Computational Approaches in Mechanisms of Pathogenesis

A special issue of Pathogens (ISSN 2076-0817).

Deadline for manuscript submissions: 30 September 2024 | Viewed by 1897

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
Interests: bioinformatics; structural biology; computational biology approaches

Special Issue Information

Dear Colleagues,

Computational biology approaches are becoming popular and are at the forefront of theoretical and experimental biology. They provide a novel way of looking at complex biological problems and provide unique insights that are often unobtainable using other approaches; computational approaches have become an integral part of a biologist’s toolkit in framing new questions, formulating rational experimental designs and aiding the analysis of experimental results. Thus, the development of these tools has influenced and radically evolved all biological sciences. In this special edition of Pathogens, we focus on computational approaches that can lead to obtaining novel insights into pathogenic mechanisms.

I would like to invite colleagues investigating mechanisms of pathogenesis using in silico approaches alone or in combination with experimental findings to submit their manuscripts to this Special Issue in the form of original research and reviews.

Dr. Shaneen M. Singh
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pathogens is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • computational biology
  • bioinformatics
  • in silico approaches
  • simulations
  • pathogenesis

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

32 pages, 15683 KiB  
Article
Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation to Elucidate the Molecular Targets and Potential Mechanism of Phoenix dactylifera (Ajwa Dates) against Candidiasis
by Mohd Adnan, Arif Jamal Siddiqui, Syed Amir Ashraf, Fevzi Bardakci, Mousa Alreshidi, Riadh Badraoui, Emira Noumi, Bektas Tepe, Manojkumar Sachidanandan and Mitesh Patel
Pathogens 2023, 12(11), 1369; https://doi.org/10.3390/pathogens12111369 - 18 Nov 2023
Viewed by 1650
Abstract
Candidiasis, caused by opportunistic fungal pathogens of the Candida genus, poses a significant threat to immunocompromised individuals. Natural compounds derived from medicinal plants have gained attention as potential sources of anti-fungal agents. Ajwa dates (Phoenix dactylifera L.) have been recognized for their [...] Read more.
Candidiasis, caused by opportunistic fungal pathogens of the Candida genus, poses a significant threat to immunocompromised individuals. Natural compounds derived from medicinal plants have gained attention as potential sources of anti-fungal agents. Ajwa dates (Phoenix dactylifera L.) have been recognized for their diverse phytochemical composition and therapeutic potential. In this study, we employed a multi-faceted approach to explore the anti-candidiasis potential of Ajwa dates’ phytochemicals. Utilizing network pharmacology, we constructed an interaction network to elucidate the intricate relationships between Ajwa dates phytoconstituents and the Candida-associated molecular targets of humans. Our analysis revealed key nodes in the network (STAT3, IL-2, PTPRC, STAT1, CASP1, ALB, TP53, TLR4, TNF and PPARG), suggesting the potential modulation of several crucial processes (the regulation of the response to a cytokine stimulus, regulation of the inflammatory response, positive regulation of cytokine production, cellular response to external stimulus, etc.) and fungal pathways (Th17 cell differentiation, the Toll-like receptor signaling pathway, the C-type lectin receptor signaling pathway and necroptosis). To validate these findings, molecular docking studies were conducted, revealing the binding affinities of the phytochemicals towards selected Candida protein targets of humans (ALB–rutin (−9.7 kJ/mol), STAT1–rutin (−9.2 kJ/mol), STAT3–isoquercetin (−8.7 kJ/mol), IL2–β-carotene (−8.5 kJ/mol), CASP1–β-carotene (−8.2 kJ/mol), TP53–isoquercetin (−8.8 kJ/mol), PPARG–luteolin (−8.3 kJ/mol), TNF–βcarotene (−7.7 kJ/mol), TLR4–rutin (−7.4 kJ/mol) and PTPRC–rutin (−7.0 kJ/mol)). Furthermore, molecular dynamics simulations of rutin–ALB and rutin-STAT1 complex were performed to gain insights into the stability and dynamics of the identified ligand–target complexes over time. Overall, the results not only contribute to the understanding of the molecular interactions underlying the anti-fungal potential of specific phytochemicals of Ajwa dates in humans but also provide a rational basis for the development of novel therapeutic strategies against candidiasis in humans. This study underscores the significance of network pharmacology, molecular docking and dynamics simulations in accelerating the discovery of natural products as effective anti-fungal agents. However, further experimental validation of the identified compounds is warranted to translate these findings into practical therapeutic applications. Full article
(This article belongs to the Special Issue Computational Approaches in Mechanisms of Pathogenesis)
Show Figures

Figure 1

Back to TopTop