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Abstract: Comminution is an essential step in processing itabirite ores, given the need to liberate
silica and other contaminants from the iron minerals for downstream concentration and then pellet
feed production. In general, these ores in Brazil are not particularly hard to crush and grind, but both
capital (CAPEx) and operating (OPEx) expenditures in this stage of preparation can be critical for
the project, in particular due to uncertainties in iron ore prices. Several circuits have been designed
and are in operation for this type of ore in Brazil; however, it is not yet clear which technologies
are more cost-effective and in which configuration they should be applied. This work critically
analyzes four comminution circuits for an undisclosed case study. For these circuits, CAPEx, OPEx,
and some environmental sustainability indices, as well as qualitative technical criteria, were used in
the comparisons. This work concludes that two of these process routes, especially those based on
more energy-efficient technologies (and one of these still rarely explored even at bench-scale), have
demonstrated to be very attractive from multiple standpoints.

Keywords: iron ore; comminution; mineral processing; techno-economic analysis; life cycle assess-
ment (LCA); eco-efficiency; sustainable process design; process simulation; itabirite

1. Introduction

Mining is an important industry sector that demands huge amounts of energy in its
operations, particularly in comminution stages, where electrical energy use may represent
about 1–2% of global energy consumption [1–3]. This issue becomes particularly critical
for the mineral sector in terms of operating costs and potential environmental impacts
associated to greenhouse gas (GHG) emissions. Mining operations also contribute directly
and indirectly to more than 45% of global GDP [4]. However, in a scenario of global
economic slowdown, the economic feasibility of new mining projects may become a
challenge. Despite recent global economic crises, mining projects prevail given the need
for resource-rich countries to export mineral goods, which are essential for manufacturing
consumer goods globally.

Brazil is the second-largest producer of iron ore globally [5,6]; as such, iron ore mining
projects play a prominent role in the national economy. Different iron ore contents are
found in Brazilian deposits, being divided into two categories: high-grade iron ores (about
60% Fe content) or hematite ores, which prevail in the States of Pará and Minas Gerais, and
the itabirite or “low-grade” iron ores (50% Fe content or less), which are predominant in
the State of Minas Gerais.

A trend that is particularly well defined for Brazilian iron ores, except for the Carajás
deposits in the north of the country, is the drop in iron grades of Run-of-Mine (RoM) ores.
In the case of itabirite ores, it implies an increased complexity in ore processing due to the
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need for additional beneficiation stages in order to produce a saleable concentrate (pellet
feed) [5]. Furthermore, a larger amount of mine tailings is generated when compared
to hematite ores, demanding an even more rigorous control and monitoring of tailings
disposal. Unfortunately, tailings disposal in dams involves risks, and these have become
evident in Brazil in the last decade from the tailing dam failures at two iron ore mines near
the municipalities of Mariana and Brumadinho [7,8], both located in Minas Gerais.

Therefore, multiple factors have imposed challenges to present and future operations
that rely on the lower grade iron ores (itabirite) from the Brazilian southeast. These include
the socio-environmental impacts of mining activities and the risk of recurrence of such
disasters in the region [7], the legitimate societal concern and disapproval (i.e., lack of
social license to operate—SLO) in response to the recent dam rupture events, and flaws
in Brazilian legislation (see, for instance [7,8]), alongside the high volatility of the iron ore
price in the market from late 2004 onwards [6].

In this context, the present work aims to support the development of more sustainable
iron ore mining projects in Brazil through holistic process flowsheet design. This study
performs a pre-feasibility assessment of four processing routes for itabirite ores employing
different technologies, with emphasis on the stages of comminution and classification. It
is based on bench- and pilot-scale testing, process simulation, eco-efficiency indicators
(CAPEx, OPEx, NPV, energy use, GHG emissions), and qualitative technical criteria. This
work demonstrates that it is not only desirable but also feasible to integrate environmental
sustainability aspects with the economic indicators commonly used in circuit design as early
as in a pre-feasibility stage. The application of such an approach is still at an early stage
of development in the industry in general and seems promising for a resource-intensive
sector, such as the minerals industry [9,10].

2. Materials and Methods
2.1. Case Study Scoping

The present work is based on a typical itabirite ore from the Iron Quadrangle region in
Minas Gerais, Brazil (Figure 1), meant to produce a concentrate for pellet feed production,
with a head grade of, approximately, 43% Fe. The sample used in testing corresponded
to the 80th percentile of the deposit regarding crushability and grindability. The circuit
that was originally designed for processing around 20 million tons per year and that is
currently in operation was based on the so-called “conventional route” for this type of ore.
A conventional circuit consists of four stages of crushing, followed by two stages of ball
milling with classification, and then desliming and reverse flotation. This original design
was later optimized on the basis of computer simulation [11] and used as the base case in
the present work (Route #1).

This work is restricted to the analysis of the stages of size reduction (mainly crushing
and grinding) and classification, aiming to reach a product that is appropriate for feeding a
downstream flotation stage, which is the commonly used concentration method for this ore
type [5,12]. As such, it is considered that the particle size for liberation is 150 µm [13,14],
and it is recommended that at least 95% of the product is below this size. A critical issue
related to the processing of itabirites is controlling the production of ultrafine material
(<10 µm), given its detrimental effect on the subsequent desliming and flotation stages.
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Figure 1. Map of the Iron Quadrangle region (Minas Gerais, Brazil). Adapted from [15]. 
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Figure 1. Map of the Iron Quadrangle region (Minas Gerais, Brazil). Adapted from [15].

2.2. Ore Properties and Design Criteria

The main characteristics of the ore in question and some design criteria are sum-
marized in Table 1. Accordingly, the ore can be classified as low abrasiveness and low
resistance to breakage.

Table 1. Summary of design criteria and selected ore properties. Adapted from: [11].

Parameter Value

RoM feedrate [t/h] 3235
RoM moisture content [%] <3
RoM specific gravity 3.81
RoM bulk density [kg/cm3] 2.25
Bond abrasion index—Ai [g] 0.081
Crusher (impact) work index [kWh/t] 5.4
Bond ball mill work index [kWh/t] 8.0
JK DWT parameter—A × b 63.1 × 2.26 = 142.6
JK parameter—ta 2.56
P95 in the product—feed to flotation [mm] 0.150

The ore in question is exploited in opencast mining. The product from primary
crushing, common to all routes, is characterized by a size distribution with a top size of
200 mm and a large proportion of fine material (55% below 1 mm and 38% below 0.150
mm). The operational yield adopted for primary crushing was 60%, resulting in a nominal
capacity of 4583 t/h. This stage of size reduction is common to all routes studied. The
operational yield for all subsequent stages of crushing and grinding was 85%, which is
equivalent to a nominal capacity of 3235 t/h. These criteria were used to design the base
case circuit (Route #1), as well as the alternative circuits (Figure 2) [11,16]:

• Route #1: Conventional four-stage (primary + three stages) crushing, followed by two
stages of ball milling;

• Route #2: One-stage cone crushing, followed by high-pressure grinding rolls (HPGR)
and ball milling (BM);
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• Route #3: Semi-autogenous grinding (SAG), followed by ball milling (SAB);
• Route #4: One-stage cone crushing, followed by grinding in a vertical roller mill (VRM).
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Route #2 considers particular care in preparation of feed to the HPGR, which receives
the –63.5 mm material from secondary crushing, although material in the size ranges
12.7–6.35 mm and −6.35 mm is split between the HPGR and ball milling to prevent feeding
the HPGR with an exceedingly fine material. Route #3 follows the traditional SAB circuit,
i.e., SAG and ball milling. Despite other routes, including single-stage SAG milling or
autogenous milling demonstrated potential benefits [12], the SAB route was selected owing
to its robustness to variations in both RoM size distribution and grindability. Route #4
assumes operation of the VRM with a built-in air classifier.

2.3. Sizing, Modeling, and Simulation

Screens were sized based on Karra’s methodology [17], and the results were used
to simulate the screens in the JKSimMet® software (version 5.2, JKTech, Brisbane, QLD,
Australia) using the efficiency curve model [18]. This was an iterative procedure, since
Karra’s method is based on feed conditions, which vary due to recycle streams. Particle
size distributions and mass flow rates were initially calculated with the Karra method in
open circuit configuration; subsequently, efficiency curve model parameters were fitted to
the calculated data and used to simulate the closed circuit in JKSimMet® [18]. Simulated
results were then used as the input to resize the screens. The procedure was repeated until
convergence between the calculated and simulated data (flow rates and size distributions)
from screens was achieved. Cone crushers were sized based on technical specifications of
an equipment manufacturer [11,16] and simulated in JKSimMet®, employing the Whiten
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crusher model [18]. The nominal throughput of crushers was corrected considering factors
that account for the properties of the ore studied (bulk density, work index, feed size, feed
moisture). The calculated number of equipment needed was oversized by 20%. Machine
operation parameters were adapted from a similar project for secondary crushers, while
default parameters from the simulator for tertiary and quaternary crushers were employed
due to the lack of experimental data. Ore parameters for crushers were estimated from JK
Drop Weight Tests (DWT). HPGRs were sized and scaled-up based on the HPGR model
available in JKSimMet® [19], whose calibration relied on information gathered from pilot-
scale tests carried out by Alves [20]. The HPGR was scaled up using the industrial HPGR
dimensions designed for another Brazilian itabirite ore as a reference [21]. Given the
limitations in predicting the throughput of the HPGR in JKSimMet®, the scale up was
based on the specific throughput. This parameter mainly depends on the ore characteristics
and the surface of the rolls and is usually assumed to be constant [22,23]. Therefore, the
equipment throughput depends on the dimensions and speed of the rolls, the latter being
the only condition to be modified to reach the necessary throughput without changing the
specifications of the selected industrial HPGR. On the other hand, the specific energy of
the HPGR remained constant in the scale up, as recommended by Daniel [24]. The split
factor of the HPGR model was adjusted to obtain a proportion of 10% of feed material
comminuted in the edge zone [24], as this fraction, which is inversely proportional to the
roll length, tends to be smaller in industrial equipment.

The single-particle breakage and the compressed bed breakage in HPGRs were
described by the same DWT data for crushers, based on simplifications suggested by
Daniel [24]. The SAG mill was sized, scaled up, and simulated in JKSimMet® [18], based on
a selected test in a pilot unit (1.8 m diameter mill) with a similar itabirite ore [12,25]. This
equipment was scaled up by selecting the appropriate dimensions to process the designed
throughput, using the specifications of a commercially available industrial unit. As the SAG
mill model in JKSimMet® is limited for ores that are highly amenable to breakage, such as
itabirites [25], the maximum discharge flow rate was verified using the model proposed by
Latchireddi [26]. This model allows a more reliable estimation of the mill hold-up to avoid
the slurry pooling phenomenon [16]. Regarding the total SAG mill load, it is suggested
to adopt a value of 25%, given that the operational conditions of the industrial mills that
served as a reference for the development of the model were close to this value [27], which
was also adopted in the pilot tests performed by Rodrigues [25]. Primary cyclones were
modeled and simulated using the efficiency curve model, and model parameters were
obtained from an industrial cyclone efficiency curve for a similar ore [13].

Ball mills and secondary cyclones were simulated using the Moly-Cop Tools® software
(version 3.0, Moly-Cop, Santiago, Chile), given the unusual bimodal appearance function
associated with this ore (more details can be found in Segura-Salazar [11]). The selection
and breakage parameters used for the ball mill model were based on a previous study
performed with this ore [28]. Dimensions for all ball mills were based on an industrial mill
used for the comminution of a similar ore in the Timbopeba Plant [13]. In the absence of
experimental data, the secondary cyclones were simulated with default parameters from
Moly-Cop Tools® and used the same cyclone diameter as in primary cyclones. In the case of
Route #4, the design relied on estimates from the equipment manufacturer Loesche® GmbH
(Düsseldorf, Germany), given that there is currently no model available on a commercial
simulator to adequately represent the behavior of the VRM. Those estimates were based on
bench- and pilot-scale testing with the itabirite ore.

2.4. Consumables Estimation

Some assumptions based on empirical correlations were used to calculate the con-
sumption of wear materials associated with the processing routes, in particular, liners
and grinding media of comminution machines. These estimates served as a basis for
determining operating costs (OPEx), indirect energy consumption, and greenhouse gas
emissions associated with the production of wear materials.
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Wear rates for the liners of crushers, ball mills, and SAG mills were estimated based on
Bond’s correlations, using wet ball mill correlation for the latter. On the other hand, the em-
pirical correlation proposed by Guzmán and Rabanal [29] was used for estimating grinding
media wear rate in ball mills. Wear rate of balls for the SAG mill was established from an
average between the prediction obtained by the updated empirical correlation originally
developed for ball mills [29] and the estimation obtained based on the Bond correlation for
the wet ball mill, using a correction factor of 65%, as suggested by Rosario [30].

The wear rate of HPGR rolls and studs was estimated assuming a lifetime of 4000 h
for the rolls, based on the work of Ribeiro et al. [31] with a similar ore and assuming a stud
pattern of the rolls similar to the one used in the Los Colorados plant [32]. Additionally,
it was considered that the end of the useful life for the rolls is achieved at about 25 mm
wear [32], and the wear rate was calculated considering no corrosion wear, formation of an
autogenous layer of material between the studs, and uniform wear on the surface of studs
without premature failures. Studs were considered to be manufactured using tungsten
carbide, with an average density of 15.6 t/m3 [33]. The wear rate for the VRM was based
on the estimates provided by Loesche® GmbH operating with an itabirite ore.

2.5. Environmental Indicators Based on a Streamlined Life Cycle Assessment (LCA) Framework

A streamlined approach based on the LCA methodology was developed in order to
estimate environmental indicators for each of the comminution routes considered (Figure 2).
The proposed method (Figure 3) focuses on the operational phase of the life cycle of
the mining project [34], assuming that it represents the greatest impact in the life cycle
of a comminution process, on the basis of results from previous studies [35,36]. Thus,
this approach corresponds to a streamlined, gate-to-gate life cycle inventory (LCI). The
methodology aims to deal with a very limited amount of information, as expected in the
pre-feasibility study stage, since it refers to a processing plant that is not yet in operation.
As such, only data from ore testing (bench and/or pilot-scale), alongside basic project
information and design criteria for the ore under study, are available. The approach
(Figure 3) consists of an initial step in which, based on the information collected, each of
the potential processing routes previously established are simulated using the available
data. With these results in hand and with estimates of wear rates of grinding media and
liners, carbon emission factors (associated with electricity consumption and wear materials
production), and specific energy consumption factors for wear materials production, it is
possible to perform the simplified LCI in the selected systems. These results, in terms of
inputs and outputs of the process, are normalized based on a common functional unit (e.g.,
with reference to the circuit feed rate), and, consequently, can be considered as performance
indicators for each processing route.

For the present case, the functional unit was defined as the comminution of 3235 t/h
of itabirite ore (primary crushing product) to obtain a product (preconcentrate) with
95% passing 150 µm (Table 1). Environmental and economic indicators were estimated
between 2014 and 2015, relying on factors relative to that reference period. Direct energy
consumption of comminution equipment, water consumption, and ultrafine material
generated in each comminution route were obtained from computer simulation. For
equipment other than crushers and mills (screens, pumps, conveyor belts, etc.), direct
energy consumption was roughly estimated using multiplication factors for each type
of circuit, based on data from plants operating with similar flowsheets but processing
different ores.

Steel consumption was estimated considering only comminution equipment. Indirect
energy consumption linked to the production of wear materials was calculated by multiply-
ing the specific wear rates (g/kWh) of each component (grinding media and liners) by the
corresponding simulated power (kW) in all comminution equipment. Energy consumption
factors of 6.6 kWh/kg for steel [37] and 111.1 kWh/kg for tungsten carbide [38] were
employed, assuming that the steel used in wear components is produced in Brazil. GHG
emissions associated with direct energy consumption were estimated using an emission
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factor of 0.0653 t/MWh, whose value is based on the Brazilian electricity mix for the
base year of 2012 and obtained from the Ministry of Science, Technology, and Innovation
database. GHG emissions associated with indirect energy consumption were estimated
using emission factors of 1.54 t/t for steel [39] and 9 t/t for tungsten carbide, based on
another material with a similar processing route [40]. Particulate material emissions were
disregarded in this study.
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Figure 3. LCA-based approach applied to comminution processes in the design stage of a project.

2.6. Economic Indicators Based on Cost Estimation

The scope of the present work is to provide a preliminary estimate of the main costs
involved in the pre-feasibility level [41], with an accuracy between −25% and +30%, so
that the proposed comminution routes can be compared based on capital and operating
costs, using the available information.

CAPEx estimates were based on the costs of the main mechanical comminution
equipment for each route and on the main costs associated, such as electromechanical
assembling, industrial civil works, electrical equipment, tubing, metallic structures, and
conveying; those represent at least 70% of the capital cost. The costs of some of the
main equipment were provided by Metso Minerals® (Sorocaba, Brazil), and the main costs
associated were based on circuit design data for projects also dealing with Brazilian itabirite
ores, from factors that were established for application to the routes hereby proposed. In
the case of Route #4, cost estimates were provided directly by Loesche® GmbH. It is
important to emphasize that all quotations provided by equipment manufacturers were
only preliminary, not being valid for negotiations or sale.



Minerals 2021, 11, 894 8 of 14

Estimates of OPEx were restricted to liners, grinding media, and energy consump-
tion. The estimates were based on empirical equations for calculating the wear of liners
and grinding media and, in some cases, on industrial data. Some of the assumptions
on prices are based on the work by Rodrigues et al. [12,25]: US$1.95/kg for grinding
media, US$0.06M for crusher liner, US$2.3M for ball mill liner, and US$2.6M for SAG mill
liner. In the case of wear of the HPGR, an estimate of cost published by Amelunxen and
Meadows [42], corresponding to US$1.8M for each roll changeover, was used. The present
work does not provide estimates of labor, automation, or administrative and general costs.
The OPEx results are given in American dollars per ton of material processed (US$/t),
from a conversion of the costs of the main equipment quoted with the manufacturer on the
original currency, using the average conversion rates of the corresponding month. More
details concerning cost estimation can be found in Souza [16].

In order to propose the optimal selection among the different comminution routes, the
total cost for each one is given through the summation of the CAPEx and the net present
values of OPEx, along with the life of the project. As such, the assumptions of 20 years of
operation of the plant and a minimum of 12.3% of internal rate of return were considered,
which correspond to values used in a recent Brazilian project for an itabirite ore.

3. Results and Discussion

Table 2 summarizes the main results from equipment sizing and simulation of each
of the processing routes proposed for the itabirite ore in question. It also presents some
estimates related to the calculation of total energy consumption and GHG emissions.
Table 3 presents the main contributors for the capital cost (CAPEx) and operating cost
(OPEx), as well as estimates of the net present value (NPV).

Table 2. Key parameters estimated for each of the comminution routes.

Type and Quantity of Equipment
Power per Unit [kW] Specific

Energy
[kWh/t]

Relative Energy Savings [%]
Relative GHG
Savings [%] 2

Nominal Simulated Crushing and
Grinding Total 1

Route #1 (Base Case)
2nd Cone crusher—HP 400 1 315 147 0.23

-
(base)

-
(base)

-
(base)

3rd Cone crusher—HP 400 2 315 186 0.41
4th Cone crusher—HP 800 3 600 198 0.49
2nd Screen (single deck)—10′ × 24′ 2 - - -
3rd Screen (double deck)—10′ × 24′ 6 - - -
1st Ball mill—16′ × 25′ 1 2800 2614 0.81
2nd Ball mill—16′ × 25′ 2 2800 2624 3.08
1st Classification cyclones—26” 11 - - -
2nd Classification cyclones—26” 12 - - -

Route #2 (HPGR-Ball milling)
2nd Cone crusher—HP 800 2 600 124 0.16

21.4 21.0 23.4
2nd Screen (triple deck)—10′ × 24′ 6 - - -
HPGR—2.40 m × 1.65 m 1 2 × 2400 1560 0.88
Ball mill—16′ × 25′ 2 2800 2624 2.70
1st Classification cyclones—26” 9 - - -
2nd Classification cyclones—26” 32 - - -

Route #3 (SAB)
SAG mill—4.27 m × 9.75 m 1 8200 6961 2.15

−20.1 −3.2 −10.6
2nd screen (single deck)—10′ × 24′ 2 - - -
Ball mill—16′ × 25′ 2 2800 1908 2.30
1st Classifying cyclones—26” 7 - - -
2nd Classifying cyclones—26” 18 - - -

Route #4 (VRM)
2nd Cone crusher—HP 400 1 315 147 0.23

−45.8 −166
(−165)

−78.7
(−75.1)

2nd Screen (single deck)—10′ × 24′ 2 - - -
VRM—Mill (motor shaft)

- - -
4.00

—Classifier 0.55
—Fans 6.60
—Ancillary 0.75

1 Including both direct energy use (crushers, mills, conveyor belts, pumps, etc.) and indirect energy consumption (consumables).
2 Considering both direct and indirect GHG emissions related to direct and indirect energy consumption, respectively.
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Table 3. Main costs estimated for each processing route.

Route # CAPEx
[US$/t]

OPEx
NPV 1

[US$/t]Grinding Media
[US$/Year]

Liners
[US$/Year]

Energy
[US$/Year]

Total
[US$/t]

1. (Base Case) 5.3 18.6 M 8.1 M 6.3 M 1.4 −15.34
2. (HPGR + BM) 4.7 14.9 M 8.4 M 4.6 M 1.1 −13.26
3. (SAB) 4.2 19.9 M 9.8 M 6.8 M 1.5 −15.39
4. (VRM) 3.7 - 4.1 M 20.1 M 1.0 −11.18

1 Assuming operation of the plant for 20 years and a minimum internal rate of return of 12.3%/year.

According to Amelunxen and Meadows [42], the CAPEx of comminution circuits of
ores with low hardness based on HPGR was estimated to be 6.4% higher than that of a
circuit using only conventional (cone) crushing for the same type of ore. As ore hardness
increases, this difference in CAPEx decreases, so that for hard ores, the capital cost for a
coarse comminution circuit that relies exclusively on cone crushing can be even higher
than for the HPGR-based circuit. Furthermore, the authors mentioned that the CAPEx of
circuits based on SAG mills is always lower than those that rely on cone crushing or HPGR.

In the present work, the CAPEx was higher for the conventional route, mainly due
to the costs in the ancillaries, primarily conveyor belts, electromechanical assembly, and
industrial civil works. Route #2 presented a reduction of 10% in CAPEx compared to
the conventional route, which agrees with estimates by Ribeiro et al. [31] in a trade-off
study on the application of roller presses (HPGR) compared to tertiary cone crushing and
screening. In this study, the authors demonstrated a reduction of approximately 8% in
comparison to the CAPEx. However, the CAPEx associated with Route #2 was higher than
that of Route #3, mainly due to the high investment cost of the HPGR in the former and
to the simplification of the circuit, which demands lower ancillary costs (assembly, civil
works, conveyor belts) in the latter. The CAPEx of Route #3 was about 20% lower than
Route #1 (conventional circuit), which agrees with results reported by Delboni Jr. [43], who
demonstrated that, in comparison to CAPEx, the SAB alternative (SAG mill followed by
ball mills) results in reductions of up to 25% in comparison to conventional crushing and
grinding circuits.

Surprisingly, Route #4 presented the lowest capital cost, despite relying on equipment
perceived as high cost, such as the vertical roller mill (VRM). This may be explained by the
high throughput of these machines when processing itabirite iron ores, as became evident
in pilot-scale studies conducted at Loesche® GmbH for ore with similar characteristics [11].
This good performance of the VRM in this particular application may be linked to two
effects. On the one hand, its efficient classification system could take advantage of the large
proportion of natural fines in the mill feed. On the other hand, the itabirite ore is likely to
be highly amenable to compressive crushing, such as by HPGR or VRM.

Regarding the operating costs, Routes #2 and #4—where machines that rely on com-
pressive breakage are incorporated at a large extent, particularly in the coarse and medium
grinding range—present themselves as the most attractive. This is primarily associated
with the lower demand for wear materials in comparison to Routes #1 and #3 (Table 3).
On the other hand, the operating costs associated with the energy consumption are sig-
nificantly lower for Route #2 compared to Route #4, since the latter has an important
demand from ancillary equipment that is part of the VRM system, mainly fans (Table 2).
It is important to emphasize that the savings related to the absence of grinding media
in Route #4 (Table 3) compensate economically for this high energy consumption. Route
#3 presented an OPEx that is 11% higher than that of the conventional circuit (Route #1),
which confirms estimates by Rodrigues [25] and might be explained, at least in part, by the
higher energy consumption demanded by the SAG mill.

In general, Route #3 may be considered the most attractive from the standpoint of
CAPEx, but not OPEx. As such, the economic comparison of the different comminution
routes may be more directly carried out on the basis of the total net present values (NPV),
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given in Table 3. In this case, Routes #2 (HPGR + BM) and #4 (VRM) are the most attractive
from a purely economic standpoint.

Comparatively analyzing the circuits in terms of environmental sustainability (Table 2),
Route #2, which consists of the hybrid HPGR-ball mill circuit, appears to be the best al-
ternative compared to the other processing routes. This route accounts for reductions of
approximately 21% in the total energy consumption (including both direct and indirect
energy) and 23% of GHG emissions in comparison to Route #1. This is due to the higher
energy efficiency in comminution and the lower demand for wear materials, the latter
requiring large amounts of energy in their manufacture [36]. Routes #3 and #4, on the
other hand, did not seem advantageous from the environmental perspective; total energy
consumption and GHG emissions are higher than the conventional Route #1. In the case of
Route #4, those estimates are considerably high, mainly due to the substantial demand of
energy from each of the components of the VRM, most remarkably the fans (underlined
in Table 2). This additional energy consumption could be offset by a higher iron recovery
in the final product due to efficient classification and a potential improvement owing to
intergranular breakage. More studies are necessary to validate and enable the use of VRM
for the comminution of itabirites on an industrial scale, aiming to reduce the consumption
of energy and wear materials, alongside ensuring the stability of the process due to the
variability of ore and operating conditions. Additionally, Route #4 may provide a basis
for a good reduction in GHG emissions in a new plant if, alongside these technologies,
renewable energy sources are also incorporated, depending on the local conditions.

Route #4 also has an additional advantage from environmental and operational stand-
points; it does not require water, allowing to generate a dry product with a suitable size
for downstream concentration stages. This feature could help reduce the water demand
of the plant or facilitate its management and reuse in the process, mainly in the case of
flotation. However, the total water savings should be properly supported by realistic
empirical evidence concerning the total water balance, since addition of water is required
in further conventional stages (desliming cyclones, flotation cells, regrinding mills, etc.), as
well as in proper disposal of ultrafine material that is discarded from the process, aiming
to avoid environmental problems, such as air contamination. In this sense, further research
is also required to evaluate the implications of this potential processing route in terms
of helping to reduce the overall tailings generation. The reuse of water in the mining
industry is becoming a more critical topic in some regional contexts, where the shortage
of this resource is likely to increase, owing to factors such as climate change [44]. On the
other hand, efficient water management becomes more important as ore grades drop—as
is the case in itabirite or low-grade iron ores, compared to hematite or high-grade iron
ores—since the volume of ore exploited from the mineral deposit increases and, therefore,
the absolute volume of slimes also tends to rise. This fact, added to climate change, could
potentially intensify socio-environmental risks of tailing dam failures in future operations.
Route #4 stands out as the route that requires the smallest water footprint.

Ultrafine (−10 µm) material generated in the product (classification overflow, accord-
ing to Figure 2), which is the basis for the slimes removed prior to flotation, was estimated
as 18% for Route #1 and 20% for Routes #2 and #3, according to simulations. Such esti-
mates are within the expected range of slime generation for a conventional processing
route [25] and are also consistent with the results of the SAG mill pilot tests performed by
Rodrigues et al. [12,25] with itabirite ores. For the HPGR-based circuit, the proportion of
ultrafine material simulated is within an acceptable range for the ore under study. Indeed,
the simulated result (Table 2) is in line with the operational data published by Mazzinghy
et al. [45], who found that HPGR does not generate excessive ultrafine material in the
Minas Rio operation. However, it is worth mentioning that those estimates are subject
to uncertainty, mainly due to limitations of the comminution models for this size range
and the limited information on the classification of the grinding products utilizing hydro-
cyclones, particularly in the case of itabirites. For the route operating with the VRM, the
use of shear-free type rolls may favor the reduction in generation of ultrafine material
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compared to the expected amount generated by ball mills in the conventional process
route [46].

Additional factors can also influence the choice of the processing route and the type
of machines used in a comminution circuit. Table 4 summarizes some technical and
operational aspects that must also be considered in the selection of the most appropriate
processing route for the ore in question. Familiarity with the technology is yet another
criterion that is relevant in the selection of one or another processing route. As such, routes
that are based on the VRM (Route #4) and, to a lesser extent, HPGR (Route #2) may be
regarded as less attractive than the conventional Route #1, given the widespread use of
the latter in Brazil for similar ores, for instance, the case of Samarco Mineração, besides
some plants from Vale in the Vargem Grande and Itabira complexes. The conventional
circuit is regarded in the Brazilian iron ore industry as a very robust alternative to potential
variations in ore characteristics. Still, recent cases, such as Anglo´s Minas Rio project, have
demonstrated the technical feasibility of the application of HPGR technology for itabirite
ore on an industrial scale.

Table 4. Qualitative indices of technical and operational issues involved in each processing route analyzed.

Criteria Route #1
(Conventional)

Route #2
(HPGR + BM)

Route #3
(SAB)

Route #4
(VRM)

Lack of familiarity with technology in iron ore Low Medium Medium High
Complexity of the circuit High Medium Medium/Low Low
Sensitivity to moisture variation in the RoM Low Medium Low High
Sensitivity to variation in grindability in RoM Low Medium/Low High Low
Sensitivity to variation in RoM size
distribution Low Low High Medium/Low

Wear of grinding media High Medium High N.A.
Demand for maintenance High Medium Medium Medium
Demand for area (construction) High Medium Medium Medium/Low
Effort involved in conversion to dry
concentration High High High Low

Other aspects related to the characteristics of the RoM can affect the stability of the
process. On the one hand, the moisture content of the ore can affect the performance
of the HPGR if it is excessively high, which can lead to a higher wear rate of the rolls,
alongside a reduction in throughput. Ribeiro et al. [31] demonstrated that a pilot-scale
HPGR processing a similar itabirite iron ore can lose up to 10% of its throughput when the
moisture content of the ore reaches values as high as 9%. This is expected to be even more
critical in the case of Route #4, given the sensitivity of the VRM process in dealing with
moist feed. The risk of dealing with high moisture may be mitigated by adding a hot gas
generator, but that would significantly impact the OPEx and the CAPEx of Route #4. On
the other hand, fluctuations in the breakage response of the run-of-mine ore, with hardness
as low as those as the ore in question (Table 1), may impose a risk for proper operation
of SAG mills in Route #3 since the availability of coarse particles to act as autogenous
grinding media may vary. As such, this route requires very good coordination between
the mine and the plant, including the availability of high-volume ore stockpiles, as well as
bins with high tonnage to guarantee the provision of material with a reasonably constant
size for the different ore typologies. These matters, added to the high operation costs and
the lack of prior experience on the application of SAG milling to itabirite ores, reduce the
overall attractiveness of Route #3.

Table 4 also compares the potential effort involved in conversion to dry concentration.
Indeed, in spite of the success of flotation in iron ore concentration, the application of
dry magnetic separation has been studied as a potential alternative for full dry concentra-
tion [47,48]. In this case, Route #4 is perfectly positioned to take up this new processing
strategy, whereas all other routes studied would require drying the product before concen-
tration, which represents a significant cost.
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Finally, costs associated with labor, although not estimated, will probably vary as a
function of amount of equipment and circuit footprint, likely being higher for Route #1 and
lower for Route #4.

4. Conclusions

Considering the CAPEx and OPEx, routes based on HPGR and VRM technologies
demonstrated to be very attractive for the beneficiation of the itabirite iron ore studied. The
hybrid HPGR-ball mill route also exhibits the best environmental performance among the
processing routes evaluated.

The route based on VRM technology, on the other hand, demonstrated to be partic-
ularly attractive in terms of supporting the development of a dry processing route for
itabirites that potentially reduces the socio-environmental risks of such types of operations.
However, the high energy demand and corresponding GHG emissions question its overall
environmental benefit for the comminution of itabirites. Nevertheless, opportunities exist
for environmental improvement through optimal equipment configuration [11,49], energy
efficiency strategies, and the coupling of these technologies to clean energy sources.

The approach used in the present work can be useful to assist mining companies
in the choice of the most appropriate comminution circuit for itabirite ores on the initial
stages of the life cycle of a new mining project, aiming to reach a better balance between
economic attractiveness and environmental sustainability (i.e., eco-efficiency). However,
it is important to emphasize that both simulations and cost analyses were based on a
representative sample, whereas a mining project must consider the inherent variability
of the mineral deposit. Although this study was based on steady-state simulation, future
studies could also take into account the effects of circuit dynamics on their environmental,
technical, and economic performance.
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