Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = perineuronal nets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5026 KiB  
Review
The Role of Perineuronal Nets in Physiology and Disease: Insights from Recent Studies
by Sophia Auer, Martin Schicht, Lucas Hoffmann, Silvia Budday, Renato Frischknecht, Ingmar Blümcke and Friedrich Paulsen
Cells 2025, 14(5), 321; https://doi.org/10.3390/cells14050321 - 20 Feb 2025
Cited by 2 | Viewed by 2581
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix structures that predominantly surround inhibitory neurons in the central nervous system (CNS). They have been identified as crucial regulators of synaptic plasticity and neuronal excitability. This literature review aims to summarize the current state of knowledge [...] Read more.
Perineuronal nets (PNNs) are specialized extracellular matrix structures that predominantly surround inhibitory neurons in the central nervous system (CNS). They have been identified as crucial regulators of synaptic plasticity and neuronal excitability. This literature review aims to summarize the current state of knowledge about PNNs, their molecular composition and structure, as well as their functional roles and involvement in neurological diseases. Furthermore, future directions in PNN research are proposed, and the therapeutic potential of targeting PNNs to develop novel treatment options for various neurological disorders is explored. This review emphasizes the importance of PNNs in CNS physiology and pathology and underscores the need for further research in this area. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

21 pages, 5455 KiB  
Article
A Study on Potential Sources of Perineuronal Net-Associated Sema3A in Cerebellar Nuclei Reveals Toxicity of Non-Invasive AAV-Mediated Cre Expression in the Central Nervous System
by Geoffrey-Alexander Gimenez, Maurits Romijn, Joëlle van den Herik, Wouter Meijer, Ruben Eggers, Barbara Hobo, Chris I. De Zeeuw, Cathrin B. Canto, Joost Verhaagen and Daniela Carulli
Int. J. Mol. Sci. 2025, 26(2), 819; https://doi.org/10.3390/ijms26020819 - 19 Jan 2025
Viewed by 1474
Abstract
Semaphorin 3A (Sema3A) is an axon guidance molecule, which is also abundant in the adult central nervous system (CNS), particularly in perineuronal nets (PNNs). PNNs are extracellular matrix structures that restrict plasticity. The cellular sources of Sema3A in PNNs are unknown. Most Sema3A-bearing [...] Read more.
Semaphorin 3A (Sema3A) is an axon guidance molecule, which is also abundant in the adult central nervous system (CNS), particularly in perineuronal nets (PNNs). PNNs are extracellular matrix structures that restrict plasticity. The cellular sources of Sema3A in PNNs are unknown. Most Sema3A-bearing neurons do not express Sema3A mRNA, suggesting that Sema3A may be released from other neurons. Another potential source of Sema3A is the choroid plexus. To identify sources of PNN-associated Sema3A, we focused on the cerebellar nuclei, which contain Sema3A+ PNNs. Cerebellar nuclei neurons receive prominent input from Purkinje cells (PCs), which express high levels of Sema3A mRNA. By using a non-invasive viral vector approach, we overexpressed Cre in PCs, the choroid plexus, or throughout the CNS of Sema3Afl/fl mice. Knocking out Sema3A in PCs or the choroid plexus was not sufficient to decrease the amount of PNN-associated Sema3A. Alternatively, knocking out Sema3A throughout the CNS induced a decrease in PNN-associated Sema3A. However, motor deficits, microgliosis, and neurodegeneration were observed, which were due to Cre toxicity. Our study represents the first attempt to unravel cellular sources of PNN-associated Sema3A and shows that non-invasive viral-mediated Cre expression throughout the CNS could lead to toxicity, complicating the interpretation of Cre-mediated Sema3A knock-out. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

16 pages, 2961 KiB  
Article
Do Perineuronal Nets Stabilize the Engram of a Synaptic Circuit?
by Varda Lev-Ram, Sakina Palida Lemieux, Thomas J. Deerinck, Eric A. Bushong, Alex J. Perez, Denise R. Pritchard, Brandon H. Toyama, Sung Kyu R. Park, Daniel B. McClatchy, Jeffrey N. Savas, Michael Whitney, Stephen R. Adams, Mark H. Ellisman, John Yates and Roger Y. Tsien
Cells 2024, 13(19), 1627; https://doi.org/10.3390/cells13191627 - 29 Sep 2024
Cited by 3 | Viewed by 1897
Abstract
Perineuronal nets (PNNs), a specialized form of extra cellular matrix (ECM), surround numerous neurons in the CNS and allow synaptic connectivity through holes in its structure. We hypothesize that PNNs serve as gatekeepers that guard and protect synaptic territory and thus may stabilize [...] Read more.
Perineuronal nets (PNNs), a specialized form of extra cellular matrix (ECM), surround numerous neurons in the CNS and allow synaptic connectivity through holes in its structure. We hypothesize that PNNs serve as gatekeepers that guard and protect synaptic territory and thus may stabilize an engram circuit. We present high-resolution and 3D EM images of PNN-engulfed neurons in mice brains, showing that synapses occupy the PNN holes and that invasion of other cellular components is rare. PNN constituents in mice brains are long-lived and can be eroded faster in an enriched environment, while synaptic proteins have a high turnover rate. Preventing PNN erosion by using pharmacological inhibition of PNN-modifying proteases or matrix metalloproteases 9 (MMP9) knockout mice allowed normal fear memory acquisition but diminished long-term memory stabilization, supporting the above hypothesis. Full article
(This article belongs to the Special Issue Diving Deep into Synaptic Transmission)
Show Figures

Figure 1

16 pages, 963 KiB  
Review
Perineuronal Net Alterations Following Early-Life Stress: Are Microglia Pulling Some Strings?
by Reza Rahimian, Claudia Belliveau, Sophie Simard, Gustavo Turecki and Naguib Mechawar
Biomolecules 2024, 14(9), 1087; https://doi.org/10.3390/biom14091087 - 30 Aug 2024
Cited by 2 | Viewed by 3109
Abstract
The extracellular matrix plays a key role in synapse formation and in the modulation of synaptic function in the central nervous system. Recent investigations have revealed that microglia, the resident immune cells of the brain, are involved in extracellular matrix remodeling under both [...] Read more.
The extracellular matrix plays a key role in synapse formation and in the modulation of synaptic function in the central nervous system. Recent investigations have revealed that microglia, the resident immune cells of the brain, are involved in extracellular matrix remodeling under both physiological and pathological conditions. Moreover, the dysregulation of both innate immune responses and the extracellular matrix has been documented in stress-related psychopathologies as well as in relation to early-life stress. However, the dynamics of microglial regulation of the ECM and how it can be impacted by early-life adversity have been understudied. This brief review provides an overview of the recent literature on this topic, drawing from both animal model and human post mortem studies. Direct and indirect mechanisms through which microglia may regulate the extracellular matrix—including perineuronal nets—are presented and discussed in light of the interactions with other cell types. Full article
Show Figures

Figure 1

34 pages, 8458 KiB  
Review
The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders
by Annalisa Palmisano, Siddhartha Pandit, Carmelo L. Smeralda, Ilya Demchenko, Simone Rossi, Lorella Battelli, Davide Rivolta, Venkat Bhat and Emiliano Santarnecchi
Life 2024, 14(5), 578; https://doi.org/10.3390/life14050578 - 30 Apr 2024
Cited by 4 | Viewed by 3238
Abstract
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders’ etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic [...] Read more.
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders’ etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic interneurons, whose dysfunction is associated with perineuronal net impairment and neuroinflammation. This model of pathogenesis is supported by molecular, cellular, and functional evidence. Proof for alterations of γ oscillations and their underlying mechanisms has also been reported in bipolar disorder and represents an emerging topic for major depressive disorder. Although evidence from animal models needs to be further elucidated in humans, the pathophysiology of γ-band alteration represents a common denominator for different neuropsychiatric disorders. The purpose of this narrative review is to outline a framework of converging results in psychiatric conditions characterized by γ abnormality, from neurochemical dysfunction to alterations in brain rhythms. Full article
(This article belongs to the Special Issue Physiology and Pathology: Feature Review Papers)
Show Figures

Figure 1

18 pages, 7169 KiB  
Article
The Role of Tenascin-C on the Structural Plasticity of Perineuronal Nets and Synaptic Expression in the Hippocampus of Male Mice
by Ana Jakovljević, Vera Stamenković, Joko Poleksić, Mohammad I. K. Hamad, Gebhard Reiss, Igor Jakovcevski and Pavle R. Andjus
Biomolecules 2024, 14(4), 508; https://doi.org/10.3390/biom14040508 - 22 Apr 2024
Cited by 2 | Viewed by 2382
Abstract
Neuronal plasticity is a crucial mechanism for an adapting nervous system to change. It is shown to be regulated by perineuronal nets (PNNs), the condensed forms of the extracellular matrix (ECM) around neuronal bodies. By assessing the changes in the number, intensity, and [...] Read more.
Neuronal plasticity is a crucial mechanism for an adapting nervous system to change. It is shown to be regulated by perineuronal nets (PNNs), the condensed forms of the extracellular matrix (ECM) around neuronal bodies. By assessing the changes in the number, intensity, and structure of PNNs, the ultrastructure of the PNN mesh, and the expression of inhibitory and excitatory synaptic inputs on these neurons, we aimed to clarify the role of an ECM glycoprotein, tenascin-C (TnC), in the dorsal hippocampus. To enhance neuronal plasticity, TnC-deficient (TnC-/-) and wild-type (TnC+/+) young adult male mice were reared in an enriched environment (EE) for 8 weeks. Deletion of TnC in TnC-/- mice showed an ultrastructural reduction of the PNN mesh and an increased inhibitory input in the dentate gyrus (DG), and an increase in the number of PNNs with a rise in the inhibitory input in the CA2 region. EE induced an increased inhibitory input in the CA2, CA3, and DG regions; in DG, the change was also followed by an increased intensity of PNNs. No changes in PNNs or synaptic expression were found in the CA1 region. We conclude that the DG and CA2 regions emerged as focal points of alterations in PNNs and synaptogenesis with EE as mediated by TnC. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

16 pages, 3703 KiB  
Article
Link Protein 1 Is Involved in the Activity-Dependent Modulation of Perineuronal Nets in the Spinal Cord
by Judith Sánchez-Ventura, Natalia Lago, Clara Penas, Xavier Navarro and Esther Udina
Int. J. Mol. Sci. 2024, 25(8), 4267; https://doi.org/10.3390/ijms25084267 - 12 Apr 2024
Viewed by 1594
Abstract
One of the challenges of the mature nervous system is to maintain the stability of neural networks while providing a degree of plasticity to generate experience-dependent modifications. This plasticity–stability dynamism is regulated by perineuronal nets (PNNs) and is crucial for the proper functioning [...] Read more.
One of the challenges of the mature nervous system is to maintain the stability of neural networks while providing a degree of plasticity to generate experience-dependent modifications. This plasticity–stability dynamism is regulated by perineuronal nets (PNNs) and is crucial for the proper functioning of the system. Previously, we found a relation between spinal PNNs reduction and maladaptive plasticity after spinal cord injury (SCI), which was attenuated by maintaining PNNs with activity-dependent therapies. Moreover, transgenic mice lacking the cartilage link protein 1 (Crtl1 KO mice) showed aberrant spinal PNNs and increased spinal plasticity. Therefore, the aim of this study is to evaluate the role of link protein 1 in the activity-dependent modulation of spinal PNNs surrounding motoneurons and its impact on the maladaptive plasticity observed following SCI. We first studied the activity-dependent modulation of spinal PNNs using a voluntary wheel-running protocol. This training protocol increased spinal PNNs in WT mice but did not modify PNN components in Crtl1 KO mice, suggesting that link protein 1 mediates the activity-dependent modulation of PNNs. Secondly, a thoracic SCI was performed, and functional outcomes were evaluated for 35 days. Interestingly, hyperreflexia and hyperalgesia found at the end of the experiment in WT-injured mice were already present at basal levels in Crtl1 KO mice and remained unchanged after the injury. These findings demonstrated that link protein 1 plays a dual role in the correct formation and in activity-dependent modulation of PNNs, turning it into an essential element for the proper function of PNN in spinal circuits. Full article
(This article belongs to the Special Issue Plasticity of the Nervous System after Injury: 2nd Edition)
Show Figures

Figure 1

32 pages, 3803 KiB  
Review
Perineuronal Net Microscopy: From Brain Pathology to Artificial Intelligence
by Mikhail Paveliev, Anton A. Egorchev, Foat Musin, Nikita Lipachev, Anastasiia Melnikova, Rustem M. Gimadutdinov, Aidar R. Kashipov, Dmitry Molotkov, Dmitry E. Chickrin and Albert V. Aganov
Int. J. Mol. Sci. 2024, 25(8), 4227; https://doi.org/10.3390/ijms25084227 - 11 Apr 2024
Cited by 2 | Viewed by 4375
Abstract
Perineuronal nets (PNN) are a special highly structured type of extracellular matrix encapsulating synapses on large populations of CNS neurons. PNN undergo structural changes in schizophrenia, epilepsy, Alzheimer’s disease, stroke, post-traumatic conditions, and some other brain disorders. The functional role of the PNN [...] Read more.
Perineuronal nets (PNN) are a special highly structured type of extracellular matrix encapsulating synapses on large populations of CNS neurons. PNN undergo structural changes in schizophrenia, epilepsy, Alzheimer’s disease, stroke, post-traumatic conditions, and some other brain disorders. The functional role of the PNN microstructure in brain pathologies has remained largely unstudied until recently. Here, we review recent research implicating PNN microstructural changes in schizophrenia and other disorders. We further concentrate on high-resolution studies of the PNN mesh units surrounding synaptic boutons to elucidate fine structural details behind the mutual functional regulation between the ECM and the synaptic terminal. We also review some updates regarding PNN as a potential pharmacological target. Artificial intelligence (AI)-based methods are now arriving as a new tool that may have the potential to grasp the brain’s complexity through a wide range of organization levels—from synaptic molecular events to large scale tissue rearrangements and the whole-brain connectome function. This scope matches exactly the complex role of PNN in brain physiology and pathology processes, and the first AI-assisted PNN microscopy studies have been reported. To that end, we report here on a machine learning-assisted tool for PNN mesh contour tracing. Full article
(This article belongs to the Special Issue Complex Networks, Bio-Molecular Systems, and Machine Learning 2.0)
Show Figures

Figure 1

21 pages, 3418 KiB  
Review
The Role of Cerebellar Intrinsic Neuronal Excitability, Synaptic Plasticity, and Perineuronal Nets in Eyeblink Conditioning
by Bernard G. Schreurs, Deidre E. O’Dell and Desheng Wang
Biology 2024, 13(3), 200; https://doi.org/10.3390/biology13030200 - 21 Mar 2024
Cited by 2 | Viewed by 3260
Abstract
Evidence is strong that, in addition to fine motor control, there is an important role for the cerebellum in cognition and emotion. The deep nuclei of the mammalian cerebellum also contain the highest density of perineural nets—mesh-like structures that surround neurons—in the brain, [...] Read more.
Evidence is strong that, in addition to fine motor control, there is an important role for the cerebellum in cognition and emotion. The deep nuclei of the mammalian cerebellum also contain the highest density of perineural nets—mesh-like structures that surround neurons—in the brain, and it appears there may be a connection between these nets and cognitive processes, particularly learning and memory. Here, we review how the cerebellum is involved in eyeblink conditioning—a particularly well-understood form of learning and memory—and focus on the role of perineuronal nets in intrinsic membrane excitability and synaptic plasticity that underlie eyeblink conditioning. We explore the development and role of perineuronal nets and the in vivo and in vitro evidence that manipulations of the perineuronal net in the deep cerebellar nuclei affect eyeblink conditioning. Together, these findings provide evidence of an important role for perineuronal net in learning and memory. Full article
(This article belongs to the Special Issue Plasticity and Computation in Cerebellar Neurons and Microcircuits)
Show Figures

Figure 1

18 pages, 951 KiB  
Review
Perineuronal Nets in the CNS: Architects of Memory and Potential Therapeutic Target in Neuropsychiatric Disorders
by Xue Li, Xianwen Wu, Tangsheng Lu, Chenyan Kuang, Yue Si, Wei Zheng, Zhonghao Li and Yanxue Xue
Int. J. Mol. Sci. 2024, 25(6), 3412; https://doi.org/10.3390/ijms25063412 - 18 Mar 2024
Cited by 3 | Viewed by 5115
Abstract
The extracellular matrix (ECM) within the brain possesses a distinctive composition and functionality, influencing a spectrum of physiological and pathological states. Among its constituents, perineuronal nets (PNNs) are unique ECM structures that wrap around the cell body of many neurons and extend along [...] Read more.
The extracellular matrix (ECM) within the brain possesses a distinctive composition and functionality, influencing a spectrum of physiological and pathological states. Among its constituents, perineuronal nets (PNNs) are unique ECM structures that wrap around the cell body of many neurons and extend along their dendrites within the central nervous system (CNS). PNNs are pivotal regulators of plasticity in CNS, both during development and adulthood stages. Characterized by their condensed glycosaminoglycan-rich structures and heterogeneous molecular composition, PNNs not only offer neuroprotection but also participate in signal transduction, orchestrating neuronal activity and plasticity. Interfering with the PNNs in adult animals induces the reactivation of critical period plasticity, permitting modifications in neuronal connections and promoting the recovery of neuroplasticity following spinal cord damage. Interestingly, in the adult brain, PNN expression is dynamic, potentially modulating plasticity-associated states. Given their multifaceted roles, PNNs have emerged as regulators in the domains of learning, memory, addiction behaviors, and other neuropsychiatric disorders. In this review, we aimed to address how PNNs contribute to the memory processes in physiological and pathological conditions. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

12 pages, 1547 KiB  
Article
Serum Brevican as a Biomarker of Cerebrovascular Disease in an Elderly Cognitively Impaired Cohort
by Rachel S. L. Chia, Karolina Minta, Liu-Yun Wu, Kaung H. T. Salai, Yuek Ling Chai, Saima Hilal, Narayanaswamy Venketasubramanian, Christopher P. Chen, Joyce R. Chong and Mitchell K. P. Lai
Biomolecules 2024, 14(1), 75; https://doi.org/10.3390/biom14010075 - 7 Jan 2024
Cited by 6 | Viewed by 3004
Abstract
In the brain, the extracellular matrix (ECM) composition shapes the neuronal microenvironment and can undergo substantial changes with cerebral pathology. Brevican is integral to the formation of the ECM’s neuroprotective perineuronal nets (PNNs). Decreased brevican levels were reported in vascular dementia (VaD) but [...] Read more.
In the brain, the extracellular matrix (ECM) composition shapes the neuronal microenvironment and can undergo substantial changes with cerebral pathology. Brevican is integral to the formation of the ECM’s neuroprotective perineuronal nets (PNNs). Decreased brevican levels were reported in vascular dementia (VaD) but not in Alzheimer’s disease (AD). However, the status of brevican in clinical cohorts with high concomitance of AD pathological burden and cerebrovascular disease (CeVD) is unclear. In this study, 32 non-cognitively impaired (NCI), 97 cognitively impaired no dementia (CIND), 46 AD, and 23 VaD participants recruited from memory clinics based in Singapore underwent neuropsychological and neuroimaging assessments, together with measurements of serum brevican. Association analyses were performed between serum brevican and neuroimaging measures of CeVDs, including white matter hyperintensities (WMHs), lacunes, cortical infarcts, and cerebral microbleeds. Using an aggregated score for CeVD burden, only CIND participants showed lower brevican levels with higher CeVD compared to those with lower CeVD burden (p = 0.006). Among the CeVD subtypes assessed, only elevated WMH burden was associated with lower brevican levels (OR = 2.7; 95% CI = 1.3–5.5). Our findings suggest that brevican deficits may play a role in early cerebrovascular damage in participants at risk of developing dementia. Full article
(This article belongs to the Collection Feature Papers in Section 'Molecular Medicine')
Show Figures

Figure 1

16 pages, 2448 KiB  
Perspective
Molecular and Cellular Insights: A Focus on Glycans and the HNK1 Epitope in Autism Spectrum Disorder
by Camille M. Hours, Sophie Gil and Pierre Gressens
Int. J. Mol. Sci. 2023, 24(20), 15139; https://doi.org/10.3390/ijms242015139 - 13 Oct 2023
Cited by 2 | Viewed by 2954
Abstract
Autism Spectrum Disorder (ASD) is a synaptic disorder with a GABA/glutamate imbalance in the perineuronal nets and structural abnormalities such as increased dendritic spines and decreased long distance connections. Specific pregnancy disorders significantly increase the risk for an ASD phenotype such as preeclampsia, [...] Read more.
Autism Spectrum Disorder (ASD) is a synaptic disorder with a GABA/glutamate imbalance in the perineuronal nets and structural abnormalities such as increased dendritic spines and decreased long distance connections. Specific pregnancy disorders significantly increase the risk for an ASD phenotype such as preeclampsia, preterm birth, hypoxia phenomena, and spontaneous miscarriages. They are associated with defects in the glycosylation-immune placental processes implicated in neurogenesis. Some glycans epitopes expressed in the placenta, and specifically in the extra-villous trophoblast also have predominant functions in dendritic process and synapse function. Among these, the most important are CD57 or HNK1, CD22, CD24, CD33 and CD45. They modulate the innate immune cells at the maternal–fetal interface and they promote foeto-maternal tolerance. There are many glycan-based pathways of immunosuppression. N-glycosylation pathway dysregulation has been found to be associated with autoimmune-like phenotypes and maternal-autoantibody-related (MAR) autism have been found to be associated with central, systemic and peripheric autoimmune processes. Essential molecular pathways associated with the glycan-epitopes expression have been found to be specifically dysregulated in ASD, notably the Slit/Robo, Wnt, and mTOR/RAGE signaling pathways. These modifications have important effects on major transcriptional pathways with important genetic expression consequences. These modifications lead to defects in neuronal progenitors and in the nervous system’s implementation specifically, with further molecular defects in the GABA/glutamate system. Glycosylation placental processes are crucial effectors for proper maternofetal immunity and endocrine/paracrine pathways formation. Glycans/ galectins expression regulate immunity and neurulation processes with a direct link with gene expression. These need to be clearly elucidated in ASD pathophysiology. Full article
Show Figures

Figure 1

18 pages, 3027 KiB  
Article
Age-Dependent Sex Differences in Perineuronal Nets in an APP Mouse Model of Alzheimer’s Disease Are Brain Region-Specific
by Rayane Rahmani, Naiomi Rambarack, Jaijeet Singh, Andrew Constanti and Afia B. Ali
Int. J. Mol. Sci. 2023, 24(19), 14917; https://doi.org/10.3390/ijms241914917 - 5 Oct 2023
Cited by 7 | Viewed by 3789
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, which disproportionately affects women. AD symptoms include progressive memory loss associated with amyloid-β (Aβ) plaques and dismantled synaptic mechanisms. Perineuronal nets (PNNs) are important components of the extracellular matrix with a critical role [...] Read more.
Alzheimer’s disease (AD) is the most common form of dementia, which disproportionately affects women. AD symptoms include progressive memory loss associated with amyloid-β (Aβ) plaques and dismantled synaptic mechanisms. Perineuronal nets (PNNs) are important components of the extracellular matrix with a critical role in synaptic stabilisation and have been shown to be influenced by microglia, which enter an activated state during AD. This study aimed to investigate whether sex differences affected the density of PNNs alongside the labelling of microglia and Aβ plaques density.We performed neurochemistry experiments using acute brain slices from both sexes of the APPNL-F/NL-F mouse model of AD, aged-matched (2–5 and 12–16 months) to wild-type mice, combined with a weighted gene co-expression network analysis (WGCNA). The lateral entorhinal cortex (LEC) and hippocampal CA1, which are vulnerable during early AD pathology, were investigated and compared to the presubiculum (PRS), a region unscathed by AD pathology. The highest density of PNNs was found in the LEC and PRS regions of aged APPNL-F/NL-F mice with a region-specific sex differences. Analysis of the CA1 region using multiplex-fluorescent images from aged APPNL-F/NL-F mice showed regions of dense Aβ plaques near clusters of CD68, indicative of activated microglia and PNNs. This was consistent with the results of WGCNA performed on normalised data on microglial cells isolated from age-matched, late-stage male and female wild-type and APP knock-in mice, which revealed one microglial module that showed differential expression associated with tissue, age, genotype, and sex, which showed enrichment for fc-receptor-mediated phagocytosis. Our data are consistent with the hypothesis that sex-related differences contribute to a disrupted interaction between PNNs and microglia in specific brain regions associated with AD pathogenesis. Full article
(This article belongs to the Special Issue GABA Signaling in Health and Disease in the Nervous System)
Show Figures

Figure 1

20 pages, 21626 KiB  
Article
Neuroanatomical Alterations in the CNTNAP2 Mouse Model of Autism Spectrum Disorder
by Tanya Gandhi, Cade R. Canepa, Tolulope T. Adeyelu, Philip A. Adeniyi and Charles C. Lee
Brain Sci. 2023, 13(6), 891; https://doi.org/10.3390/brainsci13060891 - 31 May 2023
Cited by 6 | Viewed by 3301
Abstract
Autism spectrum disorder (ASD) is associated with neurodevelopmental alterations, including atypical forebrain cellular organization. Mutations in several ASD-related genes often result in cerebral cortical anomalies, such as the abnormal developmental migration of excitatory pyramidal cells and the malformation of inhibitory neuronal circuitry. Notably [...] Read more.
Autism spectrum disorder (ASD) is associated with neurodevelopmental alterations, including atypical forebrain cellular organization. Mutations in several ASD-related genes often result in cerebral cortical anomalies, such as the abnormal developmental migration of excitatory pyramidal cells and the malformation of inhibitory neuronal circuitry. Notably here, mutations in the CNTNAP2 gene result in ectopic superficial cortical neurons stalled in lower cortical layers and alterations to the balance of cortical excitation and inhibition. However, the broader circuit-level implications of these findings have not been previously investigated. Therefore, we assessed whether ectopic cortical neurons in CNTNAP2 mutant mice form aberrant connections with higher-order thalamic nuclei, potentially accounting for some autistic behaviors, such as repetitive and hyperactive behaviors. Furthermore, we assessed whether the development of parvalbumin-positive (PV) cortical interneurons and their specialized matrix support structures, called perineuronal nets (PNNs), were altered in these mutant mice. We found alterations in both ectopic neuronal connectivity and in the development of PNNs, PV neurons and PNNs enwrapping PV neurons in various sensory cortical regions and at different postnatal ages in the CNTNAP2 mutant mice, which likely lead to some of the cortical excitation/inhibition (E/I) imbalance associated with ASD. These findings suggest neuroanatomical alterations in cortical regions that underlie the emergence of ASD-related behaviors in this mouse model of the disorder. Full article
Show Figures

Figure 1

17 pages, 893 KiB  
Review
Extracellular Matrix Regulation in Physiology and in Brain Disease
by Alyssa Soles, Adem Selimovic, Kaelin Sbrocco, Ferris Ghannoum, Katherine Hamel, Emmanuel Labrada Moncada, Stephen Gilliat and Marija Cvetanovic
Int. J. Mol. Sci. 2023, 24(8), 7049; https://doi.org/10.3390/ijms24087049 - 11 Apr 2023
Cited by 66 | Viewed by 14777
Abstract
The extracellular matrix (ECM) surrounds cells in the brain, providing structural and functional support. Emerging studies demonstrate that the ECM plays important roles during development, in the healthy adult brain, and in brain diseases. The aim of this review is to briefly discuss [...] Read more.
The extracellular matrix (ECM) surrounds cells in the brain, providing structural and functional support. Emerging studies demonstrate that the ECM plays important roles during development, in the healthy adult brain, and in brain diseases. The aim of this review is to briefly discuss the physiological roles of the ECM and its contribution to the pathogenesis of brain disease, highlighting the gene expression changes, transcriptional factors involved, and a role for microglia in ECM regulation. Much of the research conducted thus far on disease states has focused on “omic” approaches that reveal differences in gene expression related to the ECM. Here, we review recent findings on alterations in the expression of ECM-associated genes in seizure, neuropathic pain, cerebellar ataxia, and age-related neurodegenerative disorders. Next, we discuss evidence implicating the transcription factor hypoxia-inducible factor 1 (HIF-1) in regulating the expression of ECM genes. HIF-1 is induced in response to hypoxia, and also targets genes involved in ECM remodeling, suggesting that hypoxia could contribute to ECM remodeling in disease conditions. We conclude by discussing the role microglia play in the regulation of the perineuronal nets (PNNs), a specialized form of ECM in the central nervous system. We show evidence that microglia can modulate PNNs in healthy and diseased brain states. Altogether, these findings suggest that ECM regulation is altered in brain disease, and highlight the role of HIF-1 and microglia in ECM remodeling. Full article
(This article belongs to the Special Issue Gene Regulation in Brain Development and Physiology)
Show Figures

Figure 1

Back to TopTop