Process Economy of Alternative Fuel Production from Sewage Sludge and Waste Celluloses Biomass
Abstract
:1. Introduction
2. Materials and Methods
- Sludge production and primary sludge dewatering (before transporting to the processing site or input into the next process) are logically implemented directly at the sludge production sites. Significant thickening of the sludge (dewatering) allows us to significantly reduce the requirements (and costs) for transportation of the sludge to the next processing site. From the point of view of optimising investment costs, it can be assumed that the sludge drying facilities will be supplied from several treatment plants. This may lead to regional centres promoting local energy independence.
- Transport of dewatered sludge is the first major cost item. The reference model assumes a situation where sludge processing is done in close vicinity of a wastewater treatment plant, and the average transport distance does not exceed 10 km.
- Sludge drying can be implemented using different technologies. Three specific options are calculated in the economic evaluation, namely solar dryer, low-temperature belt dyer, and rotary dryer. These technologies differ mainly in the speed of drying and the energy input requirements. Their technical and economic parameters are compared in detail in the following text.
- The resulting fuel form is derived from the requirements of the combustion source. In the case of a solar dryer, the resulting product can be used as a fuel granulate that can be burned directly in larger (fluid bed) boilers. In the case of the low-temperature belt dryer and rotary dryer, the pelletization process provides the resulting fuel form. The aim is to obtain a resulting fuel that can be used as a direct substitute for lignite.
Economic Assessment of Sludge Processing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moško, J.; Pohořelý, M.; Cajthaml, T.; Jeremiáš, M.; Robles-Aguilar, A.A.; Skoblia, S.; Beňo, Z.; Innemanová, P.; Linhartová, L.; Michalíková, K.; et al. Effect of pyrolysis temperature on removal of organic pollutants present in anaerobically stabilized sewage sludge. Chemosphere 2021, 265, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Sewage Sludge Production and Disposal from Urban Wastewater (In Dry Substance (d.s)). Products Datasets. Available online: https://ec.europa.eu/eurostat/web/products-datasets/-/ten00030 (accessed on 5 December 2021).
- Pellegrini, M.; Saccani, C.; Bianchini, A.; Bonfiglioli, L. Sewage sludge management in Europe: A critical analysis of data quality. Int. J. Environ. Waste Manag. 2016, 18, 226. [Google Scholar] [CrossRef]
- EurEau. Waste Water Treatment-Sludge Management. May 2021. Available online: https://www.eureau.org/resources/briefing-notes/5629-briefing-note-on-sludge-management/file (accessed on 15 December 2022).
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renew. Sustain. Energy Rev. 2017, 80, 888–913. [Google Scholar] [CrossRef]
- Tsybina, A.; Wuensch, C. Analysis of sewage sludge thermal treatment methods in the context of circular economy. Detritus 2018, 2, 3–15. [Google Scholar] [CrossRef]
- Kim, Y.; Parker, W. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil. Bioresour. Technol. 2008, 99, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- García, G.; Arauzo, J.; Gonzalo, A.; Sánchez, J.L.; Ábrego, J. Influence of feedstock composition in fluidised bed co-gasification of mixtures of lignite, bituminous coal and sewage sludge. Chem. Eng. J. 2013, 222, 345–352. [Google Scholar] [CrossRef]
- Jang, H.N.; Kim, J.H.; Back, S.K.; Sung, J.H.; Yoo, H.M.; Choi, H.S.; Seo, Y.C. Combustion characteristics of waste sludge at air and oxy-fuel combustion conditions in a circulating fluidized bed reactor. Fuel 2016, 170, 92–99. [Google Scholar] [CrossRef]
- Werle, S.; Wilk, R.K. A review of methods for the thermal utilization of sewage sludge: The Polish perspective. Renew. Energy 2010, 35, 1914–1919. [Google Scholar] [CrossRef]
- Otero, M.; Díez, C.; Calvo, L.F.; García, A.I.; Morán, A. Analysis of the co-combustion of sewage sludge and coal by TG-MS. Biomass Bioenergy 2002, 22, 319–329. [Google Scholar] [CrossRef]
- Botha, M.F.; Biyela, S.L.; Fry, M.R.; Paladh, R. Sewage-sludge incineration in South Africa using a fluidized-bed reactor. In Proceedings of the 4th Conference on Industrial Fluidisation, Johannesburg, South Africa, 16–17 November 2011; Volume 315, pp. 315–323. [Google Scholar]
- Naidoo, K. The performance of KwaMashu waste water sludge incineration and dryer plant. In Proceedings of the Water Institute of Southern Africa (WISA) Biennial Conference, Cape Town, South Africa, 2–6 May 2004; pp. 1316–1326. Available online: https://wisa.org.za/wp-content/uploads/2018/12/WISA2004-P112.pdf (accessed on 6 December 2021).
- Calvo, A.I.; Tarelho, L.A.C.; Teixeira, E.R.; Alves, C.; Nunes, T.; Duarte, M.; Coz, E.; Custodio, D.; Castro, A.; Artiñano, B.; et al. Particulate emissions from the co-combustion of forest biomass and sewage sludge in a bubbling fluidised bed reactor. Fuel Process. Technol. 2013, 114, 58–68. [Google Scholar] [CrossRef]
- Fleischman, N.D.; Botha, M.; Germanis, J. Sewage sludge and biomass incineration in South Africa using a fluidized-bed reactor. South African J. Chem. Eng. 2014, 19, 91–103. [Google Scholar]
- Prasad, L.S.V.; Sheshubabu, D. Design Aspects of Bubbling Fluidised Bed Boiler for Municipal Solid Waste. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 1–14. [Google Scholar] [CrossRef]
- Yilmaz, E.; Wzorek, M.; Akçay, S. Co-pelletization of sewage sludge and agricultural wastes. J. Environ. Manag. 2018, 216, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Smol, M.; Kulczycka, J.; Henclik, A.; Gorazda, K.; Wzorek, Z. The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. J. Clean. Prod. 2015, 95, 45–54. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Thomas, M.; Surapaneni, A.; Moon, E.M.; Milne, N.A. Beneficial reuse of water treatment sludge in the context of circular economy. Environ. Technol. Innov. 2022, 28, 102651. [Google Scholar] [CrossRef]
- Gherghel, A.; Teodosiu, C.; De Gisi, S. A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Clean. Prod. 2019, 228, 244–263. [Google Scholar] [CrossRef]
- Sakiewicz, P.; Piotrowski, K.; Rajca, M.; Maj, I.; Kalisz, S.; Ober, J.; Karwot, J.; Pagilla, K.R. Innovative Technological Approach for the Cyclic Nutrients Adsorption by Post-Digestion Sewage Sludge-Based Ash Co-Formed with Some Nanostructural Additives under a Circular Economy Framework. Int. J. Environ. Res. Public Health 2022, 19, 11119. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Environmental Regulations and Technology: Control of Pathogens and Vector Attraction in Sewage Sludge. 2003. Available online: https://www.epa.gov/sites/default/files/2015-04/documents/control_of_pathogens_and_vector_attraction_in_sewage_sludge_july_2003.pdf (accessed on 5 December 2021).
- Kijo-Kleczkowska, A.; Środa, K.; Kosowska-Golachowska, M.; Musiał, T.; Wolski, K. Experimental research of sewage sludge with coal and biomass co-combustion, in pellet form. Waste Manag. 2016, 53, 165–181. [Google Scholar] [CrossRef]
- Parshetti, G.K.; Liu, Z.; Jain, A.; Srinivasan, M.P.; Balasubramanian, R. Hydrothermal carbonization of sewage sludge for energy production with. Fuel 2013, 111, 201–210. [Google Scholar] [CrossRef]
- Caputo, A.C.; Pelagagge, P.M. Waste-to-energy plant for paper industry sludges disposal: Technical-economic study. J. Hazard. Mater. 2001, 81, 265–283. [Google Scholar] [CrossRef] [PubMed]
- Levelised Cost of Electricity Calculator—Data Tools—IEA. Available online: https://www.iea.org/data-and-statistics/data-tools/levelised-cost-of-electricity-calculator (accessed on 25 November 2022).
- Králík, T.; Knápek, J.; Dvořáček, L.; Vávrová, K. Impact of pelleting cost on competitiveness of intentionally grown biomass for local space heating: Case example of the Czech Republic. Energy Rep. 2020, 6, 732–737. [Google Scholar] [CrossRef]
- Nolan, A.; Mc Donnell, K.; Devlin, G.J.; Carroll, J.P.; Finnan, J. Economic Analysis of Manufacturing Costs of Pellet Production in the Republic of Ireland Using Non-Woody Biomass. Open Renew. Energy J. 2010, 3, 1–11. [Google Scholar] [CrossRef]
- Bejbl, J.; Bemš, J.; Králík, T.; Starý, O.; Vastl, J. New approach to brown coal pricing using internal rate of return methodology. Appl. Energy 2014, 133, 289–297. [Google Scholar] [CrossRef]
- ICE Europe—Rotterdam Coal Futures—ARA—baha.com. Available online: https://www.baha.com/quickbar/ice-europe-futures/rotterdam-ara?ts=1669450652887 (accessed on 26 November 2022).
- EU-ETS Carbon Pricing 2022|Statista. Available online: https://www.statista.com/statistics/1322214/carbon-prices-european-union-emission-trading-scheme/ (accessed on 26 November 2022).
Process Step | Site | Activity |
---|---|---|
Raw sludge production | Wastewater treatment plant and industrial water treatment plant | Production of sewage sludge and waste cellulose sludge. |
Raw sludge dewatering | Wastewater treatment plant, Place where waste biomass is generated | Raw sludge dewatering from 96% to 75–70% moisture content. 70% moisture chosen for the analysis. |
Transport | Site of further sludge processing | Road transport of 5410 tonnes of dewatered sewage sludge annually, estimated cost of transportation is 0.5 EUR/ton.km. |
Drying to final moisture | Solar dryer | Drying to 20% moisture content. |
Production of pellets | Pelletizing plant | Sewage sludge with addition of paper waste biomass, mass ratio 2:1, final moisture content below 15%. |
Solar | Low Heat | Rotary | ||
---|---|---|---|---|
Total volume of imported sludge (sewage + paper) | 5410 | 5410 | 5410 | t/year |
Evaporated water | 3842 | 3842 | 3842 | t/year |
Specific electricity consumption per kg of evaporated water | 0.035 | 0.1 | 0.14 | kWh/kg H2O |
Specific heat consumption per kg of evaporated water | 0 | 0.9 | 1.5 | kWh/kg H2O |
Operating hours | 8760 | 7500 | 7500 | h/year |
Chemicals (sodium hydroxide, sulfuric acid–deodorization) | 0 | 5 | 5 | EUR/t of dewatered sludge |
Number of equivalent workers | 1.1 | 2.2 | 1.1 | |
Repair and maintenance | 70,640 | 79,480 | 75,060 | EUR/year |
Investment cost | 3532 | 3974 | 3753 | ths. EUR/year |
Discount rate | 7% | |||
Long term inflation | 2% | |||
Electricity price | 0.4 | EUR/kWh | ||
Natural gas price | 0.15 | EUR/kWh | ||
Personnel costs for 1 employee | 33 | ths. EUR/year |
Fuel Type | Density of Pellets [kg/m3] | Calorific Value [MJ/kg] | Moisture [%] |
---|---|---|---|
Pellets–ratio of sewage sludge and waste biomass 2:1 | 1232 | 11.4 | 14 |
Granules–ratio of sewage sludge and waste biomass 2:1 | 850 | 10.8 | 20 |
Fuel Type | Hardness [kg] | WI [%] | PDI [%] |
---|---|---|---|
Sewage sludge | 26.6 ± 1.7 | 3.03 ± 1.92 | 96.43 ± 0.38 |
SPB 2:1 * | 23.0 ± 1.9 | 6.14 ± 2.55 | 97.42 ± 0.64 |
Paper mill sludge | 21.9 ± 2.2 | 10.41 ± 1.23 | 99.15 ± 0.37 |
Solar | Low Heat | Rotary | |
---|---|---|---|
LCOE (EUR/GJ) | 26 | 67 | 87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vávrová, K.; Králík, T.; Janota, L.; Šolcová, O.; Čárský, M.; Soukup, K.; Vítek, M. Process Economy of Alternative Fuel Production from Sewage Sludge and Waste Celluloses Biomass. Energies 2023, 16, 518. https://doi.org/10.3390/en16010518
Vávrová K, Králík T, Janota L, Šolcová O, Čárský M, Soukup K, Vítek M. Process Economy of Alternative Fuel Production from Sewage Sludge and Waste Celluloses Biomass. Energies. 2023; 16(1):518. https://doi.org/10.3390/en16010518
Chicago/Turabian StyleVávrová, Kamila, Tomas Králík, Lukáš Janota, Olga Šolcová, Milan Čárský, Karel Soukup, and Miroslav Vítek. 2023. "Process Economy of Alternative Fuel Production from Sewage Sludge and Waste Celluloses Biomass" Energies 16, no. 1: 518. https://doi.org/10.3390/en16010518
APA StyleVávrová, K., Králík, T., Janota, L., Šolcová, O., Čárský, M., Soukup, K., & Vítek, M. (2023). Process Economy of Alternative Fuel Production from Sewage Sludge and Waste Celluloses Biomass. Energies, 16(1), 518. https://doi.org/10.3390/en16010518