval of 4 days. Results: no significant differences in GABRA2 methylation patterns were found in AD subjects over time and vs. controls, after controlling for age. Further, no influence of withdrawal severity, alcohol consumption before admission and other alcohol dependence characteristics were found. Conclusions: The results indicate that GABRA2 methylation in AD individuals and in a cell model is unaffected by alcohol exposition and withdrawal. Influences of GABRA2 on characteristics of alcohol dependence may be exerted by mechanisms other than epigenetic alterations related to alcohol intoxication or withdrawal. Full article
(This article belongs to the Section Psychiatry)
Show Figures

Figure 1

16 pages, 2462 KB  
Article
Effects of 2-Year Nutritional and Lifestyle Intervention on Oxidative and Inflammatory Statuses in Individuals of 55 Years of Age and over at High Cardiovascular Risk
by Margalida Monserrat-Mesquida, Magdalena Quetglas-Llabrés, Cristina Bouzas, Silvia García, David Mateos, Cristina Gómez, José M. Gámez, Henrik E. Poulsen, Josep A. Tur and Antoni Sureda
Antioxidants 2022, 11(7), 1326; https://doi.org/10.3390/antiox11071326 - 5 Jul 2022
Cited by 12 | Viewed by 3473
Abstract
Obesity and overweight are disorders with high impact on the morbidity and mortality of chronic diseases, such as type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). We aim to assess the effects of 2-year nutritional and lifestyle intervention on oxidative and inflammatory [...] Read more.
Obesity and overweight are disorders with high impact on the morbidity and mortality of chronic diseases, such as type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). We aim to assess the effects of 2-year nutritional and lifestyle intervention on oxidative and inflammatory status in individuals of 55 years of age and over at high CVD risk. Participants (n = 100 individuals of 55 years of age and over living in the Balearic Islands, Spain) were randomized into control and intervention group. Anthropometric and haematological parameters, blood pressure and physical activity were measured before and after the intervention. Oxidative and inflammatory biomarkers in plasma, urine, peripheral blood mononuclear cells (PBMCs) and neutrophils were determined. A higher reduction in abdominal obesity, blood pressure and triglycerides levels was observed after a 2-year intervention. An improvement of oxidative stress and proinflammatory status was demonstrated with a significant reduction in myeloperoxidase, xanthine oxidase, malondialdehyde and monocyte chemoattractant protein-1 (MCP1) levels, and an increase in polyphenols in plasma was observed. A decrease in reactive oxygen species production in PBMCs and neutrophils levels after zymosan and lipopolysaccharide activation was found in the intervention group with respect to the control group. The intervention with hypocaloric Mediterranean Diet and customized physical activity improves oxidative stress and proinflammatory status and could contribute to decreasing the CVD risk. Full article
Show Figures

Figure 1

24 pages, 5035 KB  
Article
Aqueous Extract of Psiloxylon mauritianum, Rich in Gallic Acid, Prevents Obesity and Associated Deleterious Effects in Zebrafish
by Batoul Ghaddar, Laura Gence, Bryan Veeren, Matthieu Bringart, Jean-Loup Bascands, Olivier Meilhac and Nicolas Diotel
Antioxidants 2022, 11(7), 1309; https://doi.org/10.3390/antiox11071309 - 30 Jun 2022
Cited by 11 | Viewed by 3634
Abstract
Obesity has reached epidemic proportions, and its prevalence tripled worldwide between 1975 and 2016, especially in Reunion Island, a French overseas region. Psiloxylon mauritianum, an endemic medicinal plant from Reunion Island registered in the French pharmacopeia, has recently gained interest in combating [...] Read more.
Obesity has reached epidemic proportions, and its prevalence tripled worldwide between 1975 and 2016, especially in Reunion Island, a French overseas region. Psiloxylon mauritianum, an endemic medicinal plant from Reunion Island registered in the French pharmacopeia, has recently gained interest in combating metabolic disorders because of its traditional lipid-lowering and “anti-diabetic” use. However, scientific data are lacking regarding its toxicity and its real benefits on metabolic diseases. In this study, we aim to determine the toxicity of an aqueous extract of P. mauritianum on zebrafish eleutheroembryos following the OECD toxicity assay (Organization for Economic Cooperation and Development, guidelines 36). After defining a non-toxic dose, we determined by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) that this extract is rich in gallic acid but contains also caffeoylquinic acid, kaempferol and quercetin, as well as their respective derivatives. We also showed that the non-toxic dose exhibits lipid-lowering effects in a high-fat-diet zebrafish larvae model. In a next step, we demonstrated its preventive effects on body weight gain, hyperglycemia and liver steatosis in a diet-induced obesity model (DIO) performed in adults. It also limited the deleterious effects of overfeeding on the central nervous system (i.e., cerebral oxidative stress, blood-brain barrier breakdown, neuro-inflammation and blunted neurogenesis). Interestingly, adult DIO fish treated with P. mauritianum display normal feeding behavior but higher feces production. This indicates that the “anti-weight-gain” effect is probably due to the action of P. mauritianum on the intestinal lipid absorption and/or on the microbiota, leading to the increase in feces production. Therefore, in our experimental conditions, the aqueous extract of P. mauritianum exhibited “anti-weight-gain” properties, which prevented the development of obesity and its deleterious effects at the peripheral and central levels. These effects should be further investigated in preclinical models of obese/diabetic mice, as well as the impact of P. mauritianum on the gut microbiota. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

2 pages, 204 KB  
Abstract
A Greater Reduction in Intrahepatic Fat Content after a Lifestyle Intervention Is Related to a Better Inflammatory and Oxidative Status
by Margalida Monserrat Mesquida, Maria Magdalena Quetglas-Llabrés, Sofía Montemayor, Catalina Maria Mascaró, Silvia Tejada, Antoni Pons, Josep A. Tur and Antoni Sureda
Biol. Life Sci. Forum 2022, 12(1), 9; https://doi.org/10.3390/IECN2022-12374 - 14 Mar 2022
Viewed by 1149
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease characterized by the excessive accumulation of lipids in the liver parenchyma. To date, there is no effective pharmacological treatment against NAFLD; however, lifestyle modifications, including physical activity and the adoption of healthy eating habits, are [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a disease characterized by the excessive accumulation of lipids in the liver parenchyma. To date, there is no effective pharmacological treatment against NAFLD; however, lifestyle modifications, including physical activity and the adoption of healthy eating habits, are therapeutic approaches against this disease. The aim of this study was to evaluate the relationship between the improvement of the intrahepatic fat content (IFC) in patients with NAFLD and metabolic syndrome and biomarkers of oxidative stress and inflammation after 6 months of lifestyle intervention, which included a hypocaloric diet and the promotion of physical activity. Patients diagnosed with NAFLD (n = 60 adults; 40–60 years old) living in the Balearic Islands, Spain were classified in tertiles according to the improvement of IFC measured by Magnetic Resonance Imaging (MRI). Pro/antioxidant and inflammatory biomarkers were determined in plasma before and after the lifestyle intervention. The greatest improvement in IFC was directly related to a better cardiorespiratory fitness, determined with the Chester step test. Significant greater reductions in weight, body mass index, alanine aminotransferase and triglycerides were observed in the group with the greatest improvement in IFC compared to the one that improved the least after the intervention. No significant differences were detected in glucose, cholesterol and in aspartate aminotransferase. Similarly, the reduction in catalase plasma activity, irisin and cytokeratin 18 levels were significantly higher in the group with the highest degree of IFC reduction, whereas no differences were observed in superoxide dismutase activity and in malondialdehyde and protein carbonyl levels. A progressive decrease in reactive oxygen species production by peripheral blood mononuclear cells activated with lipopolysaccharide was observed after the lifestyle intervention. The present data show that a greater reduction in IFC is related to an improvement in pro/antioxidant and pro-inflammatory status and better cardiorespiratory fitness in NAFLD patients. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Nutrients)
12 pages, 22542 KB  
Article
Epigenetic Silencing of Tumor Suppressor lncRNA NKILA: Implication on NF-κB Signaling in Non-Hodgkin’s Lymphoma
by Min-Yue Zhang, George Calin, Ming-Dan Deng, Rex K. H. Au-Yeung, Lu-Qian Wang and Chor-Sang Chim
Genes 2022, 13(1), 128; https://doi.org/10.3390/genes13010128 - 11 Jan 2022
Cited by 9 | Viewed by 3111
Abstract
The long non-coding RNA (lncRNA) NKILA, localized to 20q13.31, is a negative regulator of NF-κB signaling implicated in carcinogenesis. As a CpG island is embedded in the promoter region of NKILA, it is hypothesized as a tumor suppressor lncRNA silenced by promoter [...] Read more.
The long non-coding RNA (lncRNA) NKILA, localized to 20q13.31, is a negative regulator of NF-κB signaling implicated in carcinogenesis. As a CpG island is embedded in the promoter region of NKILA, it is hypothesized as a tumor suppressor lncRNA silenced by promoter DNA methylation in non-Hodgkin’s lymphoma (NHL). By pyrosequencing-verified methylation-specific PCR, NKILA methylation was detected in 1/10 (10%) NHL cell lines, but not in normal peripheral blood buffy coats or tonsils. NKILA methylation correlated with the repression of NKILA in cell lines. Hypomethylation treatment with 5-Aza-2′-deoxycytidine resulted in promoter demethylation and the re-expression of NKILA. In 102 NHL primary samples, NKILA was methylated in 29 (51.79%) diffuse large B-cell lymphoma (DLBCL) and 4 (20%) peripheral T-cell lymphoma cases, but unmethylated in all 26 mantle cell lymphoma cases. Mechanistically, the knockdown of NKILA resulted in promoting IkBα phosphorylation, associated with nucleus translocation of total p65 and phosphorylated p65 in SU-DHL-1 cells, hence constitutive NF-κB activation. Functionally, the knockdown of NKILA in SU-DHL-1 cells led to decreased cell death and increased cellular proliferation. Collectively, NKILA was a tumor suppressor lncRNA frequently hypermethylated in DLBCL. Promoter DNA methylation-mediated NKILA silencing resulted in increased cellular proliferation and decreased cell death via the repression of NF-κB signaling in NHL. Full article
Show Figures

Figure 1

36 pages, 6497 KB  
Article
Zebrafish Paralogs brd2a and brd2b Are Needed for Proper Circulatory, Excretory and Central Nervous System Formation and Act as Genetic Antagonists during Development
by Gregory L. Branigan, Kelly S. Olsen, Isabella Burda, Matthew W. Haemmerle, Jason Ho, Alexandra Venuto, Nicholas D. D’Antonio, Ian E. Briggs and Angela J. DiBenedetto
J. Dev. Biol. 2021, 9(4), 46; https://doi.org/10.3390/jdb9040046 - 31 Oct 2021
Cited by 3 | Viewed by 4464
Abstract
Brd2 belongs to the BET family of epigenetic transcriptional co-regulators that act as adaptor-scaffolds for the assembly of chromatin-modifying complexes and other factors at target gene promoters. Brd2 is a protooncogene and candidate gene for juvenile myoclonic epilepsy in humans, a homeobox gene [...] Read more.
Brd2 belongs to the BET family of epigenetic transcriptional co-regulators that act as adaptor-scaffolds for the assembly of chromatin-modifying complexes and other factors at target gene promoters. Brd2 is a protooncogene and candidate gene for juvenile myoclonic epilepsy in humans, a homeobox gene regulator in Drosophila, and a maternal-zygotic factor and cell death modulator that is necessary for normal development of the vertebrate central nervous system (CNS). As two copies of Brd2 exist in zebrafish, we use antisense morpholino knockdown to probe the role of paralog Brd2b, as a comparative study to Brd2a, the ortholog of human Brd2. A deficiency in either paralog results in excess cell death and dysmorphology of the CNS, whereas only Brd2b deficiency leads to loss of circulation and occlusion of the pronephric duct. Co-knockdown of both paralogs suppresses single morphant defects, while co-injection of morpholinos with paralogous RNA enhances them, suggesting novel genetic interaction with functional antagonism. Brd2 diversification includes paralog-specific RNA variants, a distinct localization of maternal factors, and shared and unique spatiotemporal expression, providing unique insight into the evolution and potential functions of this gene. Full article
(This article belongs to the Special Issue Zebrafish—a Model System for Developmental Biology II)
Show Figures

Figure 1

12 pages, 1416 KB  
Article
Peripheral Blood Mononuclear Cells Oxidative Stress and Plasma Inflammatory Biomarkers in Adults with Normal Weight, Overweight and Obesity
by Margalida Monserrat-Mesquida, Magdalena Quetglas-Llabrés, Cristina Bouzas, Xavier Capó, David Mateos, Lucía Ugarriza, Josep A. Tur and Antoni Sureda
Antioxidants 2021, 10(5), 813; https://doi.org/10.3390/antiox10050813 - 20 May 2021
Cited by 19 | Viewed by 4901
Abstract
Background: Obesity is an important pathology in public health worldwide. Obese patients are characterized by higher cardiovascular risk and a pro-inflammatory profile. Objective: To assess the oxidative stress in peripheral blood mononuclear cells (PBMCs) and inflammatory biomarkers in plasma in adults with normal [...] Read more.
Background: Obesity is an important pathology in public health worldwide. Obese patients are characterized by higher cardiovascular risk and a pro-inflammatory profile. Objective: To assess the oxidative stress in peripheral blood mononuclear cells (PBMCs) and inflammatory biomarkers in plasma in adults with normal weight, overweight and obesity. Methods: One hundred and fifty adults (55-80-years-old; 60% women) from the Balearic Islands, Spain, were recruited and classified according to body mass index (BMI). Anthropometric measurements were carried out, fasting blood samples were collected and plasma and PBMCs were obtained. Biochemical parameters, hemogram, antioxidant enzyme activities and protein levels, reactive oxygen species production (ROS), malondialdehyde (MDA), and cytokine (tumour necrosis factor, TNFα, and interleukin 6, IL-6) levels were measured. Results: Glycaemia, triglyceridemia, abdominal obesity, and waist-to-height ratio (WHtR) were higher, and HDL-cholesterol was lower in obese patients. MDA and TNFα plasma levels were higher in the obese compared to normal-weight group, while the levels of IL-6 were higher in both obese and overweight subjects with respect to normal-weight peers. The activities of all antioxidant enzymes in PBMCs as well as the production ROS progressively increased with BMI. The protein levels of catalase in PBMCs were higher in obese and glutathione reductase in obese and overweight subjects compared to normal-weight peers. No other differences were observed. Conclusion: The current results show that overweight and obesity are related to an increase in pro-oxidant and proinflammatory status in plasma and PBMCs. The studied biomarkers may be useful for monitoring the progression/reversal of obesity. Full article
(This article belongs to the Special Issue Oxidative Stress in Liver Diseases)
Show Figures

Graphical abstract

15 pages, 2746 KB  
Article
Tetragonia tetragonoides (Pall.) Kuntze Restores Blood Perfusion from Hind-Limb Ischemic Mice
by Hyun Yang, Dong Ho Jung, Hye Won Lee, Dongoh Lee and Byoung Seob Ko
Appl. Sci. 2020, 10(23), 8562; https://doi.org/10.3390/app10238562 - 30 Nov 2020
Viewed by 2970
Abstract
Tetragonia tetragonoides (Pall.) Kuntze (TTK) is grown for the edible leaves, and can be used as food. And which commonly called Beonhaengcho in Republic of Korea. TTK is found along the seaside of the Jeju-Island and it has long been consumed [...] Read more.
Tetragonia tetragonoides (Pall.) Kuntze (TTK) is grown for the edible leaves, and can be used as food. And which commonly called Beonhaengcho in Republic of Korea. TTK is found along the seaside of the Jeju-Island and it has long been consumed as a food for women’s health. We investigated the effects of TTK on peripheral circulation disorder during menopausal transition and/or menopause in a hind-limb ischemic (HLI) mouse model. Chemotactic motility and tube formation of vascular epithelial cells were evaluated in human umbilical vein endothelial cells (HUVECs). Female C57BL/6 mice were fed a TTK (150 or 450 mg/kg/day) for four weeks and the rate of blood flow was assessed using a laser Doppler after HLI. TTK treatment significantly increased cell migration and the branch interval value of tubular structure in a dose-dependently. In the TTK treatment group, blood flow rate was significant induced at 7, 14, and 28 days after HLI, compared with the vehicle. TTK treatment also an increase in capillary density, and the highest levels of pERK(1/2), pAkt, pPLCγ1 and pFAK proteins compared to the vehicle control. These results suggest that extract of TTK may ameliorate the blood flow via improvement of peripheral angiogenesis under hind-limb ischemic stress in a menopausal mouse model. Full article
(This article belongs to the Special Issue Functional Food and Chronic Disease)
Show Figures

Figure 1

12 pages, 1296 KB  
Article
CpG-Islands as Markers for Liquid Biopsies of Cancer Patients
by Maximilian Sprang, Claudia Paret and Joerg Faber
Cells 2020, 9(8), 1820; https://doi.org/10.3390/cells9081820 - 1 Aug 2020
Cited by 16 | Viewed by 4116
Abstract
The analysis of tumours using biomarkers in blood is transforming cancer diagnosis and therapy. Cancers are characterised by evolving genetic alterations, making it difficult to develop reliable and broadly applicable DNA-based biomarkers for liquid biopsy. In contrast to the variability in gene mutations, [...] Read more.
The analysis of tumours using biomarkers in blood is transforming cancer diagnosis and therapy. Cancers are characterised by evolving genetic alterations, making it difficult to develop reliable and broadly applicable DNA-based biomarkers for liquid biopsy. In contrast to the variability in gene mutations, the methylation pattern remains generally constant during carcinogenesis. Thus, methylation more than mutation analysis may be exploited to recognise tumour features in the blood of patients. In this work, we investigated the possibility of using global CpG (CpG means a CG motif in the context of methylation. The p represents the phosphate. This is used to distinguish CG sites meant for methylation from other CG motifs or from mentions of CG content) island methylation profiles as a basis for the prediction of cancer state of patients utilising liquid biopsy samples. We retrieved existing GEO methylation datasets on hepatocellular carcinoma (HCC) and cell-free DNA (cfDNA) from HCC patients and healthy donors, as well as healthy whole blood and purified peripheral blood mononuclear cell (PBMC) samples, and used a random forest classifier as a predictor. Additionally, we tested three different feature selection techniques in combination. When using cfDNA samples together with solid tumour samples and healthy blood samples of different origin, we could achieve an average accuracy of 0.98 in a 10-fold cross-validation. In this setting, all the feature selection methods we tested in this work showed promising results. We could also show that it is possible to use solid tumour samples and purified PBMCs as a training set and correctly predict a cfDNA sample as cancerous or healthy. In contrast to the complete set of samples, the feature selections led to varying results of the respective random forests. ANOVA feature selection worked well with this training set, and the selected features allowed the random forest to predict all cfDNA samples correctly. Feature selection based on mutual information could also lead to better than random results, but LASSO feature selection would not lead to a confident prediction. Our results show the relevance of CpG islands as tumour markers in blood. Full article
(This article belongs to the Special Issue Circulating DNA and Epigenetic Alterations as Biomarkers in Oncology)
Show Figures

Figure 1

11 pages, 632 KB  
Article
Contribution of Dopamine Transporter Gene Methylation Status to Cannabis Dependency
by Anna Grzywacz, Wojciech Barczak, Jolanta Chmielowiec, Krzysztof Chmielowiec, Aleksandra Suchanecka, Grzegorz Trybek, Jolanta Masiak, Paweł Jagielski, Katarzyna Grocholewicz and Blazej Rubiś
Brain Sci. 2020, 10(6), 400; https://doi.org/10.3390/brainsci10060400 - 23 Jun 2020
Cited by 19 | Viewed by 4388
Abstract
The susceptibility to cannabis dependency results from the influence of numerous factors such as social, genetic, as well as epigenetic factors. Many studies have attempted to discover a molecular basis for this disease. However, our study aimed at evaluating the connection between altered [...] Read more.
The susceptibility to cannabis dependency results from the influence of numerous factors such as social, genetic, as well as epigenetic factors. Many studies have attempted to discover a molecular basis for this disease. However, our study aimed at evaluating the connection between altered methylation of the dopamine transporter gene (DAT1) promoter CpG sites and cannabis dependency. In the cases of some DNA sequences, including the DAT1 gene region, their methylation status in blood cells may reflect a systemic modulation in the whole organism. Consequently, we isolated the DNA from the peripheral blood cells from a group of 201 cannabis-dependent patients and 285 controls who were healthy volunteers and who were matched for age and sex. The DNA was subjected to bisulfite conversion and sequencing. Our analysis revealed no statistical differences in the general methylation status of the DAT1 gene promoter CpG island between the patients and controls. Yet, the analysis of individual CpG sites where methylation occurred indicated significant differences. These sites are known to be bound by transcription factors (e.g., SP1, p53, PAX5, or GR), which, apart from other functions, were shown to play a role in the development of the nervous system. Therefore, DAT1 gene promoter methylation studies may provide important insight into the mechanism of cannabis dependency. Full article
(This article belongs to the Special Issue The Role of Dopamine in Neural Circuits)
Show Figures

Figure 1

Back to TopTop