Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = peptidyl-prolyl isomerase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5020 KiB  
Article
Upregulated Hexokinase-2 in Airway Epithelium Regulates Apoptosis and Drives Inflammation in Asthma via Peptidylprolyl Isomerase F
by Zhen Tian, Hongyan Zheng, Yan Fan, Boyu Li, Zhenli Huang, Meijia Wang, Jixian Zhang, Jianping Zhao, Shanshan Wang and Jungang Xie
Cells 2025, 14(13), 1004; https://doi.org/10.3390/cells14131004 - 1 Jul 2025
Viewed by 496
Abstract
Hexokinase catalyzes the first rate-limiting step glycolysis. However, the roles of hexokinase 2 (HK2) in asthma remain incompletely understood. This study aimed to investigate metabolic alterations in asthma, focusing on the expression, function and regulation of HK2. In this study, non-targeted metabolomics analysis [...] Read more.
Hexokinase catalyzes the first rate-limiting step glycolysis. However, the roles of hexokinase 2 (HK2) in asthma remain incompletely understood. This study aimed to investigate metabolic alterations in asthma, focusing on the expression, function and regulation of HK2. In this study, non-targeted metabolomics analysis of 20 asthma patients and 15 healthy controls identified metabolic alterations in asthma, particularly in the glycolytic pathways. Consistently, HK2 expression was elevated in both asthma individuals and mice with allergic airway inflammation. Airway epithelium–specific HK2 knockdown and pharmacological inhibition with 2-deoxy-D-glucose (2-DG) significantly attenuated airway inflammation and hyperresponsiveness in mice induced by ovalbumin/ lipopolysaccharide. Mechanistic analyses demonstrated that HK2 regulates epithelial apoptosis and inflammation via interaction with peptidylprolyl isomerase F (PPIF), independent of voltage-dependent anion channel 1 (VDAC1). Asthma is associated with metabolic reprogramming, characterized by alterations in lipid and glucose metabolism. These findings establish HK2 plays a crucial role in asthma pathogenesis by promoting airway epithelial apoptosis and inflammation in asthma, suggesting its potential as a therapeutic target. Full article
Show Figures

Figure 1

20 pages, 550 KiB  
Review
Molecular Mechanisms Underlying Root Nodule Formation and Activity
by Katarzyna Nuc and Przemysław Olejnik
Agronomy 2025, 15(7), 1552; https://doi.org/10.3390/agronomy15071552 - 26 Jun 2025
Viewed by 645
Abstract
Symbiotic interactions between legumes and a group of soil bacteria, known as rhizobia, lead to the formation of a specialized organs called root nodules. Inside them, atmospheric nitrogen (N2) is fixed by bacteria and reduced to forms available to plants, catalyzed [...] Read more.
Symbiotic interactions between legumes and a group of soil bacteria, known as rhizobia, lead to the formation of a specialized organs called root nodules. Inside them, atmospheric nitrogen (N2) is fixed by bacteria and reduced to forms available to plants, catalyzed by the nitrogenase enzyme complex. The development of a symbiotic relationship between legumes and nodule bacteria is a multi-stage, precisely regulated process, characterized by a high specificity of partner selection. Nodulation involves the enhanced expression of certain plant genes, referred to as early- and late-nodulin genes. Many nodulin genes encode hydroxyproline-rich glycoproteins (HRGPs) and proline-rich proteins (PRPs) which are involved in various processes, including infection thread formation, cell signaling, and defense responses, thereby affecting nodule formation and function. Cyclophilins (CyPs) belong to a family of proteins with peptidyl-prolyl cistrans isomerase activity. Proteins with cyclophilin domain can be found in the cytoplasm, endoplasmic reticulum, nucleus, chloroplast, and mitochondrion. They are involved in various processes, such as protein folding, cellular signaling, mRNA maturation, and response to biotic and abiotic stress. In this review, we aim to summarize the molecular processes involved in the development of symbiosis and highlight the potential role of cyclophilins (peptidyl-prolyl cis-trans isomerases) in this process. Full article
Show Figures

Scheme 1

18 pages, 10362 KiB  
Article
Genome-Wide Analysis of Tea FK506-Binding Proteins (FKBPs) Reveals That CsFKBP53 Enhances Cold-Stress Tolerance in Transgenic Arabidopsis thaliana
by Ming-Hui Xu, Jie Tang, Cai-Ning Liu, Wan-Qiao Zhang, Qian Li, Fan Yang and Dan-Dan Liu
Int. J. Mol. Sci. 2025, 26(8), 3575; https://doi.org/10.3390/ijms26083575 - 10 Apr 2025
Cited by 1 | Viewed by 555
Abstract
FK506-binding proteins (FKBPs) belong to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily and are involved in a wide range of biological processes including protein folding, hormone signaling, plant growth, and stress responses. However, the FKBPs and their biological functions have not been identified in [...] Read more.
FK506-binding proteins (FKBPs) belong to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily and are involved in a wide range of biological processes including protein folding, hormone signaling, plant growth, and stress responses. However, the FKBPs and their biological functions have not been identified in tea plants. In this study, 21 FKBP genes were identified using the conserved FK506-binding domain (PF00254) in the tea-plant genome. Their phylogeny, classification, structure, motifs, interactors, and expression patterns were analyzed. Comprehensive qRT-PCR analysis revealed distinct expression patterns of CsFKBPs in different tissues and in response to low temperature. Through a comprehensive genome-wide analysis, we characterized the low-temperature expression dynamics of the CsFKBP53 gene family and demonstrated that its overexpression significantly enhances cold tolerance in Arabidopsis. Notably, the transcript levels of CsFKBP53 exhibited pronounced variability across distinct tea (Camellia sinensis) cultivars under cold-stress conditions. These findings not only underscore the functional conservation of FKBP-type immunophilins across plant lineages but also highlight the biotechnological potential of CsFKBP53 as a genetic modulator of low-temperature resilience in crops. By integrating comparative genomics and functional validation, our study establishes a foundation for leveraging conserved stress-response mechanisms to engineer climate-resilient plants. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition)
Show Figures

Figure 1

16 pages, 2378 KiB  
Communication
In Silico Targeting and Immunological Profiling of PpiA in Mycobacterium tuberculosis: A Computational Approach
by Mohammad J. Nasiri, Lily Rogowski and Vishwanath Venketaraman
Pathogens 2025, 14(4), 370; https://doi.org/10.3390/pathogens14040370 - 9 Apr 2025
Viewed by 822
Abstract
Tuberculosis (TB) remains a leading cause of mortality, with drug resistance highlighting the need for new vaccine targets. Peptidyl-prolyl isomerase A (PpiA), a conserved Mycobacterium tuberculosis (Mtb) protein, plays a role in bacterial stress adaptation and immune evasion, making it a potential target [...] Read more.
Tuberculosis (TB) remains a leading cause of mortality, with drug resistance highlighting the need for new vaccine targets. Peptidyl-prolyl isomerase A (PpiA), a conserved Mycobacterium tuberculosis (Mtb) protein, plays a role in bacterial stress adaptation and immune evasion, making it a potential target for immunotherapy. This study uses computational methods to assess PpiA’s antigenicity, structural integrity, and immunogenic potential. The PpiA sequence was retrieved from NCBI and analyzed for antigenicity and allergenicity using VaxiJen, AllerTOP, and AllergenFP. Physicochemical properties were evaluated using ProtParam, and structural models were generated through PSIPRED and SWISS-MODEL. Structural validation was performed with MolProbity, QMEANDisCo, and ProSA-Web. B-cell epitopes were predicted using BepiPred 2.0 and IEDB, while T-cell epitopes were mapped via IEDB’s MHC-I and MHC-II tools. Epitope conservation across Mtb strains was confirmed using ConSurf. Results indicate PpiA is highly antigenic, non-allergenic, and stable, with several immunogenic epitopes identified for both B- and T-cells. This study supports PpiA as a promising immunogenic target for TB vaccine development. Full article
(This article belongs to the Special Issue Computational Approaches in Mechanisms of Pathogenesis)
Show Figures

Figure 1

28 pages, 5112 KiB  
Review
Cyclophilin A Regulates Tripartite Motif 5 Alpha Restriction of HIV-1
by Tingting Wang, Daniel Becker, Augustin Penda Twizerimana, Tom Luedde, Holger Gohlke and Carsten Münk
Int. J. Mol. Sci. 2025, 26(2), 495; https://doi.org/10.3390/ijms26020495 - 9 Jan 2025
Viewed by 1948
Abstract
The peptidyl-prolyl isomerase A (PPIA), also known as cyclophilin A (CYPA), is involved in multiple steps of the HIV-1 replication cycle. CYPA regulates the restriction of many host factors by interacting with the CYPA-binding loop on the HIV-1 capsid (CA) surface. TRIM5 (tripartite [...] Read more.
The peptidyl-prolyl isomerase A (PPIA), also known as cyclophilin A (CYPA), is involved in multiple steps of the HIV-1 replication cycle. CYPA regulates the restriction of many host factors by interacting with the CYPA-binding loop on the HIV-1 capsid (CA) surface. TRIM5 (tripartite motif protein 5) in primates is a key species-specific restriction factor defining the HIV-1 pandemic. The incomplete adaptation of HIV-1 to humans is due to the different utilization of CYPA by pandemic and non-pandemic HIV-1. The enzymatic activity of CYPA on the viral core is likely an important reason for regulating the TRIM5 restriction activity. Thus, the HIV-1 capsid and its CYPA interaction may serve as new targets for future anti-AIDS therapeutic agents. This article will describe the species-specificity of the restriction factor TRIM5, understand the role of CYPA in regulating restriction factors in retroviral infection, and discuss important future research issues. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatment of Infectious Diseases)
Show Figures

Figure 1

28 pages, 2241 KiB  
Review
Novel Role of Pin1-Cis P-Tau-ApoE Axis in the Pathogenesis of Preeclampsia and Its Connection with Dementia
by Emmanuel Amabebe, Zheping Huang, Sukanta Jash, Balaji Krishnan, Shibin Cheng, Akitoshi Nakashima, Yitong Li, Zhixong Li, Ruizhi Wang, Ramkumar Menon, Xiao Zhen Zhou, Kun Ping Lu and Surendra Sharma
Biomedicines 2025, 13(1), 29; https://doi.org/10.3390/biomedicines13010029 - 26 Dec 2024
Viewed by 2777
Abstract
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal–fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy [...] Read more.
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal–fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy disorder, similar to neurodegenerative diseases such as Alzheimer’s disease (AD), including the presence of the cis stereo-isoform of phosphorylated tau (cis P-tau), amyloid-β, and transthyretin in the placenta and circulation. This review provides an overview of the factors that may lead to the induction and accumulation of cis P-tau-like proteins by focusing on the inactivation of peptidyl-prolyl cis–trans isomerase (Pin1) that catalyzes the cis to trans isomerization of P-tau. We also highlighted the novel role of the Pin1-cis P-tau-ApoE axis in the development of preE, and propagation of cis P-tau-mediated abnormal protein aggregation (tauopathy) from the placenta to cerebral tissues later in life, leading to neurodegenerative conditions. In the case of preE, proteinopathy/tauopathy may interrupt trophoblast differentiation and induce cell death, similar to the events occurring in neurons. These events may eventually damage the endothelium and cause systemic features of disorders such as preE. Despite impressive research and therapeutic advances in both fields of preE and neurodegenerative diseases, further investigation of Pin1-cis P-tau and ApoE-related mechanistic underpinnings may unravel novel therapeutic options, and new transcriptional and proteomic markers. This review will also cover genetic polymorphisms in the ApoE alleles leading to dyslipidemia induction that may regulate the pathways causing preE or dementia-like features in the reproductive age or later in life, respectively. Full article
(This article belongs to the Special Issue Pathogenesis and Treatment of Preeclampsia)
Show Figures

Figure 1

17 pages, 3584 KiB  
Article
Exploration of the Role of Cyclophilins in Established Hepatitis B and C Infections
by Jennifer Molle, Sarah Duponchel, Jennifer Rieusset, Michel Ovize, Alexander V. Ivanov, Fabien Zoulim and Birke Bartosch
Viruses 2025, 17(1), 11; https://doi.org/10.3390/v17010011 - 25 Dec 2024
Viewed by 1094
Abstract
Cyclophilin (Cyp) inhibitors are of clinical interest in respect to their antiviral activities in the context of many viral infections including chronic hepatitis B and C. Cyps are a group of enzymes with peptidyl-prolyl isomerase activity (PPIase), known to be required for replication [...] Read more.
Cyclophilin (Cyp) inhibitors are of clinical interest in respect to their antiviral activities in the context of many viral infections including chronic hepatitis B and C. Cyps are a group of enzymes with peptidyl-prolyl isomerase activity (PPIase), known to be required for replication of diverse viruses including hepatitis B and C viruses (HBV and HCV). Amongst the Cyp family, the molecular mechanisms underlying the antiviral effects of CypA have been investigated in detail, but potential roles of other Cyps are less well studied in the context of viral hepatitis. Furthermore, most studies investigating the role of Cyps in viral hepatitis did not investigate the potential therapeutic effects of their inhibition in already-established infections but have rather been performed in the context of neo-infections. Here, we investigated the effects of genetically silencing Cyps on persistent HCV and HBV infections. We confirm antiviral effects of CypA and CypD knock down and demonstrate novel roles for CypG and CypH in HCV replication. We show, furthermore, that CypA silencing has a modest but reproducible impact on persistent HBV infections in cultured human hepatocytes. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

10 pages, 2002 KiB  
Proceeding Paper
Silver Nanostructures for Determination of FKBP12 Protein
by Cosimo Bartolini, Martina Tozzetti, Stefano Menichetti and Gabriella Caminati
Eng. Proc. 2024, 73(1), 9; https://doi.org/10.3390/engproc2024073009 - 12 Nov 2024
Viewed by 733
Abstract
FKBP12 is a peptidyl––prolyl cis–trans isomerase that was recently proposed as a candidate biomarker for cancer, for neurodegenerations and for anti–rejection therapy after organ transplant. We designed and fabricated a nanosensor platform for the rapid and efficient determination of FKBP12 concentration in biological [...] Read more.
FKBP12 is a peptidyl––prolyl cis–trans isomerase that was recently proposed as a candidate biomarker for cancer, for neurodegenerations and for anti–rejection therapy after organ transplant. We designed and fabricated a nanosensor platform for the rapid and efficient determination of FKBP12 concentration in biological fluids exploiting anisotropic silver nanoparticles (AgNps) to enhance the capabilities of Quartz Crystal Microbalance (QCM) detection. To this end, the QCM sensor was coated with a compact array of AgNPs that were further functionalized with a Self–Assembled–Monolayer containing a synthetic receptor, GPS–SH1, designed and synthesized specifically to selectively bind FKBP12. Silver nanoflowers, AgNFs, and silver dendrites, AgNDs, were prepared by electrodeposition and characterized by means of UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), QCM and water contact angle (CA). The AgNPs@Au/GPS–SH1–functionalized QCM sensors were used to detect increasing concentrations of FKBP12 in solution; the results showed that the use of AgNDs significantly enhanced the sensitivity of the sensor with respect to flat Ag sensor chips, allowing the detection of FKBP12 at sub–picomolar concentrations. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Biosensors)
Show Figures

Figure 1

14 pages, 2928 KiB  
Article
PEP-1–PIN1 Promotes Hippocampal Neuronal Cell Survival by Inhibiting Cellular ROS and MAPK Phosphorylation
by Jung Hwan Park, Min Jea Shin, Gi Soo Youn, Hyeon Ji Yeo, Eun Ji Yeo, Hyun Jung Kwon, Lee Re Lee, Na Yeon Kim, Su Yeon Kwon, Su Min Kim, Yong-Jun Cho, Sung Ho Lee, Hyo Young Jung, Dae Won Kim, Won Sik Eum and Soo Young Choi
Biomedicines 2024, 12(10), 2352; https://doi.org/10.3390/biomedicines12102352 - 15 Oct 2024
Viewed by 1831
Abstract
Background: The peptidyl-prolyl isomerase (PIN1) plays a vital role in cellular processes, including intracellular signaling and apoptosis. While oxidative stress is considered one of the primary mechanisms of pathogenesis in brain ischemic injury, the precise function of PIN1 in this disease remains [...] Read more.
Background: The peptidyl-prolyl isomerase (PIN1) plays a vital role in cellular processes, including intracellular signaling and apoptosis. While oxidative stress is considered one of the primary mechanisms of pathogenesis in brain ischemic injury, the precise function of PIN1 in this disease remains to be elucidated. Objective: We constructed a cell-permeable PEP-1–PIN1 fusion protein and investigated PIN1’s function in HT-22 hippocampal cells as well as in a brain ischemic injury gerbil model. Methods: Transduction of PEP-1–PIN1 into HT-22 cells and signaling pathways were determined by Western blot analysis. Intracellular reactive oxygen species (ROS) production and DNA damage was confirmed by DCF-DA and TUNEL staining. Cell viability was determined by MTT assay. Protective effects of PEP-1-PIN1 against ischemic injury were examined using immunohistochemistry. Results: PEP-1–PIN1, when transduced into HT-22 hippocampal cells, inhibited cell death in H2O2-treated cells and markedly reduced DNA fragmentation and ROS production. This fusion protein also reduced phosphorylation of mitogen-activated protein kinase (MAPK) and modulated expression levels of apoptosis-signaling proteins in HT-22 cells. Furthermore, PEP-1–PIN1 was distributed in gerbil hippocampus neuronal cells after passing through the blood–brain barrier (BBB) and significantly protected against neuronal cell death and also decreased activation of microglia and astrocytes in an ischemic injury gerbil model. Conclusions: These results indicate that PEP-1–PIN1 can inhibit ischemic brain injury by reducing cellular ROS levels and regulating MAPK and apoptosis-signaling pathways, suggesting that PIN1 plays a protective role in H2O2-treated HT-22 cells and ischemic injury gerbil model. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

11 pages, 3054 KiB  
Article
Relationship between Gut, Blood, Aneurysm Wall and Thrombus Microbiome in Abdominal Aortic Aneurysm Patients
by Éva Nemes-Nikodém, Gergő Péter Gyurok, Zsuzsanna A. Dunai, Nóra Makra, Bálint Hofmeister, Dóra Szabó, Péter Sótonyi, László Hidi, Ágnes Szappanos, Gergely Kovács and Eszter Ostorházi
Int. J. Mol. Sci. 2024, 25(16), 8844; https://doi.org/10.3390/ijms25168844 - 14 Aug 2024
Cited by 3 | Viewed by 1506
Abstract
Previous research confirmed gut dysbiosis and translocation of selected intestinal bacteria into the vessel wall in abdominal aortic aneurysm patients. We studied the stool, blood, thrombus and aneurysm microbiomes of 21 abdominal aortic aneurysm patients using 16S rRNA sequencing. Our goals were to [...] Read more.
Previous research confirmed gut dysbiosis and translocation of selected intestinal bacteria into the vessel wall in abdominal aortic aneurysm patients. We studied the stool, blood, thrombus and aneurysm microbiomes of 21 abdominal aortic aneurysm patients using 16S rRNA sequencing. Our goals were to determine: 1. whether the microbiome characteristic of an aneurysm differs from that of a healthy vessel, 2. whether bacteria detectable in the aneurysm are translocated from the gut through the bloodstream, 3. whether the enzymatic activity of the aneurysm microbiome can contribute to the destruction of the vessel wall. The abundance of Acinetobacter, Burkholderia, Escherichia, and Sphingobium in the aneurysm samples was significantly higher than that in the microbiome of healthy vessels, but only a part of these bacteria can come from the intestine via the blood. Environmental bacteria due to the oral cavity or skin penetration route, such as Acinetobacter, Sphingobium, Enhydrobacter, and Aquabacterium, were present in the thrombus and aneurysm with a significantly higher abundance compared to the blood. Among the enzymes of the microbiome associated with the healthy vessel wall, Iron-chelate-transporting ATPase and Polar-amino-acid-transporting ATPase have protective effects. In addition, bacterial Peptidylprolyl isomerase activity found in the aneurysm has an aggravating effect on the formation of aneurysm. Full article
Show Figures

Figure 1

38 pages, 5134 KiB  
Review
Insights into Peptidyl-Prolyl cis-trans Isomerases from Clinically Important Protozoans: From Structure to Potential Biotechnological Applications
by Verónica Aranda-Chan, Rosa Elena Cárdenas-Guerra, Alejandro Otero-Pedraza, Esdras Enoc Pacindo-Cabrales, Claudia Ivonne Flores-Pucheta, Octavio Montes-Flores, Rossana Arroyo and Jaime Ortega-López
Pathogens 2024, 13(8), 644; https://doi.org/10.3390/pathogens13080644 - 31 Jul 2024
Cited by 3 | Viewed by 2690
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) are present in a wide variety of microorganisms, including protozoan parasites such as Trypanosoma cruzi, Trypanosoma brucei, Trichomonas vaginalis, Leishmania major, Leishmania donovani, Plasmodium falciparum, Plasmodium vivax, Entamoeba histolytica, [...] Read more.
Peptidyl-prolyl cis/trans isomerases (PPIases) are present in a wide variety of microorganisms, including protozoan parasites such as Trypanosoma cruzi, Trypanosoma brucei, Trichomonas vaginalis, Leishmania major, Leishmania donovani, Plasmodium falciparum, Plasmodium vivax, Entamoeba histolytica, Giardia intestinalis, Cryptosporidium parvum, and Cryptosporidium hominis, all of which cause important neglected diseases. PPIases are classified as cyclophilins, FKBPs, or parvulins and play crucial roles in catalyzing the cis-trans isomerization of the peptide bond preceding a proline residue. This activity assists in correct protein folding. However, experimentally, the biological structure–function characterization of PPIases from these protozoan parasites has been poorly addressed. The recombinant production of these enzymes is highly relevant for this ongoing research. Thus, this review explores the structural diversity, functions, recombinant production, activity, and inhibition of protozoan PPIases. We also highlight their potential as biotechnological tools for the in vitro refolding of other recombinant proteins from these parasites. These applications are invaluable for the development of diagnostic and therapeutic tools. Full article
Show Figures

Graphical abstract

20 pages, 8735 KiB  
Article
The Cell-Penetrating Peptide GV1001 Enhances Bone Formation via Pin1-Mediated Augmentation of Runx2 and Osterix Stability
by Meiyu Piao, Sung Ho Lee, Jin Wook Hwang, Hyung Sik Kim, Youn Ho Han and Kwang Youl Lee
Biomolecules 2024, 14(7), 812; https://doi.org/10.3390/biom14070812 - 8 Jul 2024
Cited by 1 | Viewed by 1837
Abstract
Peptide-based drug development is a promising direction due to its excellent biological activity, minimal immunogenicity, high in vivo stability, and efficient tissue penetrability. GV1001, an amphiphilic peptide, has proven effective as an anti-cancer vaccine, but its effect on osteoblast differentiation is unknown. To [...] Read more.
Peptide-based drug development is a promising direction due to its excellent biological activity, minimal immunogenicity, high in vivo stability, and efficient tissue penetrability. GV1001, an amphiphilic peptide, has proven effective as an anti-cancer vaccine, but its effect on osteoblast differentiation is unknown. To identify proteins interacting with GV1001, biotin-conjugated GV1001 was constructed and confirmed by mass spectrometry. Proteomic analyses were performed to determine GV1001’s interaction with osteogenic proteins. GV1001 was highly associated with peptidyl-prolyl isomerase A and co-immunoprecipitation assays revealed that GV1001 bound to peptidyl-prolyl cis-trans isomerase 1 (Pin1). GV1001 significantly increased alkaline phosphatase (ALP) activity, bone nodule formation, and the expression of osteogenic gene markers. GV1001-induced osteogenic activity was enhanced by Pin1 overexpression and abolished by Pin1 knockdown. GV1001 increased the protein stability and transcriptional activity of Runx2 and Osterix. Importantly, GV1001 administration enhanced bone mass density in the OVX mouse model, as verified by µCT analysis. GV1001 demonstrated protective effects against bone loss in OVX mice by upregulating osteogenic differentiation via the Pin1-mediated protein stabilization of Runx2 and Osterix. GV1001 could be a potential candidate with anabolic effects for the prevention and treatment of osteoporosis. Full article
Show Figures

Figure 1

23 pages, 1123 KiB  
Review
Current Novel Targeted Therapeutic Strategies in Multiple Myeloma
by Cindy Hsin-Ti Lin, Muhammad Junaid Tariq, Fauzia Ullah, Aishwarya Sannareddy, Farhan Khalid, Hasan Abbas, Abbas Bader, Christy Samaras, Jason Valent, Jack Khouri, Faiz Anwer, Shahzad Raza and Danai Dima
Int. J. Mol. Sci. 2024, 25(11), 6192; https://doi.org/10.3390/ijms25116192 - 4 Jun 2024
Cited by 8 | Viewed by 6845
Abstract
Multiple myeloma (MM) is a hematologic malignancy caused by the clonal expansion of immunoglobulin-producing plasma cells in the bone marrow and/or extramedullary sites. Common manifestations of MM include anemia, renal dysfunction, infection, bone pain, hypercalcemia, and fatigue. Despite numerous recent advancements in the [...] Read more.
Multiple myeloma (MM) is a hematologic malignancy caused by the clonal expansion of immunoglobulin-producing plasma cells in the bone marrow and/or extramedullary sites. Common manifestations of MM include anemia, renal dysfunction, infection, bone pain, hypercalcemia, and fatigue. Despite numerous recent advancements in the MM treatment paradigm, current therapies demonstrate limited long-term effectiveness and eventual disease relapse remains exceedingly common. Myeloma cells often develop drug resistance through clonal evolution and alterations of cellular signaling pathways. Therefore, continued research of new targets in MM is crucial to circumvent cumulative drug resistance, overcome treatment-limiting toxicities, and improve outcomes in this incurable disease. This article provides a comprehensive overview of the landscape of novel treatments and emerging therapies for MM grouped by molecular target. Molecular targets outlined include BCMA, GPRC5D, FcRH5, CD38, SLAMF7, BCL-2, kinesin spindle protein, protein disulfide isomerase 1, peptidylprolyl isomerase A, Sec61 translocon, and cyclin-dependent kinase 6. Immunomodulatory drugs, NK cell therapy, and proteolysis-targeting chimera are described as well. Full article
(This article belongs to the Special Issue New Targeted Therapeutic Strategies of Multiple Myeloma)
Show Figures

Figure 1

23 pages, 28589 KiB  
Article
Pin1 Downregulation Is Involved in Excess Retinoic Acid-Induced Failure of Neural Tube Closure
by Yuwen Chen, Jiao Pang, Lu Ye, Zhentao Zhang, Junfeng Kang, Zhuotao Qiu, Na Lin and Hekun Liu
Int. J. Mol. Sci. 2024, 25(11), 5588; https://doi.org/10.3390/ijms25115588 - 21 May 2024
Viewed by 1565
Abstract
Neural tube defects (NTDs), which are caused by impaired embryonic neural tube closure, are one of the most serious and common birth defects. Peptidyl-prolyl cis/trans isomerase 1 (Pin1) is a prolyl isomerase that uniquely regulates cell signaling by manipulating protein conformation following phosphorylation, [...] Read more.
Neural tube defects (NTDs), which are caused by impaired embryonic neural tube closure, are one of the most serious and common birth defects. Peptidyl-prolyl cis/trans isomerase 1 (Pin1) is a prolyl isomerase that uniquely regulates cell signaling by manipulating protein conformation following phosphorylation, although its involvement in neuronal development remains unknown. In this study, we explored the involvement of Pin1 in NTDs and its potential mechanisms both in vitro and in vivo. The levels of Pin1 expression were reduced in NTD models induced by all-trans retinoic acid (Atra). Pin1 plays a significant role in regulating the apoptosis, proliferation, differentiation, and migration of neurons. Moreover, Pin1 knockdown significantly was found to exacerbate oxidative stress (OS) and endoplasmic reticulum stress (ERs) in neuronal cells. Further studies showed that the Notch1-Nrf2 signaling pathway may participate in Pin1 regulation of NTDs, as evidenced by the inhibition and overexpression of the Notch1-Nrf2 pathway. In addition, immunofluorescence (IF), co-immunoprecipitation (Co-IP), and GST pull-down experiments also showed that Pin1 interacts directly with Notch1 and Nrf2. Thus, our study suggested that the knocking down of Pin1 promotes NTD progression by inhibiting the activation of the Notch1-Nrf2 signaling pathway, and it is possible that this effect is achieved by disrupting the interaction of Pin1 with Notch1 and Nrf2, affecting their proteostasis. Our research identified that the regulation of Pin1 by retinoic acid (RA) and its involvement in the development of NTDs through the Notch1-Nrf2 axis could enhance our comprehension of the mechanism behind RA-induced brain abnormalities. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

14 pages, 2945 KiB  
Article
Metabolome in Tibialis and Soleus Muscles in Wild-Type and Pin1 Knockout Mice through High-Resolution Magic Angle Spinning 1H Nuclear Magnetic Resonance Spectroscopy
by Valeria Righi, Martina Grosso, Renata Battini, Takafumi Uchida, Anna Gambini, Susanna Molinari and Adele Mucci
Metabolites 2024, 14(5), 262; https://doi.org/10.3390/metabo14050262 - 6 May 2024
Viewed by 1547
Abstract
Skeletal muscles are heterogenous tissues composed of different myofiber types that can be classified as slow oxidative, fast oxidative, and fast glycolytic which are distinguished on the basis of their contractile and metabolic properties. Improving oxidative metabolism in skeletal muscles can prevent metabolic [...] Read more.
Skeletal muscles are heterogenous tissues composed of different myofiber types that can be classified as slow oxidative, fast oxidative, and fast glycolytic which are distinguished on the basis of their contractile and metabolic properties. Improving oxidative metabolism in skeletal muscles can prevent metabolic diseases and plays a protective role against muscle wasting in a number of neuromuscular diseases. Therefore, achieving a detailed understanding of the factors that regulate myofiber metabolic properties might provide new therapeutic opportunities for these diseases. Here, we investigated whether peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) is involved in the control of myofiber metabolic behaviors. Indeed, PIN1 controls glucose and lipid metabolism in a number of tissues, and it is also abundant in adult skeletal muscles; however, its role in the control of energy homeostasis in this tissue is still to be defined. To start clarifying this topic, we compared the metabolome of the tibialis anterior muscle (mainly glycolytic) and soleus muscle (oxidative) in wild-type and Pin1 knockout mice with High-Resolution Magic Angle Spinning (HR-MAS) NMR on intact tissues. Our analysis reveals a clear demarcation between the metabolomes in the two types of muscles and allows us to decode a signature able to discriminate the glycolytic versus oxidative muscle phenotype. We also detected some changes in Pin1-depleted muscles that suggest a role for PIN1 in regulating the metabolic phenotype of skeletal muscles. Full article
Show Figures

Graphical abstract

Back to TopTop