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Abstract: Perineuronal nets (PNN) are a special highly structured type of extracellular matrix
encapsulating synapses on large populations of CNS neurons. PNN undergo structural changes
in schizophrenia, epilepsy, Alzheimer’s disease, stroke, post-traumatic conditions, and some other
brain disorders. The functional role of the PNN microstructure in brain pathologies has remained
largely unstudied until recently. Here, we review recent research implicating PNN microstructural
changes in schizophrenia and other disorders. We further concentrate on high-resolution studies of
the PNN mesh units surrounding synaptic boutons to elucidate fine structural details behind the
mutual functional regulation between the ECM and the synaptic terminal. We also review some
updates regarding PNN as a potential pharmacological target. Artificial intelligence (AI)-based
methods are now arriving as a new tool that may have the potential to grasp the brain’s complexity
through a wide range of organization levels—from synaptic molecular events to large scale tissue
rearrangements and the whole-brain connectome function. This scope matches exactly the complex
role of PNN in brain physiology and pathology processes, and the first AI-assisted PNN microscopy
studies have been reported. To that end, we report here on a machine learning-assisted tool for PNN
mesh contour tracing.

Keywords: perineuronal net; schizophrenia; epilepsy; antidepressant; brain plasticity; machine
learning; artificial intelligence; extracellular matrix; synapse

1. Introduction

The human brain can be viewed as a major instrument for the adaptation to envi-
ronmental conditions. The adaptation takes place via three basic mechanisms:(1) allele
frequencies change for species adaptation; (2) epigenetic modifications occur and (3) neu-
ronal networks rewire based on experience for an individual organism’s adaptation. The
latter process is commonly termed brain plasticity. Currently, we are witnessing unprece-
dented progress in research both on the hereditary and ontogenetic mechanisms underlying
brain plasticity at various levels, from single synapses to large neuronal networks; perineu-
ronal nets (PNN) can be viewed as an example of this kind [1]. These special structures of
the extracellular matrix (ECM) ensheath synapses in large neuronal populations in many
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regions of the brain and spinal cord, thereby affecting synaptic and neuronal plasticity [2].
Mutations of the genes encoding the PNN components (NCAN, BCAN) are linked to
hereditary risks of psychiatric and neurological disorders, so that a correlation of mutations
to the severity of behavioral outcomes can be traced in human patients [3].

The PNN has a well-shaped graceful lattice-type structure [4], making it an attractive
object for microscopy studies. Indeed, a large amount of structural information can be
collected and analyzed quantitatively at a spatial scale, ranging from brain regions to single
synaptic terminals. This is quite rare in brain ECMs: in contrast to the PNN, many other
types of brain ECMs look poorly structured in microscopy images [5].

The PNN was discovered by Camillo Golgi at the end of the XIXth century, and credit
for early studies of brain pathology-related PNN structural changes is also due to Italian
neuromorphologists (reviewed in ref. [6]). Further development of biochemistry and molec-
ular biology methods has led to the current view of PNN as a supramolecular complex
of chondroitin sulfate proteoglycans (CSPG), tenascin R and link proteins assembled on
the hyaluronan backbone [7–11]. This ECM complex serves as a scaffold for a number of
extracellular signaling cues, including semaphorin and Orthodenticle homeobox 2 (Otx2),
suggesting that the PNN acts as a spatial framework for complex signaling on the neuronal
cell surface [12–14]. PNN components are synthesized by neurons, astrocytes and oligoden-
drocytes [10,15]. In particular, the major PNN structural component aggrecan is expressed
in neurons and astrocytes. PNN development is triggered by synaptic activity [16–20] and
the formation of the PNN terminates the critical period of synaptic plasticity [21–23].

A body of experimental evidence points to the pivotal role of the ECM in the function
of synaptic networks [21]. As a result, Dityatev and Rusakov proposed the concept of tetra-
partite synapse or “synaptic quadriga” [24], highlighting the role of the ECM in synaptic
transmission and plasticity. The other three parts of the quadriga, presynapse, postsynapse
and astrocytes, have been shown to cross-signal intensely with the surrounding ECM,
including the PNN [25–28]. Therefore, we may expect the ECM to contribute significantly
to a range of pathology mechanisms that were previously attributed to neurons and/or
glial cells [29]. To date, a body of experimental evidence supports the involvement of
PNNs in the pathogenesis of schizophrenia, depression, epilepsy, Alzheimer’s disease,
posttraumatic regeneration failure, etc. [4]. Strikingly, PNN research has developed to the
point that the PNN is now viewed as a potential pharmacological target [1]. Given the
enormous burst in PNN research in recent years, we do not pretend to review all updates
on the subject; rather, we hope to grasp some trends that may have a major impact on
our understanding of PNN in physiologic and pathologic contexts in the near future. For
thorough reviews on the role of PNN in modern neuroscience and biomedicine, please
see [1,4,30,31].

Artificial intelligence (AI) tools, including artificial neuronal networks, are becoming
more prominent in the research landscape; hence, we are currently facing the prospect of a
large-scale conceptual change in brain research in the near future.

Artificial intelligence is the ability of computers to simulate human intelligence in a
wide and growing range of tasks.

Within AI, machine learning (Figure 1) uses statistical algorithms with the initial step of
training, i.e., learning “how it should work” using a human-annotated (human-processed)
dataset also called “ground truth”. As a result of training, the machine emulates data
analysis performed by humans. In other words, the AI model performs generalization: the
processing of unseen data based on what it has learned from a previous ground truth. Thus,
the machine itself is able to make adjustments to the procedure using the ground truth
information and without explicit instructions, in contrast to automated algorithm-based
image analysis previously used in biomedicine, where all adjustments were typically made
by a human researcher. This self-learning ability positions AI as a highly flexible and
time-saving tool that is invaluable in biomedical image analysis.
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artificial intelligence. 

Within machine learning, artificial neuronal networks (ANN) have become a 
dominating mathematical apparatus, with the initial idea roughly mimicking biological 
neuronal nets. Input information is processed by a network of many hubs or “neurons” 
interconnected by edges. Certain weights are assigned to edges, mimicking the synaptic 
strength of real neuronal connections. Importantly, weights are adjusted throughout the 
training process. The adjustment serves as the major mechanism of learning. Deep 
learning is a type of machine learning utilizing ANNs with two or more hidden layers. 

Here, we discuss the ECM-related brain and spinal cord pathology research as the 
rationale for the rapidly advancing PNN structural studies that are ultimately leading to 
the development of AI-assisted analysis methods as a potential big methodological shift 
in brain functional anatomy research. We also focus on the important transition from low-
resolution microscopy studies of PNN+ cell density and whole cell PNN intensity to high-
resolution studies of individual PNN mesh units at the single-synapse level. Finally, we 
present an AI-assisted tool for PNN mesh contour annotation and quantitative studies of 
PNN mesh microstructure. 

2. Low-Resolution versus High-Resolution Microscopy in PNN Research 
PNN microscopy studies can be viewed as two major datasets: 

(1) The majority of experimental reports use low optical resolution light (mostly 
fluorescent) microscopy (10×, 20× objectives, NA within 0.25–0.8 range) to quantify 
the cell density of PNN+ neurons in tissue sections and to compare the staining 
intensity of the PNN-associated markers between experimental conditions (Table 1). 
This is a very important type of methodology and much of our knowledge about 
PNN structure and function was gained with the help of these techniques (reviewed 
in [4,10,22]). A number of image analysis tools were developed for the quantification 
of PNN parameters in low-resolution images [32–35] (Figure 2). Recently, Lupori and 
co-authors published “A comprehensive atlas of perineuronal net distribution and 
colocalization with parvalbumin in the adult mouse brain” [36], raising PNN 
microscopy studies to a remarkable new level and suggesting new opportunities for 
high-content structural and functional studies of the brain ECM, as discussed below 
(review Section 10). Essentially, in this case, machine learning generated a large 
amount of PNN+ cell annotation data that was spatially resolved and could be 
transferred to standardized brain atlas coordinates. Thus, among other interesting 
options, the approach allows for a systematic comparison of the PNN distribution to 
brain connectomics and spatial transcriptomics data [37]. 

(2) A smaller number of reports addressed high-resolution structure of single PNN 
meshes (or single PNN units)—polygonal or round barriers consisting of ECM 
molecules and surrounding individual synapses [14,20,38–44] (Table 1). These 
studies revealed another level of the PNN microstructure, shedding light on the 

Figure 1. Hierarchy of the machine learning and deep learning methodology domains within
artificial intelligence.

Within machine learning, artificial neuronal networks (ANN) have become a dominat-
ing mathematical apparatus, with the initial idea roughly mimicking biological neuronal
nets. Input information is processed by a network of many hubs or “neurons” intercon-
nected by edges. Certain weights are assigned to edges, mimicking the synaptic strength
of real neuronal connections. Importantly, weights are adjusted throughout the training
process. The adjustment serves as the major mechanism of learning. Deep learning is a
type of machine learning utilizing ANNs with two or more hidden layers.

Here, we discuss the ECM-related brain and spinal cord pathology research as the
rationale for the rapidly advancing PNN structural studies that are ultimately leading to
the development of AI-assisted analysis methods as a potential big methodological shift
in brain functional anatomy research. We also focus on the important transition from
low-resolution microscopy studies of PNN+ cell density and whole cell PNN intensity to
high-resolution studies of individual PNN mesh units at the single-synapse level. Finally,
we present an AI-assisted tool for PNN mesh contour annotation and quantitative studies
of PNN mesh microstructure.

2. Low-Resolution versus High-Resolution Microscopy in PNN Research

PNN microscopy studies can be viewed as two major datasets:

(1) The majority of experimental reports use low optical resolution light (mostly fluores-
cent) microscopy (10×, 20× objectives, NA within 0.25–0.8 range) to quantify the cell
density of PNN+ neurons in tissue sections and to compare the staining intensity of
the PNN-associated markers between experimental conditions (Table 1). This is a very
important type of methodology and much of our knowledge about PNN structure
and function was gained with the help of these techniques (reviewed in [4,10,22]). A
number of image analysis tools were developed for the quantification of PNN param-
eters in low-resolution images [32–35] (Figure 2). Recently, Lupori and co-authors
published “A comprehensive atlas of perineuronal net distribution and colocalization
with parvalbumin in the adult mouse brain” [36], raising PNN microscopy studies to
a remarkable new level and suggesting new opportunities for high-content structural
and functional studies of the brain ECM, as discussed below (review Section 10).
Essentially, in this case, machine learning generated a large amount of PNN+ cell
annotation data that was spatially resolved and could be transferred to standardized
brain atlas coordinates. Thus, among other interesting options, the approach allows
for a systematic comparison of the PNN distribution to brain connectomics and spatial
transcriptomics data [37].

(2) A smaller number of reports addressed high-resolution structure of single PNN
meshes (or single PNN units)—polygonal or round barriers consisting of ECM
molecules and surrounding individual synapses [14,20,38–44] (Table 1). These studies
revealed another level of the PNN microstructure, shedding light on the delicate archi-
tecture of single synapses and their ECM coat at the sub-micrometer scale. Confocal
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microscopy was performed with NA = 1.4, allowing for a higher optical resolu-
tion [14,20,42]; higher resolutions were obtained with Superresolution Structured
Illumination Microscopy (SR-SIM) (Zeiss, Oberkochen, Germany), stimulated emis-
sion depletion (STED), stochastic optical reconstruction microscopy (STORM) (Nikon,
Tokyo, Japan), AiryScan (Zeiss, Oberkochen, Germany) super-resolution [39,40,44]
and electron microscopy (Zeiss, Oberkochen, Germany) [38,43].
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Figure 2. Large-scale tissue-section analysis of the PNN low-resolution microstructure based on
epifluorescent microscopy (from [33]): (A) WFA-positive PNN in the adult mouse somatosensory
cortex, coronal sections, multi-image stitching. The red squares 1 and 2 indicate the areas shown
at high magnification in the insert 1 and in (C); (B) semi-automatic PNN segmentation applied to
(A). Insert in (A,B) single cell PNN masks, an example with two neurons; (C) a PNN-bearing neuron
center is marked manually; (D–I) five mask size variants—square edge size 10.2; 15.3; 20.4; 25.5;
30.6 µm were applied with 16 autothresholding algorithms; and (J) a longitudinal section of the
cervical spinal cord after lateral hemisection with single cell PNN masks mapped on it. Scale bar in
(A) is 500 µm, valid for (A,B), scale bar in the insert in (A) is 25 µm, in (C)—10 µm, valid for (C,D), in
(I)—25 µm, valid for (E–I), in (J)—100 µm.

As the two datasets capture different features of the PNN microstructure (brain tissue
and whole cell level at a low resolution versus the single synapse level of detail at a
high resolution), we first review the larger corpus of scientific reports (low-resolution
microscopy) in connection with PNN normal function and pathologic implications. We
then discuss possible effects of the PNN mesh geometry on synaptic function and, finally,
we review single-mesh/single synapse high-resolution PNN microscopy studies.



Int. J. Mol. Sci. 2024, 25, 4227 5 of 32

Table 1. A list of PNN microscopy studies sorted according to the imaging technique and disease/or
experimental manipulation. The objective lens/numerical aperture values are shown next to the
reference numbers for those reports where it could be found.

Method Disease (Model) or Manipulation References Markers

Non-fluorescent light microscopy

Normal brain and spinal cord [9,45–48]; [49] (×40); [50,51]

Neurocan, Cat-301, versican,
phosphacan, WFA, PV, HABP,

TN-R, aggrecan, Sema3A, Sema3B,
neurocan, brevican, Crtl1, NG2,
APC, GFAP, NeuN, HAPLN1,

CD44, BRAL2

Alzheimer’s disease (AD) [52] (×10; ×20) Wisteria floribunda agglutinin
(WFA)

Schizophrenia [53]; [54] (×1.6; ×40); [55]
(×2.5/0.12; ×20/0.5); [56]

WFA, Aggrecan (Cat 301), CS56,
3B3, GFAP, ACAN

Crtl1/Hapln1 deficiency [57] WFA

TauP301L—Acan mouse model [58] Aggrecan, ChAT

Dementia [59,60] WFA, Cat-316, Sema3A, NeuN

Sleep deprivation [61] (×40) WFA

Substance use disorder [62] (×20; ×40) WFA

Monocular deprivation [63] Cat-315, Crtl-1

Spinal cord injury [64] WFA, 2B6

Epifluorescent microsopy

Normal brain [65]; [33] (×10/0.6; ×20/0.8); [49]
(×40); [36] (×10)

WFA, Kv3.1b, Cat-301, Neurocan,
brevican, versican, phosphacan,

TN-R, HABP, aggrecan, PV, GFAP

In vitro modeling of PNNs [66] WFA, Has-3, aggrecan, Crtl1

Sema3A binding to the PNNs [67] WFA

Spinal cord injury [68]; [33] (×10/0.6; ×20/0.8); [69] WFA, PV, NeuN, aggrecan, Crtl1,
ChAT, HABP

tPA deficiency in FS-PV
interneurons [70] WFA, PV, GABA, NeuN, Iba1

Perinatal penicillin exposure [71] (×10/0.45) WFA, PV

Substance use disorder [72] (×10; ×20; ×40); [73] WFA

Hibernation [74] WFA

Epilepsy [75] (×10) WFA, PV, Cat-315

Schizophrenia [76] (×20/0.75; ×60/1.4); [77]
(×40)

WFA, PV, aggrecan, NeuN,
8-oxo-DG

AD [78] WFA, PV, PCP4

Neuropilin1-Fc injection to visual
cortex [79] (×20/0.5) WFA, PV, Sema-3A

Ptprz1 deficiency [11] (×10; ×20; ×63)
WFA, aggrecan, HAPLN1,

neurocan, brevican, tenascin-R
619, phosphacan

4-methylumbelliferone treatment [80] (×20) WFA

Purkinje Cell Degeneration [81] (×10; ×63/1.4)
Aggrecan, GAD 65/67, vGlut1,

vGlut2, brevican, Haplnq, Hapln4,
HABP, TN-R, GFAP

Ventral hippocampal PNN
depletion [82] WFA, PV

Monocular deprivation [21] (×20; ×40), [83] (×20); [84,85] WFA, neurocan, PV
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Table 1. Cont.

Method Disease (Model) or Manipulation References Markers

Confocal microsopy

Normal adult brain

[38]; [14] (×5/0.16; ×63/1.40);
[32] (×20/0.7); [45] (×20), [86]

(×20), [87]; [48] (×40), [88] (×63);
[50] (×20), [51]; [89] (×40/1.1);

[90] (×40)

WFA, Sema3A, SV2, GAD67,
aggrecan, versican, phosphacan,

TN-R, PV, NeuN, ChAT, neurocan,
brevican, calbindin, C6S, GlyT2,

vGlut1, Hapln1, GlycR, GABAaR,
substance P, PSD95,
Ankyrin G, Cat-315

Enriched environment [91] (×100/1.4); [92,93]
WFA, PV, GAD67, Aggrecan,
Neurocan, VGlut1, Sema3A,

calbindin, VGlut2, SMI32

Co-culture of hippocampal
neurons and cortical astrocytes [94] Aggrecan, vGlut, PSD-95, VGAT,

gephyrin

lenti-cmv-Nptx2-myc injection to
somatosensory cortex [95] (×40) WFA, NeuN, PV

Eyeblink conditioning [25] (×63) WFA, VGAT, gephyrine,
NeuN, aggrecan

AD [52] (×20); [96] (×20, ×63); [97]
(×10/0.3; ×63/1.4); [98]

WFA, Aβ (Amylo-Glo), CD68,
Iba1, Thioflavin-S, PV, Aggrecan,
Crtl1, GAD65/67, vGlut1, Cat-301,
calretinin, MAP2, VGAT, brevican

Schizophrenia, bipolar disorder [42] (×20/0.5; ×63/1.4); [99];
[100] (×20/0.5); [101] (×20; ×40)

WFA, PV, HNK-1, S100-β, CS56,
MMP9, 8-oxo-dG, CD68, Iba1

Substance use disorder

[102] (×20/0.7; ×63/1.4); [103]
(×20/0.75; ×20/0.7); [104] (×40);
[105] (×63/1.4); [106] (×40), [107];

[32] (×20/0.7); [62]

WFA, PV, GAD65/67, VGlut1,
c-Fos, Calretinin, mGluR2,

SMI32, SYN1

Amyotrophic lateral
sclerosis (ALS) [108] WFA, aggrecan, NeuN

Dementia [60] WFA, HAPLN1, 6B4,
7B7 Cat-316, Sema3A

Epilepsy [109]; [75] (×10; ×100) WFA, PV, Cat-315, GFAP

Huntington’s disease [96] (×20) WFA, Iba1, PV

Cartilage matrix deficiency [110] (×63)
WFA, aggrecan, GABA, PV,

Hapln1, brevican, tenascin R,
versican, phosphacan, HABP

tPA deficiency in FS-PV
interneurons [70] (×40/1.44) WFA, PV, aggrecan

Deletion Npy1r in forebrain
excitatory neurons [111] (×40/1) WFA, aggrecan, PV, c-Fos, NeuN

Acan gene deletion [112] (×10; ×63); [113] (×10/0.45;
×63/1.4)

Aggrecan, WFA, Tn-R, versican,
neurocan, Ctrl-1, brevican,

phosphacan, Bral2, PV

Brevican gene deletion [114] (×63/1.2)

Brevican, aggrecan, neurocan,
HAPLN1, calbindin, CtBP2,

HAPLN4, vGlut3, Cav1.3, CtBP2,
GluR2/3, GluR4, MBP, SMI32

Monocular deprivation [115] (×10/0.45) WFA, PV

Fear conditioning [116] (×40); [117] (×40/1.4); [118] WFA, Hapln1, PV, Zif268

Oxidative stress [119] (×20; ×40; ×63); [120]
WFA, PV, 8-oxo-dG, calbindin,

calretinin, Lipofuscin,
SMI 311, CSPG

Fluoxetine treatment [121]; [122] (×10/0.45); [123] WFA, PV

Anxiety (maternal separation
with early weaning) [124] (×20; ×63/1.4) WFA, PV, OTX2, SST, CR

Tetrodoxin, NBQX,
diltiazem treatment [125]

WFA, PV, tenascin-R (monoclonal
a/b 596), Aggrecan, HABP, NeuN,

Synbrev, GFAP, VGAT
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Table 1. Cont.

Method Disease (Model) or Manipulation References Markers

Confocal microsopy

PLX3397 treatment [126] (×10/0.3; ×63/1.4) WFA, PV, versican

Somatosensory deprivation
(whisker shaving model) [20] (×63/1.4) WFA, VGAT

Enriched environment, cartilage
LP1 deficiency [127] (×63) WFA, SMI32, HABP, calbindin

Deletion of chondroitin
6-sulfotransferase (chst3) [128] (×63) WFA, PV

Poly I:C injection during gestation [129] Aggrecan, vGlut, PSD-95

Tenascin-C, tenascin-R, brevican,
neurocan deficiency [130] (×63) Aggrecan, PSD95, vGlut1, VGAT,

gephyrin, NF200, WFA

tenascin-R deletion [131] WFA, TN-R, PV, ChAT, aggrecan,
NeuN, TN-C

Early social isolation [132] (×10) WFA, PV

Social disfunction model [133] (×20; ×63) WFA, PCP4, OTX2, PV, RGS14

Unilateral labyrinthectomy [134] (×63) WFA, SMI32, NeuN, brevican,

PNN removal [135] (×4/0.2; ×60/1.4); [136]
(×10/0.4); [137]; [138]

WFA, vGlut1, vGlut2, VGAT, PV,
aggrecan, versican, brevican,

neurocan, phosphacan,
proteoglycan Di-4S (2B6)

Spinal cord injury [139] (×40, ×63); [140] WFA, ChAT, NeuN, β-III Tubulin,
5-HT, Iba1, GFAP, Cat-301

Multiphoton microscopy Normal brain [89] (×10/0.6; ×25/0.95) WFA

Super-resolution microscopy

Ischemia [39] (×20/0.8; ×100/1.46); [40]
(×10/0.45; ×20/0.8; ×100/1.46)

WFA, Iba1, GFAP, PV, Kv3.1,
VGAT, VGluT1, aggrecan

Rett syndrome [41] (×60/1.4) WFA, synaptotagmin-2, PV,
VGLUT2

Pain [44] (×63/1.4)
Aggrecan, Pax2, NeuN, VGAT,

VGLUT2, Gephyrin, c-Fos, WFA,
CD68, Iba1

Electron microscopy

Normal brain [38,43] WFA

Enriched environment [91] WFA

AD [98] Brevican, aggrecan (HAG7D4)

Hibernation-like state [113]

AI-assisted Normal brain [34,36] WFA, parvalbumin

3. Normal Brain Functions Addressed with PNN Microscopy
3.1. PNN in Fear and Memory

Memory is one of the most intriguing brain functions where PNNs are implicated [30,141].
The chondroitinase ABC (ChABC)-induced degradation of PNNs in the basolateral amyg-
dala renders fear memories susceptible to erasure [116]. Recently, Ramsaran and colleagues
demonstrated that the developmental assembly of PNN in the CA1 hippocampus was
necessary and sufficient for the formation of sparse engrams and precise memories [142].

The neuropeptide Y receptor Y1R has been shown to affect spatial learning via regula-
tion of the PNN formation in the CA1 hippocampus [111]. Conditional depletion of the
Npy1r gene led to an increase in the PNN and c-Fos expression in the dorsal hippocampus
CA1 and learning deficits. The ChABC treatment restored normal c-Fos expression and
learning behavior. From a methodological perspective, the study is interesting for the
quantitative image analysis of the number of 10 µm spaced concentric ring intersections
(Sholl analysis) revealing the complexity of the PNN-coated dendrite arborization.

The crucial role of the cartilage link protein Crtl1 in making fear memories resis-
tant to deletion has been shown in the experimental model of fear extinction in Crtl1-KO
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mice [118]. Crtl1 is upregulated during brain development and participates in PNN con-
densation [46,143]. Expression of the immediate early gene Zif268 was upregulated in the
PNN+ neurons in the amygdala upon fear conditioning and was attenuated after extinction
training in Crtl1-KO mice as compared to wild-type control animals [118] illustrating the
PNN-dependent mechanism of memory retention.

The physiological role of the chondroitin sulfation patterns within CSPG received sub-
stantial attention in PNN functional studies [22,30]. Chondroitin 4-O-sulfation was recently
shown to regulate PNN formation in hippocampal CA2 and social memory in mice [144].
Brain-specific deletion of the chondroitin 4-O-sulfotransferase gene Chst11 resulted in
upregulation of the expression of PNNs surrounding excitatory CA2 pyramidal neurons,
an imbalance of excitatory and inhibitory synapses, and abnormally high second interac-
tion times in the two-trial social memory test. ChABC injection in CA2 of the Chst11cKO
mice resulted in restoration of normal second interaction time in the social memory test,
suggesting that PNN overexpression was responsible for the behavioral abnormality.

A number of recent studies addressed sex-related differences in PNN expression
related to fear and memory. The higher expression of PNNs in the retrosplenial cortex was
associated with poor performance.

3.2. Metal Binding

The negatively charged chondroitin sulfate chains of PNN components bind metal
cations that play an important role in membrane currents, calcium signaling, neurotrans-
mission and brain development [10]. The zinc cations bind to hyaluronic acid and compete
against the iron cations, thereby acting as antioxidants [144]. The zinc-binding zinc-2-
glycoprotein (ZAG) localizes to PNN on PV+ neurons in the cortex and hippocampus [145].
Molecular docking reveals the interaction mode of GAGs with ZAG and its complex with
β3 adrenergic receptor (β3AR). The latter was co-localized with PV interneurons and CA2
pyramidal neurons in the hippocampus. Recombinant ZAG prevented apoptosis in cell
cultures, suggesting a possible anti-apoptotic mechanism for the PNN-bound ZAG in vivo.
The PNN also bind redox reactive metal cations—iron and copper, thereby providing tight
regulation of its local concentrations [144].

4. PNN Structural Studies in Brain Pathology
4.1. PNN Structural Studies in Schizophrenia

Thorough reviews on PNN research in schizophrenia have been published
recently [4,31,146]. Here, we focus on the most recent experimental updates and discuss
PNN–schizophrenia research as an example of the methodological transfer from low-
resolution to high-resolution PNN microscopy studies.

The prefrontal cortex (PFC) synaptic circuitry is one of the crucial functional nodes
affected in the schizophrenia pathogenesis (reviewed in [4,31,146]). Its functioning is
tightly controlled by the inhibitory GABAergic synaptic input from the PNN-bearing PV+
interneurons (fast spiking interneurons, FSIN) [147]. The reciprocal GABAergic synapses
interconnect FSIN networks and synchronize the excitatory state of large numbers of
pyramidal neurons for gamma oscillations that are disrupted in schizophrenia [31]. A
number of studies suggest that impairments of FSINs in PFC may be the direct cause
of schizophrenia symptoms [148–150]. PV+interneuron density is reduced in PFC, as
demonstrated by a meta-analysis [151], although some studies reported no reduction [99].
Gene expression profiling demonstrates the dysregulation of gene expression for several
ECM proteins in schizophrenia, including the PNN components brevican and neurocan [3].

Matuszko and co-authors used confocal imaging (20×/0.50 objective) of PV+/WFA+
mPFC neurons in a ketamine model of schizophrenia to demonstrate the reduction in PV
expression accompanied by a reduction in WFA+ cell density. Notably, the WFA intensity
remained unchanged, as demonstrated by an elegant “donut”-shaped region of interest
approach [100]. By contrast, a high-resolution confocal imaging study (63×/1.4 objective)
by the same group using the same ketamine model revealed profound quantitative changes
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in the fine microstructure of the PNN mesh units [42], providing an example of PNN
structural changes that are grasped by high-resolution but not low-resolution microscopy
and that may have important functional implications for schizophrenia pathogenesis.

Thus, PNN research in schizophrenia presents a striking example of the conceptual
shift from low- to high-resolution structural studies when the large accumulated body
of experimental evidence on the role of PV+ neurons in the disease pathogenesis and
on the role of PNN for the high-frequency firing capacity of those neurons led to the
high-resolution studies of the PNN mesh unit geometry [42].

A very recent report integrates the concepts of critical period and oxidative stress,
demonstrating a novel mechanism that may be crucial for schizophrenia onset [152]. Zhang
and co-authors addressed the functional connection between the peroxisome proliferator-
activated receptor PPARγ coactivator-α (PGC-1α) expression in PFC and the plasticity
critical period timing. The results obtained with PGC-1α KO mice suggest that the ox-
idative damage of PNNs disrupts the critical period timing, leading to schizophrenia-like
behavioral outcomes. Notably, the study used a combination of low-resolution fluorescent
microscopy and a transmission electron microscopy (TEM) experimental setup to reveal
the synaptic terminal ultrastructure. The authors demonstrate a reduction in the synaptic
number accompanied by a decrease in the PSD width and an increase in the synaptic cleft
width. A TEM study with the same experimental setup complemented by PNN staining
for electron microscopy [38] would be an important further extension of the method so that
the PNN+synapse complex ultrastructure could be addressed.

4.2. Epilepsy

Epileptic brain hyperactivity causes the MMP9-induced cleavage of the major PNN
CSPG component aggrecan, and the naked hippocampal PV+ interneurons become sus-
ceptible to the hyperactivity-induced degeneration [153]. Brain tumors have been shown
to release proteolytic enzymes that degrade the PNN [27,154]. This leads to an increase
in the PV+ interneuron membrane capacitance and a decrease in the firing rate. In con-
trast to the previous studies, Ueno and co-authors reported an increase in the WFA- and
Cat-315-positive PNNs in the hippocampus of pentylenetetrazol (PTZ)-kindled mice [75].

The Depdc5 gene deletion in the mouse forebrain dorsal progenitors causes PNN loss,
resulting in PV+ interneuron degeneration and the onset of epilepsy [109]. DEPDC5 is a
common causative gene in patients with epilepsy and malformation of cortical development
(MCD) thus suggesting a core role for PNN in the pathogenesis of this particular inherited
type of epilepsy.

4.3. Alzheimer’s Disease

A time course analysis of the 5xFAD mouse AD model reveals that PV+ interneuron
loss occurs only after PNN degradation, suggesting a causal connection between the two
degeneration processes [155]. Postmortem cortical tissue from the middle frontal gyrus of
AD human patients exhibits a significant reduction in the PNN, with a highly significant
negative correlation between the number of PNNs and dense-core plaques. Microglia
depletion experiments in 5xFAD mice reveal that the microglia promotes plaque-associated
PNN degradation.

Hippocampal CA2 PNN loss is associated with social memory deficits in the Tg2576
mouse model of AD [78]. Strikingly, a single injection of neuregulin-1 rescued the PNN
numbers and social memory, suggesting the possibility of new therapeutic approaches.

4.4. Drug Abuse

Slaker and co-authors developed an automated method PIPSQUEAK for PNN in-
tensity quantification in low optical resolution images of brain sections [35], creating a
region of interest around each PNN and subtracting the image background with the help
of the Rolling Ball Radius function in Fiji. The method is instrumental for the analysis
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of double- and triple-labelled cells. The method was applied in a series of cocaine abuse
studies [102,105,156].

The PFC PNN staining intensity decreased after 1 day of cocaine exposure and in-
creased after 5 days of cocaine exposure, both effects accompanied by a decrease in the
number of action potentials in FSINs [102]. The WFA staining intensity measured af-
ter 5 days of cocaine administration correlated with locomotor activity on days 2 and 3,
suggesting that changes in the PNN+FSINs determine the PFC-driven changes in behavior.

Cocaine memory reactivation was shown to decrease PV intensity in the PFC PNN+
FSIN while the PNN intensity remained unchanged [105]. The ChABC-dependent digestion
of PNNs hampered both the acquisition and reconsolidation of cocaine memories [156].

4.5. Spinal Cord Injury

The PNN coating of lumbar motoneurons was attenuated following thoracis contusion
in mice [157]. Interestingly, physical exercises restored PNN expression and promoted
functional recovery. Physical activity also reduced PNN expression in brainstem sensory
nuclei, while the spinal cord injury had no effect on that.

Lipachev and co-authors quantified WFA staining intensity, PNN area and PNN
density in laminae 6 and 7 of the cervical spinal cord around the injury site 9 weeks
after a lateral hemisection applied at C5 [33]. The authors observed changes in the PNN
area, CSPG enrichment and the density of PNN-bearing neurons within 1.8 mm rostrally,
and 1.2 mm caudally, from the injury site. The analyzed area (C3–C6) of intermediate
grey around the central channel is the site of phrenic afferent projections, suggesting that
PNN changes may affect posttraumatic regeneration of the phrenic motor control. The
authors developed a semi-automatic tool for the quantification of the single-cell PNN
area and intensity (Figure 2) and demonstrated its application on roughly 6000 PNN-
bearing neurons in the spinal cord (10×/0.6 objective) and some 1800 neurons in the brain
somatosensory cortex.

To summarize, the low-resolution tissue-section imaging allows for relatively fast
qualitative inspection and quantitative studies of large numbers of PNN+ cells. The
major limitation is the low level of subcellular detail. Deep learning algorithms were
previously shown to emulate the retrieval of superresolution data from confocal microscopy
datasets [158]. Thus one could expect similar approaches to be developed for low-resolution
epifluorescent and confocal data to be used for the emulation of high-resolution microscopy
data via AI implementation.

5. How Could the PNN Mesh Geometry Affect the Synapse?
5.1. The Mesh Area

One interesting question about PNN-coated synapses is whether the mesh borders
control the size of the synaptic contact and prevent the two cells from increasing (or also
decreasing) the synaptic contract area (Figure 3). Here, we use the term “PNN mesh” to
designate an ECM border around a single synapse as a structural unit of the net. Three-
dimensional EM data suggest that the PNN tightly wraps synapses in deep cerebellar nuclei
and the hippocampal CA1 area, restricting the size of the synaptic contact [43]. Changes in
the mesh area were reported in an experimental schizophrenia model [42], dark rearing,
and in the Rett syndrome experimental model [41].
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Figure 3. The PNN mesh 3D geometry. The PNN mesh units surround single synaptic boutons and
thereby may possibly restrict the synaptic contact area. The mesh border width in xy determines the
spacing between synapses. The mesh border width and the mesh border height in z may determine
the extracellular space volume and may also affect the spillover of GABA and other signaling
molecules released by a synapse. The CSPG-positive 3D ECM represents a continuation of the cell
surface PNN layer, spanning over the extracellular space and potentially acting as a scaffold for
cells and molecules. PNN and perisynaptic astrocytic processes together form the synapse “coat”
controlling local molecular concentrations.

5.2. The Mesh 3D Thickness

The height of the PNN “wall” around the synapse (the mesh 3D thickness) may have
a significant impact on synaptic transmission.

First, it may determine the local volume of the extracellular space above the neuronal
plasma membrane.

Second, it affects the amount of negatively charged CS around the synapse, i.e.,
the buffering capacity for cations and positively charged ligands (neurotrophic factors,
Otx2, etc.).

Third, it may have a crucial effect on the GABA spillover to neighbouring synapses
(Figure 3). Astrocyte current recordings under the ChABC treatment suggest that PNN bar-
riers are required for glutamate and K+ uptake by astrocytes and that the ChABC-induced
PNN digestion causes the glutamate and K+ spillage to the extrasynaptic space [28]. For
GABA, the PNN-dependent control of extrasynaptic spillage may also be significant be-
cause the GABA concentration around the synaptic cleft is not regulated as tightly as
the glutamate concentration via high-affinity uptake [24,159,160]. Besides GABAergic
and glutamatergic synapses [20,28,40], other types of synapses have not been shown, to
our best knowledge, to populate PNN meshes. Hippocampal PV+ interneurons receive
dopaminergic innervation from ventral tegmental area (VTA) and the firing rate was re-
duced significantly in those neurons upon VTA dopamine neuron degeneration in the
TG2576 mouse model of AD [161]. Futhermore, cortical PV+ interneurons exhibit an abnor-
mal PNN structure, altered action potentials, and deficits in dopaminergic modulation in
mice carrying a truncated allele disrupted in schizophrenia allele [162]. These data suggest
that the PNN of PV+ neurons may harbor dopaminergic synapses of high physiologic
and pathological importance, and that the PNN of spinal motoneurons likely contain
serotoninergic synapses [163].
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5.3. The Intersynaptic Layer Width

The X-Y width of the PNN border between synapses (Figure 3) may affect crosstalk
between the neighboring synapses both in terms of the spill-over of neurotransmitters and
the propagation of postsynaptic currents. PNN was shown to act as the insulator regulating
the plasma membrane capacitance of the postsynaptic neuron [27].

There is experimental evidence suggesting that the width of the PNN strands affects
the cell surface area available for synaptic contacts and astrocytic coverage. Indeed, PNN
removal by ChABC increases the number of inhibitory synapses on excitatory neurons
of deep cerebellar nuclei [25] and the number of excitatory synapses on hippocampal
neurons [113]. The number of VGAT-negative spaces was strongly decreased under ChABC
(confocal microscopy) and the average distance between GABAergic terminals was much
lower as compared to the control (EM) [25]. This type of control of synaptic contacts by
CSPG ECM is not restricted to cell bodies, as a similar increase in the synaptic contact
number was observed in spiny dendrites under ChABC treatment [164]. However, it
should be noted that the increase in the GABAergic synapse number was accompanied by
a decrease in the glutamatergic synapse number [25].

PNN digestion with ChABC resulted in an increase in the cell surface portion covered
with astrocytic processes [28], further suggesting that the width of the cell surface PNN
strands restricts the cell–cell contact area.

At present, EM techniques give the most accurate quantitative estimation of the
width and height of the PNN layer around synapses and the synaptic terminal area.
Broader application of super-resolution imaging techniques and quantitative image analysis
may also expand the range of epitope-specific markers and the structural parameters to
be quantified.

When addressing the effects of the PNN mesh geometry on synaptic function, one
could expect bi-directional regulation between the PNN and synapses. It was previously
hypothesized that CSPG enrichment within an individual PNN unit may be affected by the
firing activity of the corresponding synapse via the secretion of ECM molecules or, vice
versa, via the secretion of ECM-degrading proteases [42].

6. PNN Single-Mesh Studies

While significant information was accumulated at a low level of structural detail, the
studies of PNN single-mesh morphology, i.e., the geometry of the ECM layer surrounding
individual synaptic contacts, remained purely qualitative for a very long time. The most
convincing evidence of the WFA-positive extracellular material surrounding individual
synaptic boutons was provided by Bruckner and co-authors by means of transmission
electron microscopy on large, superior colliculus neurons [38]. Using STORM, Korotchenko
and co-authors reported a profile of GAD65 and aggrecan fluorescence on the cell surfaces
of cultured hippocampal neurons [165].

The quantitative spatial structure of PNN mesh units was described by Arnst and
co-authors using high-resolution confocal microscopy on the WFA-stained cortical neurons
of mice and rats [14]. The authors proposed a PNN geometry annotation method, where
a single PNN unit was approximated as a polygon traced with the PointPicker tool in
FIJI open source software (Figure 4A,B). The study reported a remarkably high variation
in the unit area within the same neuron and demonstrated the pentagon shape to be the
most frequent shape variant for the manual polygon tracing method. The polygon method
proposed in that study proved to be useful in revealing structural changes within the PNN
units in a subsequent study of the experimental schizophrenia model [42].
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Figure 4. Quantitative analysis of the high-resolution single-mesh PNN microstructure (from [14,20,42]):
(A,B) PNN geometry analyzed by manual tracing of individual meshes approximated as triangle,
quadrilateral, pentagon, hexagon, and polygons with a higher number of vertices. Pentagons and
hexagons are the most common shapes; (C–F) the “polar” pattern of chondroitin sulfate distribu-
tion along the mesh perimeter; (C) a confocal image of the somatosensory cortex neuron showing
three meshes with node-enriched (polar) distribution of the WFA-binding epitope; (D) the mesh
perimeter annotation. Vertices 1–4 are shown; (E) 3D reconstruction of chondroitin sulfate distribution
for the area shown in (C,D). An isosurface for moderate fluorescence intensity is shown in green,
semitransparent. An isosurface for high fluorescence intensity is shown in red; (F) chondroitin sul-
fate intensity profile along the perimeter of the mesh traced in (D). Vertices are shown in purple;
(G–I) three-dimensional reconstruction of the mesh perimeter with filament autodepth tracing. Vertices
are shown in purple, middle pixels of each edge are shown in green. Intensity values of the mesh
vertices and middle pixels of each edge are shown in (G); (I) vertices A, B, D, F are surrounded by small
volumes of the high-intensity chondroitin sulfate staining. An isosurface for moderate fluorescence
intensity is shown in green, semitransparent. An isosurface for the high-intensity threshold is shown in
red; (H) the “side view” is shown for the same mesh as in (G,I); (J,K) local chondroitin sulfate density
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maxima (blue) exhibit closer match with vertices of polar meshes (yellow) as compared to non-polar
meshes; (L,M). PNN mesh clusters with node-enriched and uniform distribution of CSPG. (L). PNN
on mouse neuron cell body. Meshes with polarity index above 1.5 are marked with yellow dots.
Two clusters of polar meshes are separated by a cluster of nonpolar meshes (center, mesh number
10, 12, 13, 19–22, 31). (M). The same area as in (L) was used for 3D reconstruction and polarity
quantification. Green—polar meshes, blue—nonpolar. Polarity index threshold of 1.5 was used
to discriminate between polar and nonpolar meshes in (L,M). The 2D and 3D types of analysis
detected the same clusters. (N) the semi-automated algorithm-driven annotation of the PNN holes
and perisynaptic ECM in three planes (Z − 1, Z0, Z + 1). The center of the PNN unit (the blue dot)
is selected by the user. The global maxima per specific directions are shown as red dots in three
z planes. Cyan color pixels are the first pixels above the threshold used for the determination of
holes; (O,P) chondroitin sulfate intensity distribution across a single mesh (along the yellow line).
The threshold for the holes segmentation is shown as a dotted red line; (Q) a GABAergic synapse
stained for VGAT (one large cluster, green) and WFA (red); (R) the PNN mesh annotation (white)
and the VGAT-positive object segmentation result (blue), the same area as in (Q); (S–V) the confocal
stack for the PNN mesh shown in (S) was used for 3D reconstruction of the VGAT (green) and WFA
(purple) fluorescence; (T) computer modeling of a transversal cut of the synaptic terminal and the
surrounding PNN; (U) VGAT-positive object area (Z distribution) for the synaptic terminal shown
in (T); (V) WFA fluorescence intensity (Z distribution, color-coded blue-red, the color code given in
the bottom of the panel) along the perimeter of the mesh. The Z axis of the confocal stack is aligned
for (T–V). Z = 0 is the Z plane with the maximal WFA signal intensity along the mesh perimeter;
(S) sequential confocal images within a confocal stack, image segmentation is shown for VGAT (blue);
(W) a PNN mesh, 3D reconstruction with the filament autodepth instrument (Imaris). The mesh
vertices are shown in green, the middle pixels of edges are shown in magenta, corresponding values
of fluorescence intensity are given in brackets. (X) The 3D surface reconstruction of the WFA staining
fluorescence intensity combined with the same filament reconstruction as in (W); (Y–AF) transverse
section analysis for the confocal stack of a VGAT-positive synapse; (Y) a PNN-coated neuron in the
barrel cortex layer IV. A transverse confocal section of the PNN-coated cell surface (red for WFA). The
GABAergic synapse (green for VGAT) (arrow) was analyzed in further detail in (Z–AF); (Z) the same
synapse + PNN complex as in (Y); (AA) sequential confocal images segmented for VGAT (shown in
green) and WFA (shown in red) within a confocal stack for the synapse shown in (Z). The overlay of
the VGAT- and WFA-positive object masks is shown in yellow. The intracellular side is marked with
a magenta dot; (AB) the Z distribution of the segmented VGAT-positive object area for the synaptic
terminal shown in (Z); (AC) a binarized mask for the WFA-positive object in the synapse shown in
(Z); (AD,AE) segmentation of the image in (Z) into contours based on the distance from the central
line of the PNN layer (shown in green) towards the extracellular (blue contours) and intracellular (red
contours) space; and (AF) the WFA-positive object area distribution in the Z-contour coordinate space
for the synapse shown in (Z). The scale bar in (A) is 0.5 µm, valid for (A,B), (J)—0.5 µm, (L)—1 µm,
(N)—1 µm, (O)—1 µm, (Q)—0.3 µm, (S)—0.5 µm, (Y)—1 µm, (Z)—0.3 µm, (AD)—0.2 µm.

One unexpected finding of the study was the discovery of the mesh clusters on the
neuronal cell bodies based on the CS distribution patterns along the mesh contour [14]
(Figure 4C–M).

The effect of the PNN on synaptic structure was addressed with super-resolution STED
microscopy followed by quantitative image analysis on hippocampal neurons co-cultured
with astrocytes [166]. The authors compared the postsynaptic scaffolds composition be-
tween the neurons coated with PNNs and those devoid of them, and revealed a correlation
between the PNN expression and the density of gephyrin- and VGAT-positive puncta.

The first detailed super-resolution structured illumination microscopy-derived quantita-
tive description of the PNN microstructure was reported by Dzyubenko and co-authors [39].
The authors developed a graph construction approach to demonstrate PNN topology
changes in WFA- and aggrecan-labelled PNN in mouse brain hypoperfusion and focal
cerebral ischemia models. Based on their experimental results, the authors proposed the
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hypothesis of a reversible topological tension regime of the PNN ultrastructure that would
be potentially capable of facilitating local rewiring after stroke.

The authors further expanded the PNN topology analysis, addressing simultaneous
structural changes in the PNN and presynaptic components of the PNN+synapse com-
plex [40]. Combining STED, SR-SIM and confocal microscopy the authors demonstrated
that coherent remodeling of PNNs and their perforating inhibitory synapses was affected
by the severity of the ischemic injury. Contributing to the high-resolution connectome view
of the synaptic circuitry, the authors quantified that a PNN+ motor cortex interneuron
received, on average, 75 GABAergic synaptic inputs, this number increased transiently after
a stroke and then decreased by day 42. Furthermore, the authors undertook a comparative
test of four high-resolution microscopy methods: multiphoton, confocal, SLIM and STED
microscopy on the same PNN samples and demonstrated that the graph analysis was
applicable to SLIM and STED but not to multiphoton or confocal data.

Sigal and co-authors used principal component analysis (PCA) to study the post-
natal development of PNN and pathology-related changes in a Rett syndrome trans-
genic model [41]. The authors combined STORM super-resolution microscopy with serial-
section reconstruction to demonstrate distinct developmental trajectories and remarkable
pathology-associated changes in the PNN high-resolution structure. The mean hole size of
the visual cortex PNN was affected by dark rearing, indicating the requirement of a sensory
input for proper PNN mesh geometry formation during brain development.

PNN mesh geometry was further addressed in the ketamine model of schizophre-
nia [42]. The authors developed a semi-automatic method for PNN mesh contour tracing for
the mesh geometry quantification both in 2D confocal images and 3D stacks (Figure 4N–P).
The PFC PV+interneurons from control and ketamine-treated rats exhibited significant
differences in PNN mesh number, area, solidity, and circularity.

The whisker-shaving model of somatosensory deprivation during early postnatal
development revealed malformation of the PNN+synapse 3D structure [20] in GABAergic
synapses stained for WFA+VGAT and visualized with high-resolution confocal microscopy
(Figure 4Q–AF). The PNN mesh 3D structure was more flattened and the VGAT clusters
were smaller as a result of the deprivation.

The microglia-dependent PNN degradation in the lamina I spinoparabrachial projec-
tion neurons resulted in the excitation/inhibition balance shift. leading to pain behavior
after peripheral nerve injury [44]. The authors used super-resolution AIRYSCAN mi-
croscopy to show that the number of GABAergic and glutamatergic synaptic boutons
remained unchanged upon the peripheral nerve injury and ChABC treatment. The periph-
eral nerve injury-induced pain was explained by decreased frequencies of the miniature
inhibitory postsynaptic currents caused by PNN CSPG degradation.

Tewari and co-authors proposed a very promising PNN image analysis approach
based on intensity profile tracing along the cell surfaces in the neuron transverse confocal
sections [167]. The method allows for quantitative estimation of PNN integrity and PNN
mesh size. The authors then used this type of image analysis to study the complex of the
PNN with synapses and perisynaptic astrocytic processes [28]. Interestingly, the intensity
profiles demonstrated a profound difference in the PNN-astrocytic markers co-localization
between layers 3–4 of the somatosensory cortex and CA2 of the hippocampus, suggesting
existence of distinct brain region-specific variants of the tetrapartite synapse structure.
Within hippocampal CA2, there was also a remarkable difference in PNN-astrocyte co-
localization between stratum pyramidale and stratum radiatum. The functional meaning of
those structural differences would be the next exciting question to investigate. Roger Tsien
put forward the hypothesis that the PNN may serve as a physical substrate for long-lasting
memory storage and proposed a broad methodological perspective for addressing that
possibility [141]. Two recent reports addressed the hypothesis with different experimental
approaches, including two modifications of volume EM.

Focused ion beam scanning electron microscopy (FIB-SEM) was used on the hibernation-
like state (HLS) model to test whether the hippocampal CA1 PNNs store the memory traces
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that could be restored after the end of HLS and synaptic reconnection [113]. Using ChABC
and aggrecan KO, the authors demonstrate that the CA1 PNNs are not required for long-
term memory storage.

Another study used serial block face SEM to reveal the 3D ultrastructure of the
PNN+synapse complexes [43]. Essentially, all of the surface (more than 98%) of the den-
drite plasma membrane was in contact with either PNN or presynaptic boutons in the
PNN+synapse example described in the study.

7. Perineuronal Net as a Potential Drug Target

The rapid progress of PNN studies in a range of brain disease models highlights the
prospects of PNN pharmacological targeting as a new medication approach [62,144,168,169].
Microscopy techniques may be highly instrumental in addressing PNN medical pharma-
cology both in terms of high-throughput drug lead screening and for the high-resolution
investigation of drug targeting and effects at a single-synapse level.

PNN disruption was suggested as a potential therapeutic approach to reactivate brain
plasticity in children and adults with autism spectrum disorders (ASD), making those
patients susceptible to socialization [168]. The chondroitinase ABC (ChABC)-mediated
digestion of CNS CSPG has also been considered as a promising therapeutic approach for
improving posttraumatic regeneration in the brain and spinal cord [1,64]. PNN digestion
with ChABC improved memory outcomes in a mouse tauopathy model [59], with another
effective approach being the injection of antibodies targeting the chondroitin 4-sulfate,
attenuating PNN formation and Sema3A binding [60].

The ChABC-induced digestion of CSPG can be further potentiated by lithium ad-
ministered via intraperitoneal injections of LiCl, as demonstrated in a rat model of spinal
cord injury [170]. Lithium may act via bisphosphate nucleotidase 2 (BPNT-2), regulating
chondroitin sulfation patterns in the brain [4,171].

CSPG digestion with ChABC results in the large-scale removal of chondroitin sulfates
in the brain or spinal cord tissue, which may be viewed as a relatively nonspecific effect
in terms of the many possible consequences resulting from the CSPG function disruption.
Lentiviral and/or adenoassociated viral vectors for genetically regulated targeted ChABC
expression [172,173] might be viewed as a potential tool for improving the targeting specificity.

PNN may be also a potential target for antidepressant pharmacology. It was suggested
that PNN could serve as a biomarker (or a readout) in experimental models of depres-
sion for testing the efficiency of antidepressants [174]. The selective serotonin re-uptake
inhibitor and antidepressant fluoxetine causes a reduction in the PNN coating on the PFC
interneurons [121]. Transcriptomics analysis in PV+ interneurons indicates that fluoxe-
tine down-regulates enzymes involved in PNN formation and affects expression of the
BDNF/TrkB signaling pathway components [123]. Notably, BDNF, NT-3, GDNF, HB-GAM
(pleiotrophin), FGF, VEGF and some other neurotrophic factors have positively charged
sites that bind CSPGs with high affinity (please see [14] for references). GDNF and its
homolog neurturin overcome the inhibitory action of aggrecan on neurite outgrowth in
cultured hippocampal and cortical neurons (Paveliev, Rauvala and Saarma, unpublished).
GDNF was tested in clinical trials as a drug lead for anti-Parkinson therapy and could be
possibly considered for targeting PNN in ASD, Alzheimer’s disease and posttraumatic
regeneration. Another strong CSPG binder, HB-GAM, abrogates the binding of chondroitin
sulfates to the receptor phosphatase sigma (PTPRS), promotes dendritic and axonal growth
in the injured brain and spinal cord parenchyma, and improves functional regeneration
after spinal cord injury [175–177]. The sperm-derived peptide protamine binds negatively
charged epitopes in chondroitin sulfates and heparan sulfates, and is routinely used in
heart and pulmonary surgery as a heparin antidote. A 14aa fragment of protamine called
low-molecular-weight protamine (LMWP) prevents PTPRS binding to chondroitin sulfates
and promotes posttraumatic functional recovery after spinal cord injury in mice [178].
The binding of HB-GAM and LMWP to the chondroitin sulfate moieties of PNN could
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partially explain the posttraumatic regeneration-promoting effect, as PNN was previously
implicated in the inhibition of axonal regeneration after spinal cord injury [179,180].

The massive negative charges of the PNN CS suggest that PNN may affect the accessi-
bility of synaptic pharmacological targets for negatively charged drug molecules. Short
soluble polysialic acid fragments have been shown to inhibit the opening of GluN1/GluN2B
channels in vitro and to rescue cognitive deficits in two models of Alzheimer’s disease [181].
This result raises the question as to whether polysialic acid fragments and other negatively
charged pharmacological agents can penetrate to their targets located in and next to the
synaptic cleft in synapses covered by PNNs.

8. Future Methodological Perspective for PNN Microscopy
8.1. Multiphoton Microscopy

Live brain imaging of the PNN structural and functional dynamics has remained
absent until very recently, although longitudinal in vivo imaging techniques for brain cells
and some ECM components have been around for a while [175,182,183]. To that end, a
highly promising methodology-oriented study has reported longitudinal in vivo imaging
of the PNN using live brain two-photon microscopy on a mouse barrel cortex [89]. The
PNN was stained by intracranial injection of fluorescent WFA. The authors demonstrated
the pathology-related reduction in live brain PNN density in a mouse model of fragile X
syndrome. They were able to combine live brain PNN and Ca2+ imaging and reported
different statistical distribution of Ca2+ fluxes in PV+ neurons with vs. without PNN.
Importantly, PNN degradation by the metalloproteinase ADAMTS4 was also demonstrated
with two-photon microscopy in brain slices. Further development of the method would
allow for imaging of the PNN in the hippocampus, amygdala and in a range of subcortical
structures by using cannulas or prisms implanted with cranial imaging windows [184].

A knock-in transgenic mouse expressing the link protein HAPL1 fused to Venus has
been generated via Crispr/Cas9 genome editing [90]. The construct is expressed in the
brain, exhibiting a PNN-like structure on the neuronal surface, as visualized by confocal
microscopy. This may be very instrumental for multiphoton studies of live brain PNN
dynamics in a range of pathology models.

8.2. Super-Resolution Microscopy

A deep learning algorithm based on training a generative adversarial network (GAN) to
transform diffraction-limited input images into super-resolved ones has been reported [158].
The method was shown to transform confocal images to match the resolution characteristics
of STED microscopy. Another cross-modality conversion allowed for transformation of total
internal reflection (TIRF) images to match the results obtained by TIRF-based structured
illumination microscopy. Deep learning approaches have also been shown to increase
dramatically the super-resolution microscopy throughput for single molecule localization
in the nuclear pore and in mitochondria imaging applications [185]. These approaches
can be expected to push PNN microscopy towards high-content super-resolution data
acquisition and/or processing for large-scale tissue and brain connectome studies.

8.3. Electron Microscopy

The rapid development of EM 3D imaging and reconstruction methods suggests
exciting perspectives for PNN ultrastructural studies. Indeed, volume EM techniques
including array tomography and serial section TEM offer experimental protocols for 3D
EM imaging of brain tissue [186,187]. Notably, a validated set of antibodies for array
tomography-based imaging of brain synapses has been reported [188]. The attractiveness
of the high xy resolution offered by array tomography is counterbalanced by its low
z resolution. The serial block face SEM modification of volume EM may be especially
attractive [189] as it allows for a large imaging volume (some 100 × 100 micrometers)
along with a high 3D resolution. An even higher resolution (some 4 × 4 nm voxel size) is
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characteristic of focused ion beam volume EM modification [190], which is counterbalanced
by a smaller imaging volume size as compared to the serial block face.

The next crucial step after the EM data collection is image analysis and 3D model-
ing [191]. Machine learning tools are advancing enormously in these applications [192],
suggesting that detailed 3D models of the PNN mesh + synaptic terminal complex will
arrive in the near future at resolutions of 10–50 nm. Volume EM is currently extended to
volume correlative light-electron microscopy (vCLEM) [193] that may further expand PNN
structural research opportunities.

8.4. Technical Aspects of Introducing AI Tools in Biomedical Research

The rapid intercalation of AI in a range of methodologies raises the question of
technical requirements both in terms of mathematical/IT competence and the available
software/hardware equipment opportunities.

The development and tailoring of AI-based image analysis tools impose significant
mathematical and coding competence requirements, restricting the scale of AI usage in
current biomedical research. The bottleneck here is the development of user-friendly
interfaces allowing biologists to access the AI instruments. To that end, ilastik [194] and
Fiji Labkit [195] are “light solution” examples of machine learning-driven software for
simplified biomedical image analysis that do not require large-scale ground-truth datasets,
long learning times, and coding experience. Interestingly, Labkit is now also compatible
with Imaris (Oxford Instruments)—another powerful image analysis software pack rapidly
expanding towards AI implementation [196].

In contrast to “light tools” like ilastik and Labkit, the training step of “full scale”
machine learning tools usually takes some hours or days, depending on the graphics
processing unit (GPU) performance and the size of the training dataset. The requirements
for computational power and data storage depend on the size of the training dataset and
the complexity of the artificial neural network architecture. The artificial neural network
training can be performed both on the central processing unit (CPU) and on the GPU of a
computer, but GPUs are much better suited for that purpose, having thousands of cores
and therefore allowing for fast parallel computations. In that regard, the size of the GPU
video random-access memory (VRAM, typically above 4 Gb) and the number of CUDA
Cores within GPU are the two essential parameters for machine learning applications.

9. AI Tools in Brain Pathology Studies

Machine learning tools for medical image classification and analysis have been ad-
vancing rapidly over the last few years [197]. Among other applications, the cell counting
problem has been addressed by several approaches [198–200]. In particular, the random
forest models were used with convolutional neural networks to achieve minimal counting
error values as compared to other machine learning-assisted cell counting solutions [198].
Importantly, low counting error values were achieved for the small training datasets that
are often a crucial issue for biomedical samples. Another AI-assisted method performs
cell counting as a regression task of learning an inner distance metric [200]. The method
was used to detect both cell centers and boundaries. Of interest, it was shown to work
efficiently on one cell line after being trained on a different cell line.

Brain tissue microscopy image analysis has been facilitated with AI tools in a number
of studies [201–203]. One obvious trend in that direction is the combination of multiphoton
microscopy with deep learning on unstained brain tissue samples for diagnostic applications.

Wang and co-authors took advantage of two-photon microscopy to identify the infarct
core, peri-infarct area, and a remote area in a rat cerebral ischemia–reperfusion model [201].
The authors developed a deep learning model based on a convolutional neural network
to automatically detect the location of injured neurons on unstained thin sections and
fresh tissue. Furthermore, they applied deep learning-assisted two-photon microscopy
to evaluate the ischemic regions based on tissue edema, two-photon-excited fluorescence
signal intensity, as well as neuronal injury.
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Chen and co-authors used multiphoton microscopy on label- and processing-free
surgical specimens of human brain tissue as a novel method for rapid intraoperative
diagnostics of infiltrating glioma cancer [203]. The authors applied deep learning to
achieve high accuracy in distinguishing gray from white matter and cancer from non-
cancer. Thirty-five specimens from 18 patients were selected by a neuropathologist for
training two residual convolutional neural network (ResNet) models—one for grey versus
white matter discrimination based on 2389 fields of view, and the other one for cancerous
versus non-cancerous tissue based on 3909 fields of view.

Another study by Cai and co-authors does not deal with a pathology model but the
proposed methodology may be very useful for research on a range of brain diseases [202].
The authors demonstrate that the artificial neural network RetinaNet model is highly
efficient in classifying neurons and glia in microscopy images from the brain sections
of mosaic analysis with double markers (MADM) mice. Notably, the method exhibited
difficulties in classifying glial clusters and the problem was resolved by combining two
RetinaNet models, one trained for single cells and the other for glial clusters. To diversify
the training data, the authors used both confocal microscopy and a slide scanner. Moreover,
genetically different MADM mice were used to generate the training dataset with different
cellular densities.

10. AI Tools for PNN Studies

Current advances in transgenic animals, MRI and advanced large-scale microscopy
techniques bring the neuroscience research far ahead towards the brain connectome studies
making it possible to address connectivity, functioning and plasticity of larger neuronal
ensembles and synaptic network mechanisms of complex cognitive functions like memory
and decision-making [204,205]. The bottleneck for taking advantage of the rapidly growing
biomedical datasets is the data annotation step that is still handled manually or semi-
automatically for the majority of applications [14,42], which makes data analysis expensive,
time-consuming and dependent on skilled professionals for annotation [206]. The rapid
introduction of machine learning tools for t brain tissue image analysis has the potential
to significantly accelerate the research area of brain functional morphology, including the
ECM and PNN research [34,36,204]. The AI-assisted study of drug-induced conditioning
by Traver and co-authors [205] provides an example of that kind.

Ciampi and co-authors aimed at developing a cell-counting deep learning-assisted
method able to obtain highly accurate results from a dataset with weak multi-rater la-
bels [34]. The authors used three publicly available annotated eukaryotic cell datasets and
one dataset of synthetic images simulating bacterial cells for training with three converging
neuronal network-based methods, i.e., segmentation-based S-UNet, detection-based FR-
CNN and density-based approaches DCSRNet. To overcome the training quality limitations
imposed by raters’ disagreement, they introduced a second rescoring stage that was trained
on a small multi-rater subset and refined the previously computed predictions. The result-
ing cell-counting method was tested on a PNN fluorescent microscopy dataset collected
with a 10× objective from 25 brain sections and containing 34,000 annotated PNNs. The
AI-assisted PNN counting procedure exploiting the redundant information of multi-rater
data enhanced the accuracy level of the AI-assisted PNN analysis significantly [34]. The
authors used the mean error of manual vs. AI-assisted counts (mean absolute counting
error, MAE) as the main readout to evaluate how accurately the AI-assisted tools mimic the
manual analysis. The models tended to correctly identify and count the PNNs found by
more raters. The authors reported high variability in the MAE values between samples and
suggested that dimmer PNNs in certain brain regions could be more difficult to detect both
by AI and human experts.

This methodology was then used by the same authors for the deep learning-assisted
analysis of their “Comprehensive atlas of perineuronal net distribution and colocalization
with parvalbumin in the adult mouse brain” [36]. Two deep convolutional neural networks
were trained with a dataset comprising roughly 0.67 million manually annotated PNNs
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and 0.16 million PV cells. Among other findings, the authors demonstrated the difference
between primary and secondary sensory cortex areas regarding the probability of a PNN
coating on PV+ cells. Furthermore, the authors used the Allen institute mouse brain
connectivity atlas to demonstrate a high correlation between the “PNN energy” (PNN
density weighted by the fluorescence intensity) and thalamic input strength in cortical
layers 2/3, 4, and 5, and this effect was most prominent in layer 4, suggesting a functional
connection between the PNN expression and thalamic input on PV+ interneurons. The
authors speculate that the brain-wide comparison of very large PNN and PV cellular
datasets with the public resources presented in their study would be further enhanced by
the advent of spatial transcriptomics.

11. AI-Assisted PNN Mesh Tracing

Here, we report on the development of a machine learning tool for tracing PNN single-
mesh contours in high-resolution confocal images. We and others previously reported on a
few methods for the annotation of PNN mesh geometry [14,39,42]. To further accelerate
the high-content analysis of PNN high-resolution structural studies, we tried two different
machine learning approaches—one using image-to-image translation with Pix2Pix (U-Net
architecture used as a generator) [207] GAN [208] model (Model 1) (Figure 5A) and the
other using image-to-contour translation with the same Pix2Pix model (Model 2) (for a
detailed description please see the Supplementary Materials). The PatchGAN discriminator
was used in both models, acting as a style/texture loss function, assuming independence
between pixels separated from each other by more than a fragment diameter (Figure 5B)
(see Supplementary Materials for further detail). The PFC PNN confocal dataset described
in [42] was used with 7897 annotated PNN meshes (units). The dataset was divided
randomly into an 80% training set and a 20% test set.

Results and Discussion

The model learning progress for Model 1 is demonstrated in Figure 6 for epochs 1, 25,
50, 115 for four PNN meshes that were randomly selected before the model training and
then tested at different epochs of the training process. An overlay of the ground-truth (semi-
automated annotation) (Figure 5C,F,I,L) and model-derived (Figure 5D,G,J,M) contours
demonstrates good matches for the two upper meshes (Figure 5E,H) and a nearly perfect
match for the two lower meshes (Figure 5K,N).

The training process graph (Figure 5O) shows the Pix2Pix generator losses (blue) and
the discriminator losses (yellow). The high values of the mesh area correlation coefficients
between the model contours and ground truth (Figure 5P), together with a comparison
of the area and perimeter mean values between the two annotation sets (Figure 5Q,R),
support the conclusion that the mesh contour geometry generated by the machine learning
tool is consistent with the training set values. The method generates the PNN mesh
contours matching both the WFA fluorescence patterns and the ground-truth annotation
not only for high-contrast meshes (Figure 5S–U) but also for the PNN meshes with blurred
fluorescence patterns (Figure 5V–X). We previously described distinct patterns of the
CSPG-WFA staining-intensity distribution along the mesh contour [14]. The Model 1
machine learning tool described here is able to recognize and properly trace polar meshes
with vertex-enriched CSPG and weak or absent WFA staining fluorescence in between
the vertices (Figure 5Y–AA). Interestingly, the Model 1 tool described here also provides
examples of PNN meshes with erroneous tracing in the ground truth and much more
accurate tracing produced by Model 1 (Figure 5AB–AD).
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model results vs. ground truth. The values for Pearson’s and Spearman’s correlation coefficients are 
shown on top; (Q,R) the mean values for the mesh area (Q) and perimeter (R) for the model results 
and ground truth; (S–AD) examples of high contrast (S–U), blurred (V–X), polar (Y–AA) meshes 
and some meshes that were traced with the Model 1 more correctly then with the semi-automated 
method (AB–AD). The scale bar in (C,S) is 1 µm. 
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Figure 5. Machine learning model architecture and PNN mesh contour annotation results: (A) the U-
Net architecture used as a generator; (B) the PatchGAN discriminator architecture; (C–N) comparison
of the model result vs. ground truth for the same four meshes as in Figure 5; (O) the plot for losses
during the model training; (P) the correlation plot for individual mesh area values, model results vs.
ground truth. The values for Pearson’s and Spearman’s correlation coefficients are shown on top;
(Q,R) the mean values for the mesh area (Q) and perimeter (R) for the model results and ground truth;
(S–AD) examples of high contrast (S–U), blurred (V–X), polar (Y–AA) meshes and some meshes that
were traced with the Model 1 more correctly then with the semi-automated method (AB–AD). The
scale bar in (C,S) is 1 µm.
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The alternative approach (Model 2) did not exhibit sufficient learning progress (Figure S11),
leading to the conclusion that the image-to-contour translation is not applicable with this
particular model architecture.

The main advantage of the proposed approach is its ability to process large amounts
of data in a fully automatic mode that does not require human involvement. Pix2Pix is an
end-to-end model, which means that it is trainable for solving complex tasks using raw
data directly as an input without any manual feature extraction. Hence, the method can be
used on a range of variable datasets.

In terms of downsides, the method requires appropriate expertise within the scientific
team to adjust the model for solving a specific research task. To that end, complementing
the tool with an easy-to-use interface would enable biologists to load additional images to
fine-tune the model without having professional competence in machine learning.

The Model 1 with image-to-image translation Pix2Pix GAN architecture described
here demonstrates the ability to automatically generate the PNN single-mesh contour
annotation that may be valuable for the acceleration of high-resolution PNN image analysis
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for biomedical applications. In its present state, the model requires a local region of interest
containing a PNN single mesh as an input image. The next step would be to further develop
the tool to automatically detect and annotate the PNN mesh structure in whole neuronal
cell confocal images.

12. Conclusions

The PNN microscopy field has been growing rapidly over the last few years and is
demonstrating the value of imaging and image analysis techniques in several directions of
brain pathology research. We are starting to gain insights into CNS disease mechanisms at
the level of abnormalities in the delicate microstructure of synapses and the surrounding
ECM. Quantitative image analysis plays a pivotal role in this. Live brain multiphoton
imaging at the subcellular resolution provides hope that rePNN dynamics during synaptic
network maturation, and in the adult brain, will be revealed in order to address the
processes of memory, oxidative stress and the onset of disease states like schizophrenia and
AD. The pharmacological targeting of PNN is attracting significant attention, and a range
of microscopy techniques will definitely contribute towards further analyses.

The following trends may be important for the field development in near future:

- Implementation of high-throughput instrumental upgrades both in low and high-
resolution microscopy to speed up the pipeline for the data collection;

- Transition from low-resolution microscopy meant for counting PNN numbers to
high-resolution imaging aiming at insights into synaptic structure and function. Su-
perresolution microscopy, multiphoton microscopy, correlative light–electron mi-
croscopy (CLEM) and electron tomography are instrumental for efficient progress
along these lines;

- Expanding the range of quantitative image analysis methods in order to increase
collected structural information and build high-resolution 3D models elucidating the
structural basis of physiological functions and brain pathologies. Integrating the PNN
data into connectomics research may be particularly fruitful;

- Implementation of AI instruments aimed at high-content unbiased quantitative mi-
croscopy data analysis and achieving new unprecedented levels of insight into PNN
structure and function.

The dissection of causal connections between genes, biological macromolecules, and
physiological functions has made a tremendous impact on the development of biomedicine
based on molecular biology, biochemistry, behavioral and electrophysiology techniques,
revealing a range of brain pathology mechanisms. Thus far, microscopy has often served to
provide illustrations in support of mechanistic findings. The trend towards quantitative
microscopy aimed at novel mechanistic insights is gaining impetus as a result of the
exploding AI research field. We currently face demands from both society and the scientific
community for an understanding of the scale and direction of future changes resulting from
the ongoing AI technological revolution. We hope that the present study could contribute
towards that purpose, from a brain pathology-related PNN microscopy perspective.
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