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Abstract: The extracellular matrix (ECM) within the brain possesses a distinctive composition and
functionality, influencing a spectrum of physiological and pathological states. Among its constituents,
perineuronal nets (PNNs) are unique ECM structures that wrap around the cell body of many
neurons and extend along their dendrites within the central nervous system (CNS). PNNs are pivotal
regulators of plasticity in CNS, both during development and adulthood stages. Characterized by
their condensed glycosaminoglycan-rich structures and heterogeneous molecular composition, PNNs
not only offer neuroprotection but also participate in signal transduction, orchestrating neuronal
activity and plasticity. Interfering with the PNNs in adult animals induces the reactivation of critical
period plasticity, permitting modifications in neuronal connections and promoting the recovery of
neuroplasticity following spinal cord damage. Interestingly, in the adult brain, PNN expression is
dynamic, potentially modulating plasticity-associated states. Given their multifaceted roles, PNNs
have emerged as regulators in the domains of learning, memory, addiction behaviors, and other
neuropsychiatric disorders. In this review, we aimed to address how PNNs contribute to the memory
processes in physiological and pathological conditions.

Keywords: perineuronal nets; parvalbumin; plasticity; memory; neuropsychiatric disorders

1. Introduction

In the intricate milieu of the brain, the extracellular matrix (ECM) serves as a pivotal
piece of architecture, orchestrating both physiological processes and pathological aberra-
tions [1,2]. Among the ECM’s specialized structures, perineuronal nets (PNNs) are reticular
structures composed of aggregations of ECM molecules. Ubiquitous across the mammalian
central nervous system’s (CNS) cells, PNNs mostly surround the soma and dendrites of
GABAergic neurons, particular the fast-spiking parvalbumin interneurons (PV cells). The
architecture provides both a physical barrier and an anionic shield which preserves the in-
tegrity of synaptic junctions and insulates them from potentially damaging neurochemical
stimuli. PNNs have been shown to define the critical period plasticity and early neural
trajectories, influencing processes from neuron migration and differentiation to axonal guid-
ance, especially within visual and motor systems [3,4]. An intriguing temporal dynamic
characterizes PNNs, with their emergence occurring in a particular experience-dependent
manner during postnatal stages, reaching its expression peaks in adulthood, while being
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conspicuously minimal in newborn and aged animals [5]. Pizzorusso offered seminal in-
sight by highlighting PNNs as gatekeepers in determining the closure of the critical period
for ocular dominance plasticity [2]. Interestingly, this experience-dependent plasticity asso-
ciated with PNNs could be reinitiated in adulthood by removing PNNs enzymatically [2].
It is also worth noting that synaptic plasticity underpins memory throughout the life’s
critical junctures, from developmental stages to learning epochs, and post exposure to drug
abuse, as well as during the aging process [6–9]. Alterations in PNNs invariably influence
the synaptic framework, manifesting in memory, behaviors, and even susceptibility to
psychiatric conditions [10–13]. An accumulating number of findings suggest PNNs as a key
regulator for learning, memory, and information processing both in healthy individuals
and in a plethora of pathological conditions, including brain damage, Alzheimer’s disease
(AD), epilepsy, autism, and drug addiction [14]. To date, many studies of PNNs have
focused on their role in plasticity. However, how PNNs affect memory by regulating
synaptic plasticity is not fully understood. In this review, we will briefly describe the
composition and physiological function of PNNs, and then dissect the multifaceted roles of
PNNs in the mammalian CNS, casting a spotlight on their influence across the spectrum of
memory and memory-related dysfunctions, from the conditions of spatial memory, fear
memory, drug addiction, and neurodegeneration. Deciphering the nexus between PNNs,
synaptic plasticity, and memory may lead to therapeutic intervention against neurodegen-
erative and neuropsychiatric disorders, including PTSD, AD, addiction, and age-associated
cognitive impairments.

2. PNNs’ Structure and Functions
2.1. Composition and Distributions

Approximately 10–20% of the brain volume is occupied by the ECM, which is a dense
network of proteins and glycans that provides anchorage points for nerve and glial cells
and contributes to their normal physiology [15]. The cerebral ECM has been recognized
as a key player in synaptic plasticity, especially regarding the structures of PNNs. PNNs
were first described as reticular structures by Golgi in the late 1800s [16], and since then
their appearances has been confirmed across a wide range of species, from frogs and
birds to mammals, including humans [17]. The nets are intricate assemblies of highly
diverse proteoglycans (PGs) and chondroitin sulphate glycosaminoglycan chains (CS-GAG)
attached to chondroitin sulfate proteoglycans (CSPG). These components are anchored
on a foundation of hyaluronan (HA) glycosaminoglycan backbones and proteins, which
condense through specific interactions around certain neurons [11,12]. Although PNNs in
the adult CNS are generally stable structures, various endogenous and exogenous stres-
sors are able to cause their breakdown. For example, matrix metalloproteases (MMPs),
produced by various cell types, are involved in remodeling the PNNs and, when dis-
rupted, indiscriminately destroy laminin, collagens, and CSPG [18]. Therefore, the function
and stability of PNNs are influenced by the constituent of CS-GAGs, which consist of
repeating disaccharide units of sulfated glucuronic acid (GlcA) and N-acetylgalactosamine
(GalNac) [11]. The PGs interact with morphogens, growth factors, cytokines, cell recep-
tors, cell adhesion molecules, and neurotrophic peptides to facilitate regulatory roles in
embryonic neural development [19]. HA is the only non-sulfated GAG and is fixed in
hyalectan CSPGs aggregates in perineural structures so that it has important biophysical
properties which are important for the segregation and hydration of PNNs to provide
neuroprotection and neural plasticity, as well as to regulate memory and cognition [19]
(Figure 1).
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Figure 1. Structure and composition of PNNs. The hyaluronan (HA) forms a mesh-like structure to 
which other PNN molecules can bind. HA is attached to the cell surface through hyaluronan syn-
thase (HAS). The chondroitin sulfate proteoglycans (CSPG) components, including lecticans, neu-
rocan, versican, and aggrecan are all able to attach to chains of HA through link proteins. Tenascin-
R can conjugate up to three CSPG, enhancing the overall rigidity of the PNNs. 

PNNs are formed by a cartilage-like structure as mesh-like webs, with link proteins 
(Crtl1/Hapln1 and Bral2/Hapln4) to stabilize the binding of various CSPGs to a HA back-
bone [20,21]. The CSPG components including lecticans, neurocan, versican, aggrecan, 
phosphacan, hyaluronan, tenascin-R, and link proteins, which are vulnerable to enzy-
matic degradation, primarily by chondroitinase-ABC (ChABC) [22]. Several animal KO 
and transgenic mouse models have been developed to prevent or reduce the formation of 
PNNs around neurons [23–25] (Figure 2). The cellular origin of CSPGs within PNNs has 
been a longstanding topic of debate. Investigations have shown that while certain CSPGs 
are produced and expressed by neurons, others have glial origins, and some even derive 
from both, ultimately converging into the extracellular space to assemble into PNNs [26–
28]. In addition, aggrecan and neurocan are expressed by neurons, while brevican is ex-
pressed by both neurons and astrocytes [22]. Histologically, PNNs’ visualization is pre-
dominantly achieved through lectin wisteria floribunda agglutinin (WFA) staining, due to 
its affinity for N-acetylgalactosamine in the polysaccharide chain of most PNNs [29,30], 
although alternative methods have also been used [31,32]. It is worth noting that there are 
also WFA-negative PNNs. The PNNs that surround cortical output neurons do not bind 
to WFA and are instead recognized by aggregative proteoglycan antibodies [33]. 

Figure 1. Structure and composition of PNNs. The hyaluronan (HA) forms a mesh-like structure to
which other PNN molecules can bind. HA is attached to the cell surface through hyaluronan synthase
(HAS). The chondroitin sulfate proteoglycans (CSPG) components, including lecticans, neurocan,
versican, and aggrecan are all able to attach to chains of HA through link proteins. Tenascin-R can
conjugate up to three CSPG, enhancing the overall rigidity of the PNNs.

PNNs are formed by a cartilage-like structure as mesh-like webs, with link proteins
(Crtl1/Hapln1 and Bral2/Hapln4) to stabilize the binding of various CSPGs to a HA
backbone [20,21]. The CSPG components including lecticans, neurocan, versican, aggrecan,
phosphacan, hyaluronan, tenascin-R, and link proteins, which are vulnerable to enzymatic
degradation, primarily by chondroitinase-ABC (ChABC) [22]. Several animal KO and
transgenic mouse models have been developed to prevent or reduce the formation of PNNs
around neurons [23–25] (Figure 2). The cellular origin of CSPGs within PNNs has been
a longstanding topic of debate. Investigations have shown that while certain CSPGs are
produced and expressed by neurons, others have glial origins, and some even derive from
both, ultimately converging into the extracellular space to assemble into PNNs [26–28]. In
addition, aggrecan and neurocan are expressed by neurons, while brevican is expressed
by both neurons and astrocytes [22]. Histologically, PNNs’ visualization is predominantly
achieved through lectin wisteria floribunda agglutinin (WFA) staining, due to its affinity
for N-acetylgalactosamine in the polysaccharide chain of most PNNs [29,30], although
alternative methods have also been used [31,32]. It is worth noting that there are also
WFA-negative PNNs. The PNNs that surround cortical output neurons do not bind to WFA
and are instead recognized by aggregative proteoglycan antibodies [33].

PNNs play a key role in synaptic stabilization by acting as a physical barrier, as
well as in the integration and generation of neuronal electrical activity. They provide a
continuous microenvironment that facilitates the flow of cations across the membrane,
thereby contributing to the electrical properties of neurons [34,35]. As mentioned earlier,
the vast majority of the mammalian CNS cells are endowed with PNNs. Meanwhile, PNNs
surround various types of nerve cell and exhibited a conserved distribution across mam-
malian species, from rodents to primates and human [36]. PNNs mostly surround the
soma and dendrites of GABAergic neurons, especially around fast-spiking parvalbumin
interneurons (PV cells) in various brain regions, like the forebrain, midbrain, and cerebel-
lum [20,35,37–39]. Notably, PNNs envelop a smaller number of excitatory neurons [40],
which can either express PV or not [41,42]. Furthermore, they also wrap around neurons
pivotal to fast transmission, including glycinergic output neurons in the medial nucleus
of the trapezoid body (MNTB) at the calyx of Held synapse, and excitatory neurons in
the deep cerebellar nucleus [43]. In the hippocampus, PNNs are typically formed around
inhibitory interneurons [44], yet in the CA2 region, PNNs have been observed surrounding
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both inhibitory and excitatory neurons [45]. Intriguingly, the expression of PNNs exhibit
sexual dimorphism in certain regions. For instance, it has shown that PNNs are numerous
and well developed in hippocampal CA1 of adult male rats but are lower in juvenile and
possibly in adult females. Such differences, however, are not evident in other regions, like
CA3 or the adjacent neocortex [46].
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Figure 2. Summary of the current methods for modulating PNNs. PNNs can be modulated using
several methods, including enzymatic degradation and genetic manipulation. Enzymatic degradation
involves the use of enzymes, such as ChABC, to digest the glycosaminoglycan chains of PNNs, leading
to their partial or complete removal (Top). Genetic manipulation techniques can be used to selectively
delete or modify genes involved in PNN formation or maintenance, allowing for the study of specific
molecular pathways (Bottom).

2.2. Physiological Functions

PNNs emerge during postnatal development, reaching its expression peaks in adult-
hood and presenting minimally in both newborn and aged animals [5]. The appearance of
PNNs in juveniles coincides with the closing of critical developmental periods [2,47]. In the
meanwhile, it is known that disruptions of either sulfate supply or sulfase can affect brain
development and have long-lasting effects on brain function [48]. The principal reason
affecting the CNS functions mentioned above is that PNNs strategically influence the devel-
opment and stabilization of synaptic connections [49,50]. The functions of PNNs actually
include various forms of plasticity. Numerous studies have shown that PNNs appear on
PV inhibitory neurons, reaching mature levels by the end of the critical period during
postnatal development. In adult animals, disrupted PNNs and associated signaling restore
the visual cortical plasticity [2]. Fast-spiking, calcium-dependent, parvalbumin-positive
(PV+) GABAergic interneurons are the most significant cells enwrapped by PNNs and they
play an important role in maintaining plasticity and timing during critical periods [51].
When PNNs in sensory cortex are mature ahead of time, plasticity in the local network is
greatly reduced. However, experimental removal of PNNs in adult animals can restore
plasticity levels in young animals by increasing the structural plasticity and reducing the
inhibitory spiking [2,52]. The correct pattern and assembly of PNNs is a key step in the
maturation of PV+ GABAergic interneurons, and in the regulation of synaptic plasticity [53].
These finding suggest that the deposition of PNNs onto PV inhibitory neurons applied
the brakes to critical period plasticity [54]. In this context, GABA antagonists reactivate
the critical period plasticity and reduce the number of PNNs, whereas GABA agonists



Int. J. Mol. Sci. 2024, 25, 3412 5 of 18

restore PV/PNN expression and limit plasticity in the aged cortex [55,56]. Mirroring these
findings, chemogenetic inactivation of PV+ interneurons is sufficient to reinstate the critical
period plasticity in the adult auditory cortex, and, in this process, PNNs undergo the same
anatomical changes with PV+ [57]. Along with diminished neuronal and glial elements,
Elise et al. (2021) found atypical PNNs that regulate plasticity in the CA2 of BTBR mice
(social dysfunction) [58]. By diminishing PNNs in the CA2 of BTBR mice to control levels,
they observed a partial restoration of social memory [58]. In conclusion, degradation of
PNNs not only restores critical period plasticity but also modifies neuronal plasticity in
response to a strong stimulus.

Structurally, PNNs restrict neurite growth and synapse development. At the synaptic
level, PNNs compartmentalize the neuronal surface and restrict glutamate receptor mobil-
ity [59], supporting synaptic plasticity and stabilizing synapses. Preventing AMPA receptor
mobility reduces short-term plasticity in rat primary neurons, indicating a potential role of
PNNs in memory formation. Several PNN components regulate synaptic plasticity. Neuro-
can deficiency reduces late-phase LTP stability [60], brevican ablation significantly impairs
LTP [61], and depletion of its binding partner tenascin-R also reduces LTP [62]. Knockout
of the related glycoprotein tenascin-C results in a complete failure in LTD induction and
impaired LTP development, likely due to reduced L-type VDCC channel signaling [63,64].

PNNs are crucial for protecting neurons from oxidative stress [23,65,66]. CS and HA
are highly charged and rich in anions. Therefore, PNNs can bind a large number of cations
than other ECM components, such as Fe3+, participate in local ion homeostasis maintenance,
and reduce oxidative stress in the CNS [67]. Modified PNNs, stemming from exposure
to a variety of substances, like high-fat diets [68,69] and cocaine, might impair cognition
and memory [70,71]. For instance, a high-fat, high-sugar diet reduced PV neurons, and
altered the coexpression of PNNs in adolescent rats, resulting in impaired social memory
in the medial prefrontal cortex (mPFC) [69]. PNNs also have a neuroprotective function
by protecting PV neurons from oxidative stress, because the PV neurons without a PNN
structure are highly vulnerable to oxidative stress, as revealed by a previous study [72].
In particular, PV neurons are relevant to the physiological state of an increased metabolic
activity rate and promote the production of reactive oxygen species. When the antioxidant
function of PNNs are deficient, the excessive production of reactive oxygen in PV neurons
leads to cell death [73].

PNNs have been implicated in controlling various forms of memory [30,74,75]. In-
hibitory neurons, especially PV cells, across many regions play a pivotal role in shaping
the memory engram [76–79]. Supporting this, disruptions in PNNs or their components
has been observed in a number of psychiatric disorders related to learning, memory, and
information processing [80]. It is now well established that PNNs ensure the stability of
existing synapses and prevent the formation of new ones on mature PV interneurons [81].
As PNNs stabilize excitatory inputs, they lead to an increase in the maximum firing rate of
PV interneurons, and in PV protein expression [44,82]. More recently, PNNs are shown to
act to stabilize synaptic contacts, to limit further plasticity, to restrict the synaptic changes,
and to help to solidify active synaptic networks, which are the basis for memory acquisi-
tion [81,83,84]. It has also been demonstrated that the absence of PNNs increases terminal
axonal sprouting, synaptic plasticity, and memory retention in adult mice and restores
memory in an Alzheimer’s model [71,85]. Post-learning sharp wave ripple (SWR) activity
involves the sequential replay of training-related neuronal assemblies and is critical for
system-level memory consolidation [86]. Sun et al. (2018) found that pretreatment with
chondroitinase cleaved PNNs sidechains and increased SWR frequency [87]. Therefore,
this reduction in PNNs would allow neurons to respond to changes in the environment.
Indeed, degrading PNNs with ChABC promotes the assembly of new inhibitory synapses
onto PV cells, which would promote new learning [88] and could even erase consolidated
memories [89].

PNNs also regulate neural regeneration in adulthood by surrounding and stabilizing
synaptic contacts. After brain injuries in mammals, a scar often forms, consisting of fibrous
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tissue in the lesion core and glial tissue, which creates a chemical barrier containing various
ECM molecules [90,91]. Notably, these chemical barrier molecules, mainly CSPGs and
CS-GAGs, limit the ability of axons to regrow over long distances and inhibit new contact
with descending axons [91,92]. Previous studies revealed that the administration of ChABC
after spinal cord injury removed CS-GAGs from PNNs at the lesion site, thus promoting
plasticity and nerve regeneration in long tracts entering the lesion site. In goldfish with a
spinal hemisection, plasticity in the spinal neurons might be restored by downregulation of
CS in the PNNs in the regeneration process [93]. Moreover, the administration of ChABC
degrades CSPGs in the PNNs and appears to boost the plasticity of spinal neurons and
to promote the sprouting of spared long tract axons [94]. Nevertheless, it is important to
note that thorough digestion of CSPG GAG chains through intracortical ChABC injection
might worsen motor deficits and hinder axonal sprouting in the corticospinal tract above
the lesion in spinal cord injury models. These findings indicate that CSPGs modulation
requires meticulous control to yield functional benefits [95]. It is well-established that
in the mature nervous system, motoneurons located in the ventral horn of the spinal
cord are surrounded by structures known as PNNs [96]. Recent research suggests that
preserving motoneuron PNNs and minimizing synaptic stripping through exercise could
facilitate the maintenance of the spinal circuitry and have beneficial effects on functional
recovery following peripheral nerve injury [97]. It suggests that PNNs in the spinal cord
can be differentially regulated by peripheral injury and activity when compared to brain
injury. Based on the aforementioned information, it is evident that regeneration in the
CNS, or the absence thereof, is tightly regulated by PNN formation. In a word, PNNs are
related to stabilizing synaptic connectivity and protecting neurons by forming a physical
barrier. PNNs protect the integrity of synaptic junctions and insulate them from potentially
damaging stimuli, such as oxidative stress. Regulation of PNNs could promote or inhibit
synapse formation to modify the timing and precision of information processing, memory,
and cognition [12].

3. Roles of PNNs in Learning and Memory
3.1. Object Recognition (OR) Memory

Object recognition (OR) memory refers to an organism’s ability to recognize and
remember previously encountered objects as familiar, distinguishing them from novel
objects. OR memory tests, often using rodents, assess cognitive function by measuring the
time spent exploring novel objects versus familiar ones, with a preference for the novel
indicating intact memory [98,99]. The removal of major structural components of PNNs
in the perirhinal cortex—a brain region important for object recognition—via ChABC in
two mouse models exhibiting a significant impairment in OR memory effectively restores
their OR memory and synaptic transmission to levels comparable to normal mice after one
week [71,85]. A study emphasized the functional significance of neurocan in supporting
perisomatic GABAergic inhibition, temporal order recognition memory, and cognitive
flexibility. These functions are crucial cognitive resources that are often depleted in neu-
ropsychiatric disorders [100]. Similarly, depletion of PNNs in the perirhinal cortex increases
long-term object recognition memory as measured by spontaneous object recognition [85].
Systemic oral administration of 4-methylumbelliferone (4-MU) for 6 months reduces PNN
formation around neurons and enhances memory retention in mice in spontaneous object
recognition test [101]. Furthermore, downregulation of PNNs either through ChABC di-
gestion or genetic knockdown can improve object recognition memory for a period up to
48 h [102]. PTPσ+/− mice, having a lower number of PNN receptors, display a disrupted
PNN network consolidation function in their brain, which bolsters their short-term mem-
ory performance but impairs the long-term memory performance [103]. Interestingly, the
cognitive and behavioral effects of ChABC vary depending on the location and time of
treatment [104]. For example, the infusion of ChABC into the perirhinal cortex enhances
recognition memory in an object recognition paradigm. However, the memory-enhancing
effect of ChABC treatment attenuates overtime, suggesting that the regeneration of PNNs
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gradually restores the levels of plasticity [85]. In contrast, infusion of ChABC into the mPFC
impairs cross-modal object recognition and object oddity tests in rats [105]. Carulli et al.
(2020) [106] provided evidence of dynamic modulation of PNNs in response to delayed
eyeblink conditioning (EBC), which is an associative learning paradigm.

Modulation of PNNs could change the balance between excitatory and inhibitory in-
puts to deep cerebellar nuclei (DCN) neurons which regulate the acquisition and retention
of memory [106]. In addition, it has been known that PV interneurons, which predomi-
nantly contribute to the generation of GBO, are surrounded by PNNs [107]. Vitamin D
deficiency (VDD) could increase the spontaneous GBO and decrease the evoked GBO,
reminiscent of the aberrant GBO in schizophrenia, and, as such, decrease PNNs via this pro-
cess [108]. Moreover, patients with depression often also suffer from cognitive impairments.
Short-term object recognition memory was decreased, and PNNs’ expression was increased
in the hippocampal CA1 region of depressed rats. Intracranial injection of ChABC into
hippocampus CA1 could restore PNNs expression, LTP, hippocampal inhibitory tone, and
memory performance in object recognition tests [109]. Therefore, enzymatic digestion of
PNNs improves learning, but intact PNNs are necessary for memory retention.

3.2. Fear Memory

Fear conditioning induces a permanent memory in adult animals, often examined
by training an animal to associate the presentation of a cue, typically a tone, with a foot-
shock [110]. In early postnatal development, especially in rats younger than 3 weeks,
extinction of conditioned fear leads to memory erasure. In contrast, in adult animals, extinc-
tion training creates a new memory but does not erase the original memory, suggesting that
fear memories are actively protected in adults [89]. This protection is conferred by CSPGs,
components of PNNs. The presence of PNNs enables original fear memory and extinction
memories to coexist, protecting the former from erasure. Injection of ChABC in adult mice
before acquisition of fear memory makes the rate of fear extinction similar to that observed
in juvenile mice, indicating a greater response to extinction training. However, injection
prior to extinction but after fear training was ineffective. Therefore, PNNs may be involved
in the initial encoding process of fear memory and reinforcing their resistance to extinc-
tion, rather than in directly regulating the extinction process [111]. ChABC-dependent
degradation of PNNs promoted the elimination of fear memory, underscoring the role of
intact PNNs in erasure-resistant fear memories [89]. Accordingly, the transplantation of
immature interneurons reduced the expression of PNNs and offered an expanded capacity
of plasticity in response to the facilitation of extinction memory [112].

Beyond memory extinction, memory encompasses the processes of formation, con-
solidation, and reconsolidation [37,113]. PNNs have also been implicated in these three
processes, fundamentally rooted in neural plasticity. The acquisition of auditory fear
memory is associated with an increase in PNNs in such regions as the hippocampus,
auditory cortices, and anterior cingulate cortex. Reinhard et al. (2019) found impaired tone-
associated fear memory formation in the mouse model of FXS (Fragile X syndrome, Fmr1
KO mice), and this was paralleled by impaired regulation of PNNs in the superficial layers
of auditory cortex in Fmr1 KO mice [114]. The elimination of PNNs impairs the inhibitory
PV neurons, which are critical for the consolidation of auditory fear memories [115]. How-
ever, in the amygdala, PNNs were mainly expressed around excitatory neurons, which were
recruited during auditory fear conditioning and memory retrieval [70]. Intriguingly, Evans
et al. (2022) conducted post-learning manipulation of neurogenesis through voluntary
exercise, and observed a reduction in PNN density in the CA1, accompanying a decrease in
contextual fear memory retrieval [116]. More studies focus on the role of PNNs in memory
consolidation and retention. Increased PNN expression in both the hippocampus and
the ACC enhances the recall and reconsolidation of both recent and remote fear memory,
whereas removal of PNNs impairs the consolidation and reconsolidation of both recent
and remote fear memory by regulating the feedback inhibition of PV interneurons [37].
However, digestion of PNNs using ChABC in the secondary visual cortex (V2L) interrupts
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the recall of long-term fear memory but not recent fear memory in rats [117]. Several studies
prior to this work also showed similar remote fear memory recall impairment when PNNs
were disrupted in various regions of the brain [89,118]. Similarly, injection of hyaluronidase
in the hippocampus to destroy another ingredient of PNNs attenuated fear responses one
day after conditioning, and a combination of hyaluronidase plus ChABC injected into the
hippocampus also attenuated long-term fear memory [118,119]. The elimination of PNNs
in CA1 disrupted GABA release and long-term contextual fear memory retention [120].
Jovasevic et al. (2021) demonstrated that depleting primary cilia in the hippocampal CA1
subfield was accompanied by the disruption of PNNs in CA1 and played an important
role in the persistence of fear memory. Therefore, the severe downregulation of the pri-
mary cilium-associated genes, as well as several genes encoding important component of
PNNs, may lead to the failure of lasting memory [121]. Intriguingly, diurnal and circadian
rhythms of PNNs were found in several brain regions involved in emotional memory
processing. For example, sleep deprivation prevented the daytime decrease in PNNs in the
hippocampus, BLA, and central amygdala (CeA) and enhanced fear memory extinction.
Thus, rhythmic modification of PNNs may contribute to memory consolidation during
sleep [122]. Collectively, PNNs play an important role in many facets of fear memory,
and this functionality relies on myriad mechanisms that appear to be rhythmic and brain
region-dependent.

3.3. Spatial Memory

The maturation of PNNs in the local network is known to greatly reduce the plas-
ticity of the sensory cortex. It is interesting to note that the development time of PNNs
coincides with the development of grid cell firing, which is an essential part of the net-
work supporting navigation and spatial memory [123]. Once the critical period is over,
PNNs play a crucial role in maintaining the stability of established synaptic connections,
thereby ensuring both the network’s integrity and the spatiotemporal interplay among
grid cells [124]. This stability is particularly important in maintaining consistent grid cells
when revisiting previous environments [124]. Neuropeptide Y (NPY) is involved in regu-
lating various physiological functions, including learning and memory abilities. Studies
have demonstrated that Npy1rrfb mutant mice exhibited a significant slowdown in spatial
learning, which was associated with an intense increase in PNN expression. Interestingly,
enzymatic digestion of PNNs restored their learning abilities [125]. Tajerian et al. (2018)
reported aberrant hippocampal LTP and a reduction in specialized PNNs around inhibitory
interneurons, correlating with deficits in location memory [126]. Iron is a necessary sub-
strate for neuronal function throughout life. Iron deficiency can impair spatial memory
and result in disorganized apical dendrite structure accompanied by altered PV and PNN
expression, along with reduced BDNF levels [127]. These findings suggest the crucial roles
of PNNs in maintaining plasticity in the sensory cortex and spatial memory and highlight
the potential for interventions targeting PNN expression to improve cognitive function.

4. Roles of PNNs in Memory-Related Dysfunctions
4.1. Addiction

Drug addiction modifies brain plasticity, leading to persistent drug reward memory.
These alterations in plasticity and memories are believed to produce aberrant motivation
and reinforcement, contributing to addiction. While much research has focused on the
effect of drug abuse on pre- and postsynaptic cells and astrocytes [110], recent studies have
highlighted PNNs and their individual constituents as important regulators of memories
linked to addiction-related behaviors in animals. Emerging evidence, including our own,
has shown that degradation of PNNs affects extinction and attenuates cocaine-conditioned
place preference (cocaine-CPP) and cocaine self-administration [128,129]. PNNs were
altered in specific brain regions when exposed to several drugs of abuse (cocaine, heroin,
nicotine, and alcohol) [129]. Cocaine induces neuroplasticity in the ECM, evident in both
cocaine-dependent humans [130] and rodent models of cocaine addiction [131]. Meanwhile,
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cocaine also induces metaplasticity [132], which alters the ability of natural stimuli to
further alter plasticity. In this case, the removal of PNNs and/or regulation of other PNN-
binding molecules may alter cell firing and homeostatic plasticity [133] so as to prevent the
drug-induced changes, possibly by restoring the excitatory/inhibitory balance [65].

Modulation of the expression of PNN components seems to be influenced by the
type of drug, the duration of drug exposure and withdrawal, and the brain region [129].
Key areas, like the BLA, hippocampus, and prefrontal cortex (PFC), played a critical role
in acquiring and maintaining the drug-related memory. These regions notably overlap
with brain regions essential for fear-conditioned memory [134]. Golgi neurons are vital for
the modulation of activity and plasticity in the cerebellum, and PNNs surrounding Golgi
interneurons play a role in consolidating drug-related memories [135]. Fully condensed
PNNs around Golgi interneurons can label synaptic alignments that represent drug-cue
associations [135]. A recent study showed that cocaine-induced conditioned preference
increased neural activity and upregulated PNNs around Golgi interneurons in the posterior
cerebellar cortex. However, a reduction in PNN protein expression around Golgi cells dis-
rupted the consolidation process [20]. The inactivation of the IL (infralimbic cortex), but not
the PrL (prelimbic cortex), increased posterior cerebellar cortex activity, and upregulated
PNNs’ expression around Golgi interneurons. This can further intensify the preference for
cocaine-related cues and the acquisition of cocaine-induced memory [136]. PNNs within
the mPFC are also required for the maintenance of cocaine-associated memories [137],
such as when PNN removal in the mPFC attenuated the acquisition and reconsolidation
of cocaine-associated memory in a CPP task [138]. Cocaine memory reactivation signif-
icantly altered the synaptic and electrical properties of the PNN+ neuron in mPFC and
its related proteins that regulate pyramidal output and influence the drug-seeking be-
havior [139]. Removed PNNs within the BLA or CeA enhanced extinction training and
changed plasticity prior to extinction training of morphine or cocaine-induced CPP and
heroin self-administration [140]. Increased densities of hippocampal PNNs, coupled with
decreased ECM proteolytic genes and altered synaptic markers, support preclinical studies
indicating that PNNs may stabilize reward memories. PNNs and ECM molecules may
be promising targets for addressing cue-induced relapse in SUD [141]. In summary, PNN
removal appears to create a blank slate for neuroplasticity that has the potential to combat
drug-induced maladaptive plasticity and create new adaptive response, suggesting that
targeting PNNs may be promising for the treatment of addiction.

4.2. Aging

As the nervous system ages, there is a gradual decline in its plasticity, as evidenced by
the reduced capability of the CNS in the ability of learning, as well as the decrease in the
ability to adapt to environmental changes and compensate for damage. Elevated microglial
activity in aged brains negatively impacts cognition, in part through mechanisms that alter
PNN assembly in memory-associated brain regions [142]. As mentioned before, CSPGs
in PNNs are central to regulating synaptic plasticity [143]. Thus, PNNs have crucial roles
in memory in the aging brain, and deterioration of PNNs contributes to age-dependent
brain dysfunction [19]. The accumulation of CSPG-associated ECM correlates with age-
dependent decline in striatum-related cognitive functions, including motor learning and
working memory. Removal of CSPG-associated ECM by ChABC in aged mice significantly
improved motor learning, suggesting that changes in the neural ECM’s CSPGs can regu-
late striatal plasticity [144]. The CSPGs of PNNs also have important functional roles in
protecting against the development of AD. Cortical regions with abundant levels of ECM
CSPGs seem to be less vulnerable to degenerative features associated with the develop-
ment of AD [145,146]. The decline in PNNs, marked by the loss of lectin labeling of the
PNN-associated CS-GAGs [147,148], has been reported in patients with neurocognitive and
neuropsychiatric disorders, including AD [149]. Furthermore, PNN-associated CS-GAG
sulfation patterns are also altered in AD brains [150,151]. Brain-specific lectican brevican
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were significantly elevated in AD patients, which suggests the loss of synaptic plasticity
before cell death.

PNNs seem to provide protection against the formation of neurofibrillary tangles [152].
The colocalization of some proteoglycans with Aβ and tangles may reflect a pathogenic role
of the PNNs in AD [153]. Consistently, it has been shown that disordered quantification
of PV and PNNs in the hippocampus of Tg2576 mice are early events of amyloid pathol-
ogy [154]. The application of ChABC significantly reduce amyloid β-peptide (Aβ) burden
and increase synaptic density [155]. When ChABC is injected into the perirhinal cortex
to digest the existing PNNs, the Tau mice show OR memory and synaptic transmission
comparable to those of control animals, suggesting that PNNs is related with memory loss
in neurodegenerative disorders, like AD [71]. Of the two mono-sulphated CSs [156], C6S is
known to facilitate axon growth and plasticity, while C4S’ influence is the opposite [157].
In AD animal models, using a C4S-blocking antibody have been shown to alleviate the
pathology-associated memory loss [71,158]. A decline in C6S is linked to premature mem-
ory loss, while an increase in C6S not only prevents age-related memory deficits but can
also restore existing memory impairments [159]. An enriched environment might improve
cognition in AD mouse models by modulating the PNN levels, which has been proven
to have long-lasting beneficial effects on memory in AD subjects [154]. In conclusion, the
change in PNN GAG sulfation renders the PNNs more inhibitory, which leads to a decrease
in plasticity and adversely affects memory in aged brains [156]. By modulating PNNs, it is
possible to restore neural plasticity to a juvenile-like state, which results in the restoration
of cognition in both AD-affected and aged mouse models [14,102,158].

4.3. Other

Consistent with working memory impairments in schizophrenia, multiple post-mortem
studies have demonstrated morphological and/or molecular alterations in the dorsolateral
prefrontal cortex (DLPFC) layer 3 pyramidal cells (PCs) and PV neurons in individuals
with schizophrenia [160]. These alterations include reduced dendritic spine density on
PCs, lower levels of PV mRNA, and reduced PV protein in PV basket cell terminals. The
lower levels of PV mRNA and protein could be explained by a loss of PV neurons [161].
However, studies investigating PV cell density in schizophrenia have provided mixed
results. A lower density of perineuronal nets (PNNs) in schizophrenia could result from
several different pathological processes. Firstly, it could be the result of a lower density
of PV neurons for PNNs to surround. Secondly, fewer PNNs could indicate a failure in
PNN formation and/or maintenance, which would be characterized by a loss of multiple
PNN markers and a lower proportion of PV neurons surrounded by PNNs, without a
reduction in PV cell density. Thirdly, the detectability of PNNs could be reduced due to
alterations in their composition, such as lower glycosylation of aggrecan. Given the roles
of PNNs in regulating PV cellular physiology, the identified alterations in PV neurons
and their PNNs could contribute to dysfunction in schizophrenia [162]. In Fmr1 knockout
(KO) mice, a model for autism, there is a reduced density of PNNs in the amygdala and
auditory cortex under all conditions. Additionally, there is a decrease in PNN intensity
in the CA2 region of the hippocampus. Importantly, there appears to be a positive cor-
relation between tone-associated memory and the density of PNNs in the amygdala and
auditory cortex [114].

5. The Challenges and Prospects

Recent work has revealed the importance of PNNs in the control of CNS plasticity [19].
The removal of PNNs provides an opportunity to alter plasticity for CNS repair after
injury and to facilitate learning and memory in aging and CNS disorders. However, the
therapeutic potential of targeting PNNs remain in its nascent stage.

Firstly, the current understanding on the roles of PNNs in memory and associated
psychiatric conditions has been developed through a large number of behavioral studies
involving proteolytic cleavage and knockout models [163]. Genetic modifications, like
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KO models, are frequently used to abolish or attenuate PNNs. While these methods
are very useful to establish the proof of concept that modulating PNNs can profoundly
influence plasticity and memory, their direct clinic application remains challenging. Future
studies should examine the potential genetic associations of other genes encoding PNN
components in memory [129]. For more refined alteration in neuronal plasticity, strategies
that specifically target and modify the molecular composition of PNNs are essential [164].

Secondly, the connection between PNNs and the modulation of learning and memory
primarily revolve around four genes encoding PNNs components: Hapln1, TnR, TnC,
and Bcan. However, the involvement of these and other PNNs components in long-term
memory mechanisms is largely unclear and is currently a focus of research [165]. A majority
of studies used a global disruption method, targeting not only the PNNs, but also the entire
ECM and other neurons. Future studies need more specific approaches to target the PNNs
and to verify the effects of these studies [110].

Thirdly, there is ambiguity surrounding the specific cell types responsible for in the
production of PNNs [165]. For instance, astrocytes are able to package HA-based pericellu-
lar matrices in vitro [166], whereas CSPGs, such as aggrecan, brevican, and phosphacan,
are produced by neurons [167]. Intriguingly, other evidence suggests that the neurons
themselves seem to be able to create a PNN-like structure in a dissociated culture in the
absence of glial cells [167].

Lastly, it is imperative to resolve how the PNNs actually affect the activity of individual
neurons in the neuronal system. This necessitates in vivo electrophysiological signals or
image calcium perfusion to distinguish between the cells that are enwrapped by PNNs
and those that are not. However, a significant challenge is the current lack of tools for the
in vivo staining of PNNs [168]. It is also worth noting that manipulation of PNNs probably
causes neuronal circuits to experience hyperplasticity or might affect synapses vulnerable
to neurotoxic stimuli, which could have a noxious effect on cognition [12]. While PNNs
may not supersede neurons as the primary entity of research, their growing prominence in
decoding brain functions and therapeutic potential cannot be overlooked [104].

6. Conclusions

In this review, we have explored the intricate molecular compositions and functions of
PNNs. The emerging evidence suggests that PNNs have a vital role in controlling diverse
facets of memory. Notably, PNNs appear to influence the capacity for new learning and/or
memory formation, especially during both extinction and reversal learning, by restricting
the critical-period plasticity. PNNs are also implicated in a spectrum of neuropsychiatric
disorders related to memory, encompassing schizophrenia, drug addiction, and neurode-
generation. As we look forward, it is crucial for future studies to discover the detailed
dynamic molecule changes occurring in PNNs in order to understand how PNNs and
PNN-surrounded neurons influence memory processes. In conclusion, the diverse protein
elements of PNNs present promising therapeutic avenues, potentially for aiding in erasing
detrimental memories that drive relapses into drug abuse, rejuvenating neural plasticity
and restoring cognition in neurological disorders, like AD.
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