Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = pellet production cost and price

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5139 KiB  
Article
Geopolymer CLSM with Off-Specification Fly Ash and Bottom Ash: A Sustainable Approach to Hazardous Waste Utilization
by Alexis K. VanDomelen, Ahmed A. Gheni, Eslam Gomaa and Mohamed A. ElGawady
Materials 2025, 18(13), 3105; https://doi.org/10.3390/ma18133105 - 1 Jul 2025
Viewed by 733
Abstract
Conventional controlled low-strength material (CLSM) is a self-consolidating cementitious material with high flowability and low strength, traditionally composed of cement, sand, and water. This study explores the sustainable utilization of off-specification fly ash (OSFA) and bottom ash (BA), classified as industrial by-products with [...] Read more.
Conventional controlled low-strength material (CLSM) is a self-consolidating cementitious material with high flowability and low strength, traditionally composed of cement, sand, and water. This study explores the sustainable utilization of off-specification fly ash (OSFA) and bottom ash (BA), classified as industrial by-products with potential environmental hazards, to develop eco-friendly geopolymer CLSM as an alternative to conventional CLSM. Sodium hydroxide (NaOH) was used as an alkali activator to stabilize and solidify both two-part (liquid NaOH) and one-part (solid NaOH pellets) geopolymer CLSM mixtures. These mixtures were evaluated based on flowability (ASTM D6103-17) and compressive strength (<300 psi per ACI Committee 229 guidelines for excavatability). A cost analysis was also conducted. The results demonstrated that incorporating OSFA as a cement replacement increased water demand by 15% to meet flowability requirements, while BA substitution for sand led to segregation challenges requiring mixture adjustments. For two-part mixtures, higher carbon content in OSFA necessitated an increased water-to-fly ash ratio. All self-consolidating mixtures exhibited 1-day compressive strengths ranging from 5 psi (0.03 MPa) to 87 psi (0.6 MPa). One-part mixtures showed a 1% to 34% reduction in 7-day compressive strength compared to two-part mixtures, improving excavatability. Increasing the BA-to-OSFA ratio from 1:1 to 3:1 reduced water demand due to lower surface area but increased the NaOH/OSFA ratio. This study highlights the potential of geopolymer CLSM to reduce costs by up to 94% at current NaOH prices (USD 6 per cubic yard) while repurposing hazardous industrial by-products, offering a cost-efficient, sustainable, and environmentally responsible solution for CLSM production. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 2417 KiB  
Article
Life-Cycle Economics and GHG Emissions of Forest Biomass Harvesting and Utilization for Alternative Value-Added Bioproducts: An Integrated Modeling Framework
by Xufeng Zhang, Jingxin Wang, Jialin Li and John Vance
Forests 2025, 16(6), 871; https://doi.org/10.3390/f16060871 - 22 May 2025
Viewed by 402
Abstract
The life-cycle economics and greenhouse-gas (GHG) emissions of forest biomass harvesting and utilization for value-added bioproducts were comprehensively evaluated via the development of an integrated modeling framework. Taking the eastern U.S. as the case region, the model innovatively integrated field studies, a Bayesian-based [...] Read more.
The life-cycle economics and greenhouse-gas (GHG) emissions of forest biomass harvesting and utilization for value-added bioproducts were comprehensively evaluated via the development of an integrated modeling framework. Taking the eastern U.S. as the case region, the model innovatively integrated field studies, a Bayesian-based statistical learning model, techno-economic analysis, and life-cycle assessment. In specific, by investigating and summarizing the typical forest biomass harvesting systems across the region, the forest biomass harvesting costs were spatially grouped and mapped for four classified subregions across the eastern US. Overall, with 95% confidence the forest biomass harvesting cost is between USD 21.99 and USD 44.33/dry Mg, while the GHG emissions are between 14.79 and 98.80 kg CO2 eq./dry Mg. Furthermore, for the forest biomass utilization for four alternative value-added bioproducts, the minimum selling price (MSP) is USD 177.82/Mg for pellet fuel, USD 110.24/MWh for biopower, USD 1059.4/Mg for biochar, and USD 4.98/gallon for aviation fuel. The life-cycle GHG emissions are 149.80 kg CO2 eq./Mg pellet fuel, 52.22 kg CO2 eq./MWh biopower, 792.12 kg CO2 eq./Mg biochar, and 2.13 kg CO2 eq./gallon aviation fuel, respectively. Considering the uncertainties, 95% confidence intervals of MSPs range from USD 164.77 to USD 190.97/Mg for pellet fuel with an 81.85% probability to be profitable, from USD 100.20 to USD 120.21/MWh for biopower with a 49.38% probability to be profitable, from USD 1000.91 to USD 1109.25/Mg for biochar with a 79.51% probability to be profitable, from USD 4.86 to USD 5.54/gallon for aviation fuel with an 0.03% probability to be profitable. Moreover, the MSPs of pellet fuel and biochar are much less affected by the market changes than those of biopower and aviation fuel. However, the production of biopower and aviation fuel has lower carbon intensities than that of pellet fuel and biochar. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

19 pages, 3111 KiB  
Article
Technoeconomic Analysis of Torrefaction and Steam Explosion Pretreatment Prior to Pelletization of Selected Biomass
by Chukwuka Onyenwoke, Lope G. Tabil, Tim Dumonceaux, Edmund Mupondwa, Duncan Cree, Xue Li and Onu Onu Olughu
Energies 2024, 17(1), 133; https://doi.org/10.3390/en17010133 - 26 Dec 2023
Cited by 3 | Viewed by 3200
Abstract
Lignocellulosic biomass has demonstrated great potential as feedstock for pellet production, notwithstanding the fact that the industrial production of pellets is faced with some economic challenges. This study presents a technoeconomic analysis of six scenarios to develop a process model for pellet production [...] Read more.
Lignocellulosic biomass has demonstrated great potential as feedstock for pellet production, notwithstanding the fact that the industrial production of pellets is faced with some economic challenges. This study presents a technoeconomic analysis of six scenarios to develop a process model for pellet production from sawdust and oat straw that employs torrefaction and steam explosion pretreatment prior to pelletization. SuperPro Designer was used to carry out this evaluation. The pellet plants were designed to have a capacity of 9.09 t/h of sawdust and oat straw each. The pellet yield ranged from 59 kt to 72 kt/year. The scenarios analyzed included variations of steam explosion and torrefaction. In some scenarios, materials were lost in the form of liquid and gas due to the pretreatment process. The breakdown of equipment purchase cost showed that the torrefaction reactor is the most expensive unit with approximately 51% of the purchase cost. Facility-dependent and feedstock costs were the major significant contributors to the pellet production cost. The minimum selling prices of the pellets obtained from Scenarios 1–6 were $113.4/t, $118.7/t, $283.4/t, $298.7/t, $200.5/t, and $208.4/t, respectively. The profitability of pellet production as determined by the net present value (NPV), internal rate of return (IRR), and payback period was found to be sensitive to variations in feedstock cost. Full article
(This article belongs to the Special Issue New Trends in Biofuels and Bioenergy for Sustainable Development II)
Show Figures

Figure 1

25 pages, 4267 KiB  
Article
Environmental External Production Costs of Extracts Derived from Poplar-Containing Bioactive Substances
by Ewelina Olba-Zięty, Michał Krzyżaniak and Mariusz Jerzy Stolarski
Energies 2023, 16(22), 7544; https://doi.org/10.3390/en16227544 - 12 Nov 2023
Cited by 3 | Viewed by 1310
Abstract
The bioeconomy needs new, economically feasible products obtained from biological raw materials via sustainable processes having the smallest possible impact on the environment. The objectives of our study have been: (i) to make an evaluation of the external costs of the production of [...] Read more.
The bioeconomy needs new, economically feasible products obtained from biological raw materials via sustainable processes having the smallest possible impact on the environment. The objectives of our study have been: (i) to make an evaluation of the external costs of the production of a poplar extract containing bioactive substances by supercritical extraction; (ii) to make a comparison of the internal and external costs of extract production; (iii) to determine the total life cycle costs (LCCs) of the extract and the break-even prices (BEPs) in two business models. In the first business model (BM I), the only commercial product was the extract, while pellets were used for their own energy purposes. In the second business model (BM II), both the extract and pellets were marketable products. Out of the two analyzed business models, lower external costs and, consequently, lower total costs were achieved in BM I (LCC €259 kg−1) than in BM II (LCC €267 kg−1). However, the profitability analysis showed that BM II was more profitable (BEP €313 kg−1) than BM I (BEP €359 kg−1). The inclusion of the external costs of poplar extract production by supercritical extraction has a significant impact on increasing the production profitability threshold. An analysis of a situation where electricity was replaced with the EU mix (the European Union mix) generated with a higher share of RES (renewable energy sources) showed that the externalities were lowered. A substantial decrease in the external costs at the supercritical extraction stage was reflected in the lower values of the total cost of extract production, LCC, and BEP, hence, attesting to less damage to the natural environment. Full article
(This article belongs to the Special Issue Plant Biomass for Chemicals and Biofuels Applications)
Show Figures

Figure 1

23 pages, 3153 KiB  
Article
Environmental and Socio-Economic Assessment of Biomass Pellets Biofuel in Hazara Division, Pakistan
by Maaz Hassan, Naveed Usman, Majid Hussain, Adnan Yousaf, Muhammad Aamad Khattak, Sidra Yousaf, Rankeshwarnath Sanjay Mishr, Sana Ahmad, Fariha Rehman and Ahmad Rashedi
Sustainability 2023, 15(15), 12089; https://doi.org/10.3390/su151512089 - 7 Aug 2023
Cited by 6 | Viewed by 3724
Abstract
A thorough life cycle assessment (LCA) was conducted to determine whether wood pellets were a viable substitute for non-renewable fuels like oil and gas, especially for heating. To evaluate the properties of wood pellets and their effects on the environment, the study was [...] Read more.
A thorough life cycle assessment (LCA) was conducted to determine whether wood pellets were a viable substitute for non-renewable fuels like oil and gas, especially for heating. To evaluate the properties of wood pellets and their effects on the environment, the study was conducted in the Hazara division of Khyber Pakhtunkhwa, Pakistan. A few factors were investigated, including the carbon and water footprints and the identification of potential growth opportunities in the production of wood pellets. One kilogram of wood pellets served as the analysis reference unit. Raw materials were obtained from sawmills and furniture stores to make the wood pellets. Sawdust, a bio binder, and lubricating oil were used in the production process along with the pelletizer machine. SimaPro 9.2 software was used in the environmental footprint assessment to evaluate several environmental effects, including eutrophication, ozone depletion, abiotic depletion, rusting, human toxicity, and aquatic ecotoxicity. The highest contribution was shown by the wood pellets produced from the softwood sawdust as 149.8558 in marine aquatic ecotoxicity. The study’s findings showed that using lubricating oil during the production of wood pellets significantly affected the overall environmental results. The characterization of wood pellets showed that the Higher heating Values (HHV) resulted from burning wood pellets made from sawdust of Melia azedarach as 24.79 MJ/kg. Softwood mixed species recorded the highest water footprint and damage assessment impact and the highest carbon footprint of 0.186 CO2 e. With a 3.84 × 10−7 DALY (disability-adjusted life years) measurement, softwood mixed species showed the highest contribution to human health damage among the damage categories. In terms of cost, producing one kilogram of wood pellets from softwood mixed species was priced at 22 PKR, the lowest among the assessed species. The highest cost of 26 PKR was associated with producing wood pellets from Parthenium hysterophorus and Diospyros lotus. Full article
Show Figures

Figure 1

13 pages, 1461 KiB  
Review
Pellet Production from Pruning and Alternative Forest Biomass: A Review of the Most Recent Research Findings
by Rodolfo Picchio, Nicolò Di Marzio, Luca Cozzolino, Rachele Venanzi, Walter Stefanoni, Leonardo Bianchini, Luigi Pari and Francesco Latterini
Materials 2023, 16(13), 4689; https://doi.org/10.3390/ma16134689 - 29 Jun 2023
Cited by 12 | Viewed by 2790
Abstract
Typically, coniferous sawdust from debarked stems is used to make pellets. Given the high lignin content, which ensures strong binding and high calorific values, this feedstock provides the best quality available. However, finding alternative feedstocks for pellet production is crucial if small-scale pellet [...] Read more.
Typically, coniferous sawdust from debarked stems is used to make pellets. Given the high lignin content, which ensures strong binding and high calorific values, this feedstock provides the best quality available. However, finding alternative feedstocks for pellet production is crucial if small-scale pellet production is to be developed and used to support the economy and energy independence of rural communities. These communities have to be able to create pellets devoid of additives and without biomass pre-processing so that the feedstock price remains low. The features of pellets made from other sources of forest biomass, such as different types of waste, broadleaf species, and pruning biomass, have attracted some attention in this context. This review sought to provide an overview of the most recent (2019–2023) knowledge on the subject and to bring into consideration potential feedstocks for the growth of small-scale pellet production. Findings from the literature show that poor bulk density and mechanical durability are the most frequent issues when making pellets from different feedstocks. All of the tested alternative biomass typologies have these shortcomings, which are also a result of the use of low-performance pelletizers in small-scale production, preventing the achievement of adequate mechanical qualities. Pellets made from pruning biomass, coniferous residues, and wood from short-rotation coppice plants all have significant flaws in terms of ash content and, in some cases, nitrogen, sulfur, and chlorine content as well. All things considered, research suggests that broadleaf wood from beech and oak trees, collected through routine forest management activities, makes the best feasible feedstock for small-scale pellet production. Despite having poor mechanical qualities, these feedstocks can provide pellets with a low ash level. High ash content is a significant disadvantage when considering pellet manufacture and use on a small scale since it can significantly raise maintenance costs, compromising the supply chain’s ability to operate cost-effectively. Pellets with low bulk density and low mechanical durability can be successfully used in a small-scale supply chain with the advantages of reducing travel distance from the production site and storage time. Full article
(This article belongs to the Special Issue Mechanical Processing of Granular and Fibrous Materials)
Show Figures

Figure 1

12 pages, 927 KiB  
Article
Process Economy of Alternative Fuel Production from Sewage Sludge and Waste Celluloses Biomass
by Kamila Vávrová, Tomas Králík, Lukáš Janota, Olga Šolcová, Milan Čárský, Karel Soukup and Miroslav Vítek
Energies 2023, 16(1), 518; https://doi.org/10.3390/en16010518 - 3 Jan 2023
Cited by 7 | Viewed by 2805
Abstract
The treatment and disposal of sewage sludge is one of the most important and critical problems of wastewater treatment plants. 8.7 million tonnes of dry matter of sewage sludge were produced annually in the European Union in the year 2020. Due to the [...] Read more.
The treatment and disposal of sewage sludge is one of the most important and critical problems of wastewater treatment plants. 8.7 million tonnes of dry matter of sewage sludge were produced annually in the European Union in the year 2020. Due to the fact that sewage sludge contains a large number of substances that are not beneficial for human health, the conditions for sludge management will be significantly tightened in the EU countries. One option for sludge liquidation is the production of biofuel in a form of granules or pellets from sewage sludge enriched by waste celluloses. The achieved results show that the resulting quality of such alternative biofuel is fully comparable to conventional fossil fuels. The economic analysis is based on the simulation of cash flows associated with the implementation of the project over the lifetime and the calculation of levelised cost (LCOE). Results shows (under the current economic situation) that solar dryer technology ensures the lowest LCOE at the level of 26 EUR/GJ in fuel. If the LCOE of the alternative biofuel includes the price of the saved emission allowance and the future costs of sewage sludge disposal, the resulting price is directly competitive with lignite. The results thus clearly show that there is an ecological and economically competitive substitute for solid fossil fuels, which may be an important step for the future use of local combustion sources such as district heating plants. Full article
(This article belongs to the Special Issue Sustainable Energy from Biomass and Waste)
Show Figures

Figure 1

13 pages, 1726 KiB  
Article
Techno-Economic Analysis of Fluidized Bed Combustion of a Mixed Fuel from Sewage and Paper Mill Sludge
by Milan Carsky, Olga Solcova, Karel Soukup, Tomas Kralik, Kamila Vavrova, Lukas Janota, Miroslav Vitek, Stanislav Honus, Marek Jadlovec and Lenka Wimmerova
Energies 2022, 15(23), 8964; https://doi.org/10.3390/en15238964 - 27 Nov 2022
Cited by 7 | Viewed by 2117
Abstract
The treatment and disposal of sewage sludge is one of the most important and critical issues of wastewater treatment plants. One option for sludge liquidation is the production of fuel in the form of pellets from mixed sewage and paper mill sludge. This [...] Read more.
The treatment and disposal of sewage sludge is one of the most important and critical issues of wastewater treatment plants. One option for sludge liquidation is the production of fuel in the form of pellets from mixed sewage and paper mill sludge. This study presents the results of the combustion of pelletized fuels, namely sewage and paper mill sludge, and their 2:1 and 4:1 blends in a fluidized bed combustor. The flue gas was analysed after reaching a steady state at bed temperatures of 700–800 °C. Commonly used flue gas cleaning is still necessary, especially for SO2; therefore, it is worth mentioning that the addition of paper mill sludge reduced the mercury concentration in the flue gas to limits acceptable in most EU countries. The analysis of ash after combustion showed that magnesium, potassium, calcium, chromium, copper, zinc, arsenic, and lead remained mostly in the ash after combustion, while all cadmium from all fuels used was transferred into the flue gas together with a substantial part of chlorine and mercury. The pellets containing both sewage and paper mill sludge can be used as an environmentally friendly alternative fuel for fluidised bed combustion. The levelized cost of this alternative fuel is at the same current price level as lignite. Full article
Show Figures

Figure 1

20 pages, 3027 KiB  
Communication
Techno-Economic Analysis of an Integrated Bio-Refinery for the Production of Biofuels and Value-Added Chemicals from Oil Palm Empty Fruit Bunches
by Kean Long Lim, Wai Yin Wong, Nowilin James Rubinsin, Soh Kheang Loh and Mook Tzeng Lim
Processes 2022, 10(10), 1965; https://doi.org/10.3390/pr10101965 - 29 Sep 2022
Cited by 10 | Viewed by 4142
Abstract
Lignocellulose-rich empty fruit bunches (EFBs) have high potential as feedstock for second-generation biofuel and biochemical production without compromising food security. Nevertheless, the major challenge of valorizing lignocellulose-rich EFB is its high pretreatment cost. In this study, the preliminary techno-economic feasibility of expanding an [...] Read more.
Lignocellulose-rich empty fruit bunches (EFBs) have high potential as feedstock for second-generation biofuel and biochemical production without compromising food security. Nevertheless, the major challenge of valorizing lignocellulose-rich EFB is its high pretreatment cost. In this study, the preliminary techno-economic feasibility of expanding an existing pellet production plant into an integrated bio-refinery plant to produce xylitol and bioethanol was investigated as a strategy to diversify the high production cost and leverage the high selling price of biofuel and biochemicals. The EFB feedstock was split into a pellet production stream and a xylitol and bioethanol production stream. Different economic performance metrics were used to compare the profitability at different splitting ratios of xylitol and bioethanol to pellet production. The analysis showed that an EFB splitting ratio below 40% for pellet production was economically feasible. A sensitivity analysis showed that xylitol price had the most significant impact on the economic performance metrics. Another case study on the coproduction of pellet and xylitol versus that of pellet and bioethanol concluded that cellulosic bioethanol production is yet to be market-ready, requiring a minimum selling price above the current market price to be feasible at 16% of the minimum acceptable return rate. Full article
(This article belongs to the Special Issue Biomass Conversion and Organic Waste Utilization)
Show Figures

Figure 1

18 pages, 5941 KiB  
Article
Lifecycle Assessment and Techno-Economic Analysis of Biochar Pellet Production from Forest Residues and Field Application
by Richard Bergman, Kamalakanta Sahoo, Karl Englund and Seyed Hashem Mousavi-Avval
Energies 2022, 15(4), 1559; https://doi.org/10.3390/en15041559 - 20 Feb 2022
Cited by 34 | Viewed by 5400
Abstract
Biochar produced from low-value forest biomass can provide substantial benefits to ecosystems and mitigate climate change-induced risks such as forest fires. Forest residues from restoration activities and timber harvest and biochar itself are bulky and thus incur high logistic costs, so are considered [...] Read more.
Biochar produced from low-value forest biomass can provide substantial benefits to ecosystems and mitigate climate change-induced risks such as forest fires. Forest residues from restoration activities and timber harvest and biochar itself are bulky and thus incur high logistic costs, so are considered major bottlenecks for the commercialization of the biochar industry. The objectives of this study were to assess the environmental footprints and techno-economic feasibility of converting forest residues in Pacific Northwest United States into biochar pellets using portable systems followed by delivery of the final product to end-users for land application (dispersion). Two portable systems (Biochar Solutions Incorporated (BSI) and Air Curtain Burner (ACB)) were considered for biochar production. A cradle-to-grave lifecycle assessment (LCA) and a discounted cash flow analysis method were used to quantify the environmental impacts and minimum selling price (MSP) of biochar. The global warming (GW) impact of biochar production through BSI and ACB was estimated to be 306–444, and 750–1016 kgCO₂eq/tonne biochar applied to the field, respectively. The MSP of biochar produced through BSI and ACB was 1674–1909 and 528–1051 USD/tonne biochar applied to the field, respectively. Pelletizing of biochar reduced GW impacts during outbound logistics (~8–20%) but increased emissions during pelletizing (~1–9%). Results show the BSI system was a more viable option in terms of GW impact, whereas the ACB system can produce biochar with lower MSP. The results of the study conclude that the production of biochar pellets through the two portable systems and applied to fields can be both an environmentally beneficial and economically viable option. Full article
(This article belongs to the Special Issue Analysis of Bio-Based Products for the Circular Economy)
Show Figures

Figure 1

21 pages, 4649 KiB  
Article
Design of Clean Steel Production with Hydrogen: Impact of Electricity System Composition
by Alla Toktarova, Lisa Göransson and Filip Johnsson
Energies 2021, 14(24), 8349; https://doi.org/10.3390/en14248349 - 11 Dec 2021
Cited by 29 | Viewed by 5187
Abstract
In Europe, electrification is considered a key option to obtain a cleaner production of steel at the same time as the electricity system production portfolio is expected to consist of an increasing share of varying renewable electricity (VRE) generation, mainly in the form [...] Read more.
In Europe, electrification is considered a key option to obtain a cleaner production of steel at the same time as the electricity system production portfolio is expected to consist of an increasing share of varying renewable electricity (VRE) generation, mainly in the form of solar PV and wind power. We investigate cost-efficient designs of hydrogen-based steelmaking in electricity systems dominated by VRE. We develop and apply a linear cost-minimization model with an hourly time resolution, which determines cost-optimal operation and sizing of the units in hydrogen-based steelmaking including an electrolyser, direct reduction shaft, electric arc furnace, as well as storage for hydrogen and hot-briquetted iron pellets. We show that the electricity price following steelmaking leads to savings in running costs but to increased capital cost due to investments in the overcapacity of steel production units and storage units for hydrogen and hot-briquetted iron pellets. For two VRE-dominated regions, we show that the electricity price following steel production reduces the total steel production cost by 23% and 17%, respectively, as compared to continuous steel production at a constant level. We also show that the cost-optimal design of the steelmaking process is dependent upon the electricity system mix. Full article
Show Figures

Figure 1

14 pages, 964 KiB  
Article
Holistic Pre-Feasibility Study of Comminution Routes for a Brazilian Itabirite Ore
by Juliana Segura-Salazar, Natasha de S. L. Santos and Luís Marcelo Tavares
Minerals 2021, 11(8), 894; https://doi.org/10.3390/min11080894 - 18 Aug 2021
Cited by 10 | Viewed by 3941
Abstract
Comminution is an essential step in processing itabirite ores, given the need to liberate silica and other contaminants from the iron minerals for downstream concentration and then pellet feed production. In general, these ores in Brazil are not particularly hard to crush and [...] Read more.
Comminution is an essential step in processing itabirite ores, given the need to liberate silica and other contaminants from the iron minerals for downstream concentration and then pellet feed production. In general, these ores in Brazil are not particularly hard to crush and grind, but both capital (CAPEx) and operating (OPEx) expenditures in this stage of preparation can be critical for the project, in particular due to uncertainties in iron ore prices. Several circuits have been designed and are in operation for this type of ore in Brazil; however, it is not yet clear which technologies are more cost-effective and in which configuration they should be applied. This work critically analyzes four comminution circuits for an undisclosed case study. For these circuits, CAPEx, OPEx, and some environmental sustainability indices, as well as qualitative technical criteria, were used in the comparisons. This work concludes that two of these process routes, especially those based on more energy-efficient technologies (and one of these still rarely explored even at bench-scale), have demonstrated to be very attractive from multiple standpoints. Full article
(This article belongs to the Special Issue Process Optimization in Mineral Processing)
Show Figures

Figure 1

17 pages, 20645 KiB  
Article
Comparative Study of the Properties of Wood Flour and Wood Pellets Manufactured from Secondary Processing Mill Residues
by Geeta Pokhrel, Yousoo Han and Douglas J. Gardner
Polymers 2021, 13(15), 2487; https://doi.org/10.3390/polym13152487 - 28 Jul 2021
Cited by 13 | Viewed by 4838
Abstract
The generation of secondary processing mill residues from wood processing facilities is extensive in the United States. Wood flour can be manufactured utilizing these residues and an important application of wood flour is as a filler in the wood–plastic composites (WPCs). Scientific research [...] Read more.
The generation of secondary processing mill residues from wood processing facilities is extensive in the United States. Wood flour can be manufactured utilizing these residues and an important application of wood flour is as a filler in the wood–plastic composites (WPCs). Scientific research on wood flour production from mill residues is limited. One of the greatest costs involved in the supply chain of WPCs manufacturing is the transportation cost. Wood flour, constrained by low bulk densities, is commonly transported by truck trailers without attaining allowable weight limits. Because of this, shipping costs often exceed the material costs, consequently increasing raw material costs for WPC manufacturers and the price of finished products. A bulk density study of wood flour (190–220 kg/m3) and wood pellets (700–750 kg/m3) shows that a tractor-trailer can carry more than three times the weight of pellets compared to flour. Thus, this study focuses on exploring the utilization of mill residues from four wood species in Maine to produce raw materials for manufacturing WPCs. Two types of raw materials for the manufacture of WPCs, i.e., wood flour and wood pellets, were produced and a study of their properties was performed. At the species level, red maple 40-mesh wood flour had the highest bulk density and lowest moisture content. Spruce-fir wood flour particles were the finest (dgw of 0.18 mm). For all species, the 18–40 wood flour mesh size possessed the highest aspect ratio. Similarly, on average, wood pellets manufactured from 40-mesh particles had a lower moisture content, higher bulk density, and better durability than the pellets from unsieved wood flour. Red maple pellets had the lowest moisture content (0.12%) and the highest bulk density (738 kg/m3). The results concluded that the processing of residues into wood flour and then into pellets reduced the moisture content by 76.8% and increased the bulk density by 747%. These material property parameters are an important attempt to provide information that can facilitate the more cost-efficient transport of wood residue feedstocks over longer distances. Full article
Show Figures

Graphical abstract

16 pages, 2894 KiB  
Article
Cost and Environmental Benefits of Using Pelleted Corn Stover for Bioethanol Production
by Ramsharan Pandey, Nurun Nahar, Scott W. Pryor and Ghasideh Pourhashem
Energies 2021, 14(9), 2528; https://doi.org/10.3390/en14092528 - 28 Apr 2021
Cited by 11 | Viewed by 3686
Abstract
While the production costs and logistical benefits of biomass pelleting have been widely discussed in the literature, the downstream economic and environmental benefits of processing pelleted biomass have been largely neglected. To investigate those benefits, we performed a comparative techno-economic analysis and life [...] Read more.
While the production costs and logistical benefits of biomass pelleting have been widely discussed in the literature, the downstream economic and environmental benefits of processing pelleted biomass have been largely neglected. To investigate those benefits, we performed a comparative techno-economic analysis and life cycle assessment of producing ethanol using loose and pelleted forms of biomass. Analyses of a 2000 metric tons (dry)/d biorefinery showed that using pelleted biomass is more economical than using loose or baled biomass. The lowest minimum ethanol selling price (MESP) for pelleted biomass was USD 0.58/gal less than the lowest MESP for loose biomass. Among all processing conditions analyzed, MESP for ethanol produced with pelleted biomass was always lower than when produced with loose biomass. Shorter pretreatment and hydrolysis times, higher pretreatment solids loadings, lower ammonia requirements, and reduced enzyme loadings were the primary factors contributing to lower MESP with pelleted biomass. Similarly, pelleted biomass also demonstrated a 50% lower life cycle greenhouse gas emission compared to loose biomass. Emissions from higher pelleting energy were offset by downstream advantage in lower chemical needs. Full article
Show Figures

Figure 1

19 pages, 4167 KiB  
Article
Evaluating the Economic Viability of Agricultural Pellets to Supplement the Current Global Wood Pellets Supply for Bioenergy Production
by Mahmood Ebadian, Shahab Sokhansanj, David Lee, Alyssa Klein and Lawrence Townley-Smith
Energies 2021, 14(8), 2263; https://doi.org/10.3390/en14082263 - 17 Apr 2021
Cited by 15 | Viewed by 3883
Abstract
In this study, an inter-continental agricultural pellet supply chain is modeled, and the production cost and price of agricultural pellets are estimated and compared against the recent cost and price of wood pellets in the global marketplace. The inter-continental supply chain is verified [...] Read more.
In this study, an inter-continental agricultural pellet supply chain is modeled, and the production cost and price of agricultural pellets are estimated and compared against the recent cost and price of wood pellets in the global marketplace. The inter-continental supply chain is verified and validated using an integration of an interactive mapping application and a simulation platform. The integrated model is applied to a case study in which agricultural pellets are produced in six locations in Canada and shipped and discharged at the three major ports in Western Europe. The cost of agricultural pellets in the six locations is estimated to be in the range of EUR 92–95/tonne (CAD 138–142/tonne), which is comparable with the recent cost of wood pellets produced in small-scale pellet plants (EUR 99–109/tonne). The average agricultural pellet price shipped from the six plants to the three ports in Western Europe is estimated to be in a range of EUR 183–204 (CAD 274–305/tonne), 29–42% more expensive that the average recent price of wood pellets (EUR 143/tonne) at the same ports. There are several potential areas in the agricultural pellet supply chains that can reduce the pellet production and distribution costs in the mid and long terms, making them affordable supplement to the existing wood pellet markets. Potential economic activities generated by the production of pellets in farm communities can be significant. The generated annual revenue in the biomass logistics system in all six locations is estimated to be about CAD 21.80 million. In addition, the logistics equipment fleet needs 176 local operators with a potential annual income of CAD 2.18 million. Full article
(This article belongs to the Special Issue Modeling and Analysis of Biomass-to-Energy Supply Chains)
Show Figures

Figure 1

Back to TopTop