Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,741)

Search Parameters:
Keywords = performance feedback

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 953 KiB  
Article
Command Redefined: Neural-Adaptive Leadership in the Age of Autonomous Intelligence
by Raul Ionuț Riti, Claudiu Ioan Abrudan, Laura Bacali and Nicolae Bâlc
AI 2025, 6(8), 176; https://doi.org/10.3390/ai6080176 (registering DOI) - 1 Aug 2025
Abstract
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will [...] Read more.
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will collaborate with learning algorithms in the Neural Adaptive Artificial Intelligence Leadership Model, which is informed by the transformational literature on leadership and socio-technical systems, as well as the literature on algorithmic governance. We assessed the model with thirty in-depth interviews, system-level traces of behavior, and a verified survey, and we explored six hypotheses that relate to algorithmic delegation and ethical oversight, as well as human judgment versus machine insight in terms of agility and performance. We discovered that decisions are made quicker, change is more effective, and interaction is more vivid where agile practices and good digital understanding exist, and statistical tests propose that human flexibility and definite governance augment those benefits as well. It is single-industry research that contains self-reported measures, which causes research to be limited to other industries that contain more objective measures. Practitioners are provided with a practical playbook on how to make algorithmic jobs meaningful, introduce moral fail-safes, and build learning feedback to ensure people and machines are kept in line. Socially, the practice is capable of minimizing bias and establishing inclusion by visualizing accountability in the code and practice. Filling the gap between the theory of leadership and the reality of algorithms, the study provides a model of intelligent systems leading in organizations that can be reproduced. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
24 pages, 23817 KiB  
Article
Dual-Path Adversarial Denoising Network Based on UNet
by Jinchi Yu, Yu Zhou, Mingchen Sun and Dadong Wang
Sensors 2025, 25(15), 4751; https://doi.org/10.3390/s25154751 (registering DOI) - 1 Aug 2025
Abstract
Digital image quality is crucial for reliable analysis in applications such as medical imaging, satellite remote sensing, and video surveillance. However, traditional denoising methods struggle to balance noise removal with detail preservation and lack adaptability to various types of noise. We propose a [...] Read more.
Digital image quality is crucial for reliable analysis in applications such as medical imaging, satellite remote sensing, and video surveillance. However, traditional denoising methods struggle to balance noise removal with detail preservation and lack adaptability to various types of noise. We propose a novel three-module architecture for image denoising, comprising a generator, a dual-path-UNet-based denoiser, and a discriminator. The generator creates synthetic noise patterns to augment training data, while the dual-path-UNet denoiser uses multiple receptive field modules to preserve fine details and dense feature fusion to maintain global structural integrity. The discriminator provides adversarial feedback to enhance denoising performance. This dual-path adversarial training mechanism addresses the limitations of traditional methods by simultaneously capturing both local details and global structures. Experiments on the SIDD, DND, and PolyU datasets demonstrate superior performance. We compare our architecture with the latest state-of-the-art GAN variants through comprehensive qualitative and quantitative evaluations. These results confirm the effectiveness of noise removal with minimal loss of critical image details. The proposed architecture enhances image denoising capabilities in complex noise scenarios, providing a robust solution for applications that require high image fidelity. By enhancing adaptability to various types of noise while maintaining structural integrity, this method provides a versatile tool for image processing tasks that require preserving detail. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

24 pages, 3559 KiB  
Article
Advancing Online Road Safety Education: A Gamified Approach for Secondary School Students in Belgium
by Imran Nawaz, Ariane Cuenen, Geert Wets, Roeland Paul and Davy Janssens
Appl. Sci. 2025, 15(15), 8557; https://doi.org/10.3390/app15158557 (registering DOI) - 1 Aug 2025
Abstract
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 [...] Read more.
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 years) in Belgium. The program incorporates gamified e-learning modules containing, among others, podcasts, interactive 360° visuals, and virtual reality (VR), to enhance traffic knowledge, situation awareness, risk detection, and risk management. This study was conducted across several cities and municipalities within Belgium. More than 600 students from school years 3 to 6 completed the platform and of these more than 200 students filled in a comprehensive questionnaire providing detailed feedback on platform usability, preferences, and behavioral risk assessments. The results revealed shortcomings in traffic knowledge and skills, particularly among older students. Gender-based analysis indicated no significant performance differences overall, though females performed better in risk management and males in risk detection. Furthermore, students from cities outperformed those from municipalities. Feedback on the R2S platform indicated high usability and engagement, with VR-based simulations receiving the most positive reception. In addition, it was highlighted that secondary school students are high-risk groups for distraction and red-light violations as cyclists and pedestrians. This study demonstrates the importance of gamified, technology-enhanced road safety education while underscoring the need for module-specific improvements and regional customization. The findings support the broader application of e-learning methodologies for sustainable, behavior-oriented traffic safety education targeting adolescents. Full article
(This article belongs to the Special Issue Technology Enhanced and Mobile Learning: Innovations and Applications)
Show Figures

Figure 1

22 pages, 1470 KiB  
Article
An NMPC-ECBF Framework for Dynamic Motion Planning and Execution in Vision-Based Human–Robot Collaboration
by Dianhao Zhang, Mien Van, Pantelis Sopasakis and Seán McLoone
Machines 2025, 13(8), 672; https://doi.org/10.3390/machines13080672 (registering DOI) - 1 Aug 2025
Abstract
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes [...] Read more.
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes advantage of the prediction capabilities of nonlinear model predictive control (NMPC) to execute safe path planning based on feedback from a vision system. To satisfy the requirements of real-time path planning, an embedded solver based on a penalty method is applied. However, due to tight sampling times, NMPC solutions are approximate; therefore, the safety of the system cannot be guaranteed. To address this, we formulate a novel safety-critical paradigm that uses an exponential control barrier function (ECBF) as a safety filter. Several common human–robot assembly subtasks have been integrated into a real-life HRC assembly task to validate the performance of the proposed controller and to investigate whether integrating human pose prediction can help with safe and efficient collaboration. The robot uses OptiTrack cameras for perception and dynamically generates collision-free trajectories to the predicted target interactive position. Results for a number of different configurations confirm the efficiency of the proposed motion planning and execution framework, with a 23.2% reduction in execution time achieved for the HRC task compared to an implementation without human motion prediction. Full article
(This article belongs to the Special Issue Visual Measurement and Intelligent Robotic Manufacturing)
Show Figures

Figure 1

25 pages, 17227 KiB  
Article
Distributed Online Voltage Control with Feedback Delays Under Coupled Constraints for Distribution Networks
by Jinxuan Liu, Yanjian Peng, Xiren Zhang, Zhihao Ning and Dingzhong Fan
Technologies 2025, 13(8), 327; https://doi.org/10.3390/technologies13080327 (registering DOI) - 31 Jul 2025
Abstract
High penetration of photovoltaic (PV) generation presents new challenges for voltage regulation in distribution networks (DNs), primarily due to output intermittency and constrained reactive power capabilities. This paper introduces a distributed voltage control method leveraging reactive power compensation from PV inverters. Instead of [...] Read more.
High penetration of photovoltaic (PV) generation presents new challenges for voltage regulation in distribution networks (DNs), primarily due to output intermittency and constrained reactive power capabilities. This paper introduces a distributed voltage control method leveraging reactive power compensation from PV inverters. Instead of relying on centralized computation, the proposed method allows each inverter to make local decisions using real-time voltage measurements and delayed communication with neighboring PV nodes. To account for practical asynchronous communication and feedback delay, a Distributed Online Primal–Dual Push–Sum (DOPP) algorithm that integrates a fixed-step delay model into the push–sum coordination framework is developed. Through extensive case studies on a modified IEEE 123-bus system, it has been demonstrated that the proposed method maintains robust performance under both static and dynamic scenarios, even in the presence of fixed feedback delays. Specifically, in static scenarios, the proposed strategy rapidly eliminates voltage violations within 50–100 iterations, effectively regulating all nodal voltages into the acceptable range of [0.95, 1.05] p.u. even under feedback delays with a delay step of 10. In dynamic scenarios, the proposed strategy ensures 100% voltage compliance across all nodes, demonstrating superior voltage regulation and reactive power coordination performance over conventional droop and incremental control approaches. Full article
15 pages, 675 KiB  
Article
A Trusted Multi-Cloud Brokerage System for Validating Cloud Services Using Ranking Heuristics
by Rajganesh Nagarajan, Vinothiyalakshmi Palanichamy, Ramkumar Thirunavukarasu and J. Arun Pandian
Future Internet 2025, 17(8), 348; https://doi.org/10.3390/fi17080348 (registering DOI) - 31 Jul 2025
Abstract
Cloud computing offers a broad spectrum of services to users, particularly in multi-cloud environments where service-centric features are introduced to support users from multiple endpoints. To improve service availability and optimize the utilization of required services, cloud brokerage has been integrated into multi-cloud [...] Read more.
Cloud computing offers a broad spectrum of services to users, particularly in multi-cloud environments where service-centric features are introduced to support users from multiple endpoints. To improve service availability and optimize the utilization of required services, cloud brokerage has been integrated into multi-cloud systems. The primary objective of a cloud broker is to ensure the quality and outcomes of services offered to customers. However, traditional cloud brokers face limitations in measuring service trust, ensuring validity, and anticipating future enhancements of services across different cloud platforms. To address these challenges, the proposed intelligent cloud broker integrates an intelligence mechanism that enhances decision-making within a multi-cloud environment. This broker performs a comprehensive validation and verification of service trustworthiness by analyzing various trust factors, including service response time, sustainability, suitability, accuracy, transparency, interoperability, availability, reliability, stability, cost, throughput, efficiency, and scalability. Customer feedback is also incorporated to assess these trust factors prior to service recommendation. The proposed model calculates service ranking (SR) values for available cloud services and dynamically includes newly introduced services during the validation process by mapping them with existing entries in the Service Collection Repository (SCR). Performance evaluation using the Google cluster-usage traces dataset demonstrates that the ICB outperforms existing approaches such as the Clustering-Based Trust Degree Computation (CBTDC) algorithm and the Service Context-Aware QoS Prediction and Recommendation (SCAQPR) model. Results confirm that the ICB significantly enhances the effectiveness and reliability of cloud service recommendations for users. Full article
Show Figures

Figure 1

15 pages, 10795 KiB  
Article
DigiHortiRobot: An AI-Driven Digital Twin Architecture for Hydroponic Greenhouse Horticulture with Dual-Arm Robotic Automation
by Roemi Fernández, Eduardo Navas, Daniel Rodríguez-Nieto, Alain Antonio Rodríguez-González and Luis Emmi
Future Internet 2025, 17(8), 347; https://doi.org/10.3390/fi17080347 (registering DOI) - 31 Jul 2025
Abstract
The integration of digital twin technology with robotic automation holds significant promise for advancing sustainable horticulture in controlled environment agriculture. This article presents DigiHortiRobot, a novel AI-driven digital twin architecture tailored for hydroponic greenhouse systems. The proposed framework integrates real-time sensing, predictive modeling, [...] Read more.
The integration of digital twin technology with robotic automation holds significant promise for advancing sustainable horticulture in controlled environment agriculture. This article presents DigiHortiRobot, a novel AI-driven digital twin architecture tailored for hydroponic greenhouse systems. The proposed framework integrates real-time sensing, predictive modeling, task planning, and dual-arm robotic execution within a modular, IoT-enabled infrastructure. DigiHortiRobot is structured into three progressive implementation phases: (i) monitoring and data acquisition through a multimodal perception system; (ii) decision support and virtual simulation for scenario analysis and intervention planning; and (iii) autonomous execution with feedback-based model refinement. The Physical Layer encompasses crops, infrastructure, and a mobile dual-arm robot; the virtual layer incorporates semantic modeling and simulation environments; and the synchronization layer enables continuous bi-directional communication via a nine-tier IoT architecture inspired by FIWARE standards. A robot task assignment algorithm is introduced to support operational autonomy while maintaining human oversight. The system is designed to optimize horticultural workflows such as seeding and harvesting while allowing farmers to interact remotely through cloud-based interfaces. Compared to previous digital agriculture approaches, DigiHortiRobot enables closed-loop coordination among perception, simulation, and action, supporting real-time task adaptation in dynamic environments. Experimental validation in a hydroponic greenhouse confirmed robust performance in both seeding and harvesting operations, achieving over 90% accuracy in localizing target elements and successfully executing planned tasks. The platform thus provides a strong foundation for future research in predictive control, semantic environment modeling, and scalable deployment of autonomous systems for high-value crop production. Full article
(This article belongs to the Special Issue Advances in Smart Environments and Digital Twin Technologies)
Show Figures

Figure 1

16 pages, 628 KiB  
Article
Beyond the Bot: A Dual-Phase Framework for Evaluating AI Chatbot Simulations in Nursing Education
by Phillip Olla, Nadine Wodwaski and Taylor Long
Nurs. Rep. 2025, 15(8), 280; https://doi.org/10.3390/nursrep15080280 (registering DOI) - 31 Jul 2025
Abstract
Background/Objectives: The integration of AI chatbots in nursing education, particularly in simulation-based learning, is advancing rapidly. However, there is a lack of structured evaluation models, especially to assess AI-generated simulations. This article introduces the AI-Integrated Method for Simulation (AIMS) evaluation framework, a dual-phase [...] Read more.
Background/Objectives: The integration of AI chatbots in nursing education, particularly in simulation-based learning, is advancing rapidly. However, there is a lack of structured evaluation models, especially to assess AI-generated simulations. This article introduces the AI-Integrated Method for Simulation (AIMS) evaluation framework, a dual-phase evaluation framework adapted from the FAITA model, designed to evaluate both prompt design and chatbot performance in the context of nursing education. Methods: This simulation-based study explored the application of an AI chatbot in an emergency planning course. The AIMS framework was developed and applied, consisting of six prompt-level domains (Phase 1) and eight performance criteria (Phase 2). These domains were selected based on current best practices in instructional design, simulation fidelity, and emerging AI evaluation literature. To assess the chatbots educational utility, the study employed a scoring rubric for each phase and incorporated a structured feedback loop to refine both prompt design and chatbox interaction. To demonstrate the framework’s practical application, the researchers configured an AI tool referred to in this study as “Eval-Bot v1”, built using OpenAI’s GPT-4.0, to apply Phase 1 scoring criteria to a real simulation prompt. Insights from this analysis were then used to anticipate Phase 2 performance and identify areas for improvement. Participants (three individuals)—all experienced healthcare educators and advanced practice nurses with expertise in clinical decision-making and simulation-based teaching—reviewed the prompt and Eval-Bot’s score to triangulate findings. Results: Simulated evaluations revealed clear strengths in the prompt alignment with course objectives and its capacity to foster interactive learning. Participants noted that the AI chatbot supported engagement and maintained appropriate pacing, particularly in scenarios involving emergency planning decision-making. However, challenges emerged in areas related to personalization and inclusivity. While the chatbot responded consistently to general queries, it struggled to adapt tone, complexity and content to reflect diverse learner needs or cultural nuances. To support replication and refinement, a sample scoring rubric and simulation prompt template are provided. When evaluated using the Eval-Bot tool, moderate concerns were flagged regarding safety prompts and inclusive language, particularly in how the chatbot navigated sensitive decision points. These gaps were linked to predicted performance issues in Phase 2 domains such as dialog control, equity, and user reassurance. Based on these findings, revised prompt strategies were developed to improve contextual sensitivity, promote inclusivity, and strengthen ethical guidance within chatbot-led simulations. Conclusions: The AIMS evaluation framework provides a practical and replicable approach for evaluating the use of AI chatbots in simulation-based education. By offering structured criteria for both prompt design and chatbot performance, the model supports instructional designers, simulation specialists, and developers in identifying areas of strength and improvement. The findings underscore the importance of intentional design, safety monitoring, and inclusive language when integrating AI into nursing and health education. As AI tools become more embedded in learning environments, this framework offers a thoughtful starting point for ensuring they are applied ethically, effectively, and with learner diversity in mind. Full article
Show Figures

Figure 1

14 pages, 2200 KiB  
Article
Tree Species as Metabolic Indicators: A Comparative Simulation in Amman, Jordan
by Anas Tuffaha and Ágnes Sallay
Land 2025, 14(8), 1566; https://doi.org/10.3390/land14081566 - 31 Jul 2025
Abstract
Urban metabolism frameworks offer insight into flows of energy, materials, and services in cities, yet tree species selection is seldom treated as a metabolic indicator. In Amman, Jordan, we integrate spatial metabolic metrics to critique monocultural greening policies and demonstrate how species choices [...] Read more.
Urban metabolism frameworks offer insight into flows of energy, materials, and services in cities, yet tree species selection is seldom treated as a metabolic indicator. In Amman, Jordan, we integrate spatial metabolic metrics to critique monocultural greening policies and demonstrate how species choices forecast long-term urban metabolic performance. Using ENVI-met 5.61 simulations, we compare Melia azedarach, Olea europaea, and Ceratonia siliqua, mainly assessing urban flow related elements like air temperature reduction, CO2 sequestration, and evapotranspiration alongside rooting depth, isoprene emissions, and biodiversity support. Melia delivers rapid cooling but shows other negatives like a low biodiversity value; Olea offers average cooling and sequestration but has allergenic pollen issues in people as a flow; Ceratonia provides scalable cooling, increased carbon uptake, and has a high ecological value. We propose a metabolic reframing of green infrastructure planning to choose urban species, guided by system feedback rather than aesthetics, to ensure long-term resilience in arid urban climates. Full article
Show Figures

Figure 1

17 pages, 14808 KiB  
Article
Operatic Singing Biomechanics: Skeletal Tracking Sensor Integration for Pedagogical Innovation
by Evangelos Angelakis, Konstantinos Bakogiannis, Anastasia Georgaki and Areti Andreopoulou
Sensors 2025, 25(15), 4713; https://doi.org/10.3390/s25154713 (registering DOI) - 30 Jul 2025
Abstract
Operatic singing, traditionally taught through empirical and subjective methods, demands innovative approaches to enhance its pedagogical effectiveness today. This paper introduces a novel integration of advanced skeletal tracking technology into a prototype framework for operatic singing pedagogy research. Using the Microsoft Kinect Azure [...] Read more.
Operatic singing, traditionally taught through empirical and subjective methods, demands innovative approaches to enhance its pedagogical effectiveness today. This paper introduces a novel integration of advanced skeletal tracking technology into a prototype framework for operatic singing pedagogy research. Using the Microsoft Kinect Azure DK sensor, this prototype extracts detailed data on spinal, cervical, and shoulder alignment and movement data, with the aim of quantifying biomechanical movements during vocal performance. Preliminary results confirmed high face validity and biomechanical relevance. The incorporation of skeletal-tracking technology into vocal pedagogy research could help clarify certain technical aspects of singing and enhance sensorimotor feedback for the training of operatic singers. Full article
Show Figures

Figure 1

27 pages, 12164 KiB  
Article
Neural Network Adaptive Attitude Control of Full-States Quad Tiltrotor UAV
by Jiong He, Binwu Ren, Yousong Xu, Qijun Zhao, Siliang Du and Bo Wang
Aerospace 2025, 12(8), 684; https://doi.org/10.3390/aerospace12080684 - 30 Jul 2025
Abstract
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics [...] Read more.
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics model of the quad tiltrotor UAV is established based on the approach of component-based mechanistic modeling. Secondly, the effects of internal uncertainties and external disturbances on the model are eliminated, whilst the online adaptive parameter tuning problem for the nonlinear active disturbance rejection controller is addressed. The superior nonlinear function approximation capability of the RBF neural network is then utilized by taking both the control inputs computed by the controller and the system outputs of the quad tiltrotor model as neural network inputs to implement adaptive parameter adjustments for the Extended State Observer (ESO) component responsible for disturbance estimation and the Nonlinear State Error Feedback (NLSEF) control law of the active disturbance rejection controller. Finally, an adaptive attitude control system for the quad tiltrotor UAV is constructed, centered on the ADRC-RBF controller. Subsequently, the efficacy of the attitude control system is validated through simulation, encompassing a range of flight conditions. The simulation results demonstrate that the Integral of Absolute Error (IAE) of the pitch angle response controlled by the ADRC-RBF controller is reduced to 37.4° in comparison to the ADRC controller in the absence of external disturbance in the full-states mode state of the quad tiltrotor UAV, and the oscillation amplitude of the pitch angle response controlled by the ADRC-RBF controller is generally reduced by approximately 50% in comparison to the ADRC controller in the presence of external disturbance. In comparison with the conventional ADRC controller, the proposed ADRC-RBF controller demonstrates superior performance with regard to anti-disturbance capability, adaptability, and tracking accuracy. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 6682 KiB  
Article
An FR4-Based Oscillator Loading an Additional High-Q Cavity for Phase Noise Reduction Using SISL Technology
by Jingwen Han, Ningning Yan and Kaixue Ma
Electronics 2025, 14(15), 3041; https://doi.org/10.3390/electronics14153041 - 30 Jul 2025
Abstract
An FR4-based X-band low phase noise oscillator loading an additional high-Q cavity resonator was designed in this study using substrate-integrated suspended line (SISL) technology. The additional resonator was coupled to an oscillator by the transmission line (coupling TL). The impact of the [...] Read more.
An FR4-based X-band low phase noise oscillator loading an additional high-Q cavity resonator was designed in this study using substrate-integrated suspended line (SISL) technology. The additional resonator was coupled to an oscillator by the transmission line (coupling TL). The impact of the additional resonator on startup conditions, Q factor enhancement, and phase noise reduction was thoroughly investigated. Three oscillators loading an additional high-Q cavity resonator, loading an additional high-Q cavity resonator and performing partial dielectric extraction, and loading an original parallel feedback oscillator for comparison were presented. The experimental results showed that the proposed oscillator had a low phase noise of −131.79 dBc/Hz at 1 MHz offset from the carrier frequency of 10.088 GHz, and the FOM was −197.79 dBc/Hz. The phase noise was reduced by 1.66 dB through loading the additional resonator and further reduced by 1.87 dB through partially excising the substrate. To the best of our knowledge, the proposed oscillator showed the lowest phase noise and FOM compared with other all-FR4-based oscillators. The cost of fabrication was markedly reduced. The proposed oscillator also has the advantages of compact size and self-packaging properties. Full article
Show Figures

Figure 1

23 pages, 2710 KiB  
Article
Non-Semantic Multimodal Fusion for Predicting Segment Access Frequency in Lecture Archives
by Ruozhu Sheng, Jinghong Li and Shinobu Hasegawa
Educ. Sci. 2025, 15(8), 978; https://doi.org/10.3390/educsci15080978 (registering DOI) - 30 Jul 2025
Viewed by 32
Abstract
This study proposes a non-semantic multimodal approach to predict segment access frequency (SAF) in lecture archives. Such archives, widely used as supplementary resources in modern education, often consist of long, unedited recordings that are difficult to navigate and review efficiently. The predicted SAF, [...] Read more.
This study proposes a non-semantic multimodal approach to predict segment access frequency (SAF) in lecture archives. Such archives, widely used as supplementary resources in modern education, often consist of long, unedited recordings that are difficult to navigate and review efficiently. The predicted SAF, an indicator of student viewing behavior, serves as a practical proxy for student engagement. The increasing volume of recorded material renders manual editing and annotation impractical, making the automatic identification of high-SAF segments crucial for improving accessibility and supporting targeted content review. The approach focuses on lecture archives from a real-world blended learning context, characterized by resource constraints such as no specialized hardware and limited student numbers. The model integrates multimodal features from instructor’s actions (via OpenPose and optical flow), audio spectrograms, and slide page progression—a selection of features that makes the approach applicable regardless of lecture language. The model was evaluated on 665 labeled one-minute segments from one such course. Experiments show that the best-performing model achieves a Pearson correlation of 0.5143 in 7-fold cross-validation and 61.05% average accuracy in a downstream three-class classification task. These results demonstrate the system’s capacity to enhance lecture archives by automatically identifying key segments, which aids students in efficient, targeted review and provides instructors with valuable data for pedagogical feedback. Full article
Show Figures

Figure 1

29 pages, 1917 KiB  
Perspective
A Perspective on Software-in-the-Loop and Hardware-in-the-Loop Within Digital Twin Frameworks for Automotive Lighting Systems
by George Balan, Philipp Neninger, Enrique Ruiz Zúñiga, Elena Serea, Dorin-Dumitru Lucache and Alexandru Sălceanu
Appl. Sci. 2025, 15(15), 8445; https://doi.org/10.3390/app15158445 - 30 Jul 2025
Viewed by 64
Abstract
The increasing complexity of modern automotive lighting systems requires advanced validation strategies that ensure both functional performance and regulatory compliance. This study presents a structured integration of Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) testing within a digital twin (DT) framework for validating headlamp systems. [...] Read more.
The increasing complexity of modern automotive lighting systems requires advanced validation strategies that ensure both functional performance and regulatory compliance. This study presents a structured integration of Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) testing within a digital twin (DT) framework for validating headlamp systems. A gated validation process (G10–G120) is proposed, aligning each development phase with corresponding simulation stages from early requirements and concept validation to real-world scenario testing and continuous integration. A key principle of this approach is the adoption of a framework built upon the V-Cycle, adapted to integrate DT technology with SiL and HiL workflows. This architectural configuration ensures a continuous data flow between the physical system, the digital twin, and embedded software components, enabling real-time feedback, iterative model refinement, and traceable system verification throughout the development lifecycle. The paper also explores strategies for effective DT integration, such as digital twin-as-a-service, which combines virtual testing with physical validation to support earlier fault detection, streamlined simulation workflows, and reduced dependency on physical prototypes during lighting system development. Unlike the existing literature, which often treats SiL, HiL, and DTs in isolation, this work proposes a unified, domain-specific validation framework. The methodology addresses a critical gap by aligning simulation-based testing with development milestones and regulatory standards, offering a foundation for industrial adoption. Full article
Show Figures

Figure 1

17 pages, 2136 KiB  
Article
Mitigating Intermittency in Offshore Wind Power Using Adaptive Nonlinear MPPT Control Techniques
by Muhammad Waqas Ayub, Inam Ullah Khan, George Aggidis and Xiandong Ma
Energies 2025, 18(15), 4041; https://doi.org/10.3390/en18154041 - 29 Jul 2025
Viewed by 138
Abstract
This paper addresses the challenge of maximizing power extraction in offshore wind energy systems through the development of an enhanced maximum power point tracking (MPPT) control strategy. Offshore wind energy is inherently intermittent, leading to discrepancies between power generation and electricity demand. To [...] Read more.
This paper addresses the challenge of maximizing power extraction in offshore wind energy systems through the development of an enhanced maximum power point tracking (MPPT) control strategy. Offshore wind energy is inherently intermittent, leading to discrepancies between power generation and electricity demand. To address this issue, we propose three advanced control algorithms to perform a comparative analysis: sliding mode control (SMC), the Integral Backstepping-Based Real-Twisting Algorithm (IBRTA), and Feed-Back Linearization (FBL). These algorithms are designed to handle the nonlinear dynamics and aerodynamic uncertainties associated with offshore wind turbines. Given the practical limitations in acquiring accurate nonlinear terms and aerodynamic forces, our approach focuses on ensuring the adaptability and robustness of the control algorithms under varying operational conditions. The proposed strategies are rigorously evaluated through MATLAB/Simulink 2024 A simulations across multiple wind speed scenarios. Our comparative analysis demonstrates the superior performance of the proposed methods in optimizing power extraction under diverse conditions, contributing to the advancement of MPPT techniques for offshore wind energy systems. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

Back to TopTop