Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,220)

Search Parameters:
Keywords = patients with tissue injuries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 405 KiB  
Review
Major Vascular Injuries in Laparoscopic Urological Surgeries
by Roberto Villalba Bachur and Gustavo Villoldo
Complications 2025, 2(3), 18; https://doi.org/10.3390/complications2030018 - 31 Jul 2025
Abstract
Laparoscopic urological surgery has become a cornerstone in the management of diverse urological pathologies, offering substantial advantages over traditional open approaches. These benefits include minimized incisions, reduced tissue trauma, decreased intraoperative blood loss, lower postoperative pain, shorter hospital stays, superior cosmesis, and accelerated [...] Read more.
Laparoscopic urological surgery has become a cornerstone in the management of diverse urological pathologies, offering substantial advantages over traditional open approaches. These benefits include minimized incisions, reduced tissue trauma, decreased intraoperative blood loss, lower postoperative pain, shorter hospital stays, superior cosmesis, and accelerated recovery. Despite these advantages, laparoscopic surgery carries inherent risks, with major vascular injury (MVI) representing one of the most severe and potentially life-threatening complications. This review examines the incidence, etiologies, and management strategies for MVI in laparoscopic urological surgery, emphasizing the critical role of early recognition, standardized protocols, and surgical expertise in optimizing patient outcomes. Full article
Show Figures

Figure 1

21 pages, 719 KiB  
Review
Intra-Arterial Administration of Stem Cells and Exosomes for Central Nervous System Disease
by Taishi Honda, Masahito Kawabori and Miki Fujimura
Int. J. Mol. Sci. 2025, 26(15), 7405; https://doi.org/10.3390/ijms26157405 (registering DOI) - 31 Jul 2025
Abstract
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating [...] Read more.
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating brain damage and restoring neural connectivity, owing to their multifaceted properties, including anti-apoptotic, anti-inflammatory, neurogenic, and vasculogenic effects. Recent research has also identified exosomes—small vesicles enclosed by a lipid bilayer, secreted by stem cells—as a key mechanism underlying the therapeutic effects of stem cell therapies, and given their enhanced stability and superior blood–brain barrier permeability compared to the stem cells themselves, exosomes have emerged as a promising alternative treatment for CNS disorders. A key challenge in the application of both stem cell and exosome-based therapies for CNS diseases is the method of delivery. Currently, several routes are being investigated, including intracerebral, intrathecal, intravenous, intranasal, and intra-arterial administration. Intracerebral injection can deliver a substantial quantity of stem cells directly to the brain, but it carries the potential risk of inducing additional brain injury. Conversely, intravenous transplantation is minimally invasive but results in limited delivery of cells and exosomes to the brain, which may compromise the therapeutic efficacy. With advancements in catheter technology, intra-arterial administration of stem cells and exosomes has garnered increasing attention as a promising delivery strategy. This approach offers the advantage of delivering a significant number of stem cells and exosomes to the brain while minimizing the risk of additional brain damage. However, the investigation into the therapeutic potential of intra-arterial transplantation for CNS injury is still in its early stages. In this comprehensive review, we aim to summarize both basic and clinical research exploring the intra-arterial administration of stem cells and exosomes for the treatment of CNS diseases. Additionally, we will elucidate the underlying therapeutic mechanisms and provide insights into the future potential of this approach. Full article
(This article belongs to the Special Issue Stem Cells Research: Advancing Science and Medicine)
Show Figures

Graphical abstract

13 pages, 3274 KiB  
Brief Report
Transarterial Embolization for Chronic Postsurgical or Posttraumatic Pain of Musculoskeletal Origin: Clinical Outcomes and Imaging Correlates
by Zi-Rui Huang, Pei-Yi Chen, Neng-Yu Chiu, Sheng-Chieh Lin, Bow Wang, Jui-An Lin and Keng-Wei Liang
Life 2025, 15(8), 1208; https://doi.org/10.3390/life15081208 - 29 Jul 2025
Viewed by 161
Abstract
Chronic postsurgical or posttraumatic pain (CPSP) is a persistent pain condition lasting beyond three months after tissue injury, often associated with neuropathic features and pathological angiogenesis. This study investigated the feasibility, safety, and therapeutic potential of transarterial embolization (TAE) in patients with CPSP [...] Read more.
Chronic postsurgical or posttraumatic pain (CPSP) is a persistent pain condition lasting beyond three months after tissue injury, often associated with neuropathic features and pathological angiogenesis. This study investigated the feasibility, safety, and therapeutic potential of transarterial embolization (TAE) in patients with CPSP arising from prior musculoskeletal surgeries or interventions. Six patients with refractory pain and imaging evidence of abnormal neovascularization were retrospectively reviewed. TAE was performed using imipenem/cilastatin particles to selectively target pathological vasculature. Eleven procedures were conducted, achieving 100% technical and clinical success. Mean Numeric Rating Scale scores improved significantly from 7.8 at baseline to 1.3 at final follow-up (p < 0.001). No major adverse events occurred, and follow-up imaging demonstrated resolution of inflammation in selected cases. These results support the role of TAE as a minimally invasive treatment option for intervention-related CPSP involving the musculoskeletal system, and further prospective studies are warranted. Full article
(This article belongs to the Special Issue A Paradigm Shift in Airway and Pain Management—2nd Edition)
Show Figures

Figure 1

41 pages, 3039 KiB  
Review
Repurposing Diabetes Therapies in CKD: Mechanistic Insights, Clinical Outcomes and Safety of SGLT2i and GLP-1 RAs
by Syed Arman Rabbani, Mohamed El-Tanani, Rakesh Kumar, Manita Saini, Yahia El-Tanani, Shrestha Sharma, Alaa A. A. Aljabali, Eman Hajeer and Manfredi Rizzo
Pharmaceuticals 2025, 18(8), 1130; https://doi.org/10.3390/ph18081130 - 28 Jul 2025
Viewed by 312
Abstract
Background: Chronic Kidney Disease (CKD) is a major global health issue, with diabetes being its primary cause and cardiovascular disease contributing significantly to patient mortality. Recently, two classes of medications—sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs)—have shown promise [...] Read more.
Background: Chronic Kidney Disease (CKD) is a major global health issue, with diabetes being its primary cause and cardiovascular disease contributing significantly to patient mortality. Recently, two classes of medications—sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs)—have shown promise in protecting both kidney and heart health beyond their effects on blood sugar control. Methods: We conducted a narrative review summarizing the findings of different clinical trials and mechanistic studies evaluating the effect of SGLT2i and GLP-1 RAs on kidney function, cardiovascular outcomes, and overall disease progression in patients with CKD and DKD. Results: SGLT2i significantly mitigate kidney injury by restoring tubuloglomerular feedback, reducing intraglomerular hypertension, and attenuating inflammation, fibrosis, and oxidative stress. GLP-1 RAs complement these effects by enhancing endothelial function, promoting weight and blood pressure control, and exerting direct anti-inflammatory and anti-fibrotic actions on renal tissues. Landmark trials—CREDENCE, DAPA-CKD, and EMPA-KIDNEY—demonstrate that SGLT2i reduce the risk of kidney failure and renal or cardiovascular death by 25–40% in both diabetic and non-diabetic CKD populations. Likewise, trials such as LEADER, SUSTAIN, and AWARD-7 confirm that GLP-1 RAs slow renal function decline and improve cardiovascular outcomes. Early evidence suggests that using both drugs together may offer even greater benefits through multiple mechanisms. Conclusions: SGLT2i and GLP-1 RAs have redefined the therapeutic landscape of CKD by offering organ-protective benefits that extend beyond glycemic control. Whether used individually or in combination, these agents represent a paradigm shift toward integrated cardiorenal-metabolic care. A deeper understanding of their mechanisms and clinical utility in both diabetic and non-diabetic populations can inform evidence-based strategies to slow disease progression, reduce cardiovascular risk, and improve long-term patient outcomes in CKD. Full article
(This article belongs to the Special Issue New Development in Pharmacotherapy of Kidney Diseases)
Show Figures

Graphical abstract

21 pages, 1019 KiB  
Review
Macrophage Reprogramming: Emerging Molecular Therapeutic Strategies for Nephrolithiasis
by Meng Shu, Yiying Jia, Shuwei Zhang, Bangyu Zou, Zhaoxin Ying, Xu Gao, Ziyu Fang and Xiaofeng Gao
Biomolecules 2025, 15(8), 1090; https://doi.org/10.3390/biom15081090 - 28 Jul 2025
Viewed by 432
Abstract
Nephrolithiasis, predominantly driven by calcium oxalate (CaOx) crystal deposition, poses a significant global health burden due to its high prevalence and recurrence rates and limited preventive/therapeutic options. Recent research has underscored a pivotal role for macrophage polarization in nephrolithiasis pathogenesis. Pro-inflammatory phenotype macrophages [...] Read more.
Nephrolithiasis, predominantly driven by calcium oxalate (CaOx) crystal deposition, poses a significant global health burden due to its high prevalence and recurrence rates and limited preventive/therapeutic options. Recent research has underscored a pivotal role for macrophage polarization in nephrolithiasis pathogenesis. Pro-inflammatory phenotype macrophages exacerbate crystal-induced injury and foster stone formation by amplifying crystal adhesion via an NF-κB–IL-1β positive-feedback axis that sustains ROS generation and NLRP3 inflammasome activation, whereas anti-inflammatory phenotype macrophages facilitate crystal clearance and tissue repair. We have summarized the research on treating nephrolithiasis and related renal injury by targeting macrophage polarization in recent years, including therapeutic approaches through pharmacological methods, epigenetic regulation, and advanced biomaterials. At the same time, we have critically evaluated the novel therapeutic strategies for macrophage reprogramming and explored the future development directions of targeting macrophage reprogramming for nephrolithiasis treatment, such as using single-cell/spatial omics to reveal the heterogeneity of macrophages in the stone microenvironment, chimeric antigen receptor macrophages (CAR-Ms) as a potential therapy for specific crystal phagocytosis in certain areas, and multi-omics integration to address inter-patient immune differences. This review highlights that macrophage reprogramming is a transformative frontier in nephrolithiasis management and underscores the need for further research to translate these molecular insights into effective clinical applications. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

9 pages, 671 KiB  
Article
Comparative Effects of Pulsed Field and Radiofrequency Ablation on Blood Cell Parameters During Pulmonary Vein Isolation
by Lucio Addeo, Federica Di Feo, Mario Vaccariello, Alfonso Varriale, Benedetta Brescia, Davide Bonadies, Stefano Nardi, Luigi Argenziano, Vittoria Marino, Vincenza Abbate, Luigi Cocchiara, Pasquale Guarini, Laura Adelaide Dalla Vecchia and Francesco Donatelli
Biomedicines 2025, 13(8), 1828; https://doi.org/10.3390/biomedicines13081828 - 25 Jul 2025
Viewed by 400
Abstract
Background: Pulsed field ablation (PFA) is a novel non-thermal modality for pulmonary vein isolation (PVI) in atrial fibrillation (AF), offering myocardial selectivity through irreversible electroporation while sparing surrounding structures. However, concerns have emerged regarding potential subclinical hemolysis, reflected by alterations in biochemical markers [...] Read more.
Background: Pulsed field ablation (PFA) is a novel non-thermal modality for pulmonary vein isolation (PVI) in atrial fibrillation (AF), offering myocardial selectivity through irreversible electroporation while sparing surrounding structures. However, concerns have emerged regarding potential subclinical hemolysis, reflected by alterations in biochemical markers such as lactate dehydrogenase (LDH). Methods: We conducted a retrospective, single-center study involving 249 patients undergoing PVI: 121 treated with PFA (PulseSelect or FARAPULSE) and 128 with radiofrequency (RF) ablation (PVAC catheter). Laboratory parameters were assessed at baseline, post-procedure, and at discharge, including hemoglobin, hematocrit, red blood cell (RBC) count, platelet count, creatinine, and LDH. The primary endpoint was the variation in blood cell indices; the secondary endpoint was the evaluation of LDH and hematocrit changes. Statistical analysis included t-tests and chi-square tests. Results: Baseline characteristics and pre-procedural labs did not differ significantly between groups. No significant changes in hemoglobin, hematocrit, RBC count, platelet count, or creatinine were observed post-ablation or at discharge. However, LDH levels significantly increased in the PFA group both post-procedurally and at discharge (p < 0.001), without concurrent changes in other blood cell parameters. Conclusions: PFA and RF ablation yield comparable hematological profiles after PVI, with no significant impact on key blood cell parameters. Nonetheless, the consistent rise in LDH levels in the PFA group suggests mild, subclinical hemolysis or tissue injury due to more extensive lesions. While supporting the hematologic safety of PFA, these findings underscore the need for further studies to assess the clinical significance of these biochemical alterations, particularly in high-risk patients or extensive ablation settings. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

27 pages, 1201 KiB  
Review
Non-Viral Therapy in COVID-19: Where Are We Standing? How Our Experience with COVID May Help Us Develop Cell Therapies for Long COVID Patients
by Aitor Gonzaga, Gema Martinez-Navarrete, Loreto Macia, Marga Anton-Bonete, Gladys Cahuana, Juan R. Tejedo, Vanessa Zorrilla-Muñoz, Eduardo Fernandez-Jover, Etelvina Andreu, Cristina Eguizabal, Antonio Pérez-Martínez, Carlos Solano, Luis Manuel Hernández-Blasco and Bernat Soria
Biomedicines 2025, 13(8), 1801; https://doi.org/10.3390/biomedicines13081801 - 23 Jul 2025
Viewed by 388
Abstract
Objectives: COVID-19, caused by the SARS-CoV-2 virus, has infected over 777 million individuals and led to approximately 7 million deaths worldwide. Despite significant efforts to develop effective therapies, treatment remains largely supportive, especially for severe complications like acute respiratory distress syndrome (ARDS). [...] Read more.
Objectives: COVID-19, caused by the SARS-CoV-2 virus, has infected over 777 million individuals and led to approximately 7 million deaths worldwide. Despite significant efforts to develop effective therapies, treatment remains largely supportive, especially for severe complications like acute respiratory distress syndrome (ARDS). Numerous compounds from diverse pharmacological classes are currently undergoing preclinical and clinical evaluation, targeting both the virus and the host immune response. Methods: Despite the large number of articles published and after a preliminary attempt was published, we discarded the option of a systematic review. Instead, we have done a description of therapies with these results and a tentative mechanism of action. Results: Preliminary studies and early-phase clinical trials have demonstrated the potential of Mesenchymal Stem Cells (MSCs) in mitigating severe lung damage in COVID-19 patients. Previous research has shown MSCs to be effective in treating various pulmonary conditions, including acute lung injury, idiopathic pulmonary fibrosis, ARDS, asthma, chronic obstructive pulmonary disease, and lung cancer. Their ability to reduce inflammation and promote tissue repair supports their potential role in managing COVID-19-related complications. This review demonstrates the utility of MSCs in the acute phase of COVID-19 and postulates the etiopathogenic role of mitochondria in Long-COVID. Even more, their combination with other therapies is also analyzed. Conclusions: While the therapeutic application of MSCs in COVID-19 is still in early stages, emerging evidence suggests promising outcomes. As research advances, MSCs may become an integral part of treatment strategies for severe COVID-19, particularly in addressing immune-related lung injury and promoting recovery. However, a full pathogenic mechanism may explain or unify the complexity of signs and symptoms of Long COVID and Post-Acute Sequelae (PASC). Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

20 pages, 695 KiB  
Review
The Pathogenic Role of C-Reactive Protein in Diabetes-Linked Unstable Atherosclerosis
by Melania Sibianu and Mark Slevin
Int. J. Mol. Sci. 2025, 26(14), 6855; https://doi.org/10.3390/ijms26146855 - 17 Jul 2025
Viewed by 306
Abstract
C-reactive protein (CRP) has long been recognized as a biomarker of systemic inflammation and cardiovascular disease (CVD) risk. However, emerging evidence highlights the distinct and potent pro-inflammatory role of its monomeric form (mCRP), which is predominantly tissue-bound and directly implicated in vascular injury [...] Read more.
C-reactive protein (CRP) has long been recognized as a biomarker of systemic inflammation and cardiovascular disease (CVD) risk. However, emerging evidence highlights the distinct and potent pro-inflammatory role of its monomeric form (mCRP), which is predominantly tissue-bound and directly implicated in vascular injury and plaque destabilization. This narrative review explores the interactions and overlapping pathways that converge within and modulate CRP, mCRP, the associated pathophysiology of diabetes mellitus, and cardiovascular disease. We examine how mCRP promotes endothelial dysfunction, leukocyte recruitment, platelet activation, and macrophage polarization, thereby contributing to the formation of unstable atherosclerotic plaques. Furthermore, we discuss the critical influence of diabetes in amplifying mCRP’s pathogenic effects through metabolic dysregulation, chronic hyperglycemia, and enhanced formation of advanced glycation end products (AGEs). The synergistic interaction of mCRP with the AGE-receptor for AGE (RAGE) axis exacerbates oxidative stress and vascular inflammation, accelerating atherosclerosis progression and increasing cardiovascular risk in diabetic patients. Understanding these mechanistic pathways implicates mCRP as both a biomarker and therapeutic target, particularly in the context of diabetes-associated CVD. This review highlights the need for further research into targeted interventions that disrupt the mCRP-[AGE-RAGE] inflammatory cycle to reduce plaque instability and improve cardiovascular outcomes in high-risk populations. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

13 pages, 3483 KiB  
Article
The “Double-Row Shoelace” Capsulodesis: A Novel Technique for the Repair and Reconstruction of the Scapholunate Ligament of the Wrist
by Adriano Cannella, Rocco De Vitis, Arturo Militerno, Giuseppe Taccardo, Vitale Cilli, Lorenzo Rocchi, Giulia Maria Sassara and Marco Passiatore
Surgeries 2025, 6(3), 57; https://doi.org/10.3390/surgeries6030057 - 16 Jul 2025
Viewed by 168
Abstract
Introduction: The scapholunate interosseus ligament (SLIL) is critical for wrist stability, with injuries causing carpal instability and potential scapholunate advanced collapse (SLAC). This technical note presents a novel ligament-sparing surgical technique for treating SLIL tears ranging from grade 2 to 4 of the [...] Read more.
Introduction: The scapholunate interosseus ligament (SLIL) is critical for wrist stability, with injuries causing carpal instability and potential scapholunate advanced collapse (SLAC). This technical note presents a novel ligament-sparing surgical technique for treating SLIL tears ranging from grade 2 to 4 of the Garcia-Elias classification. Materials and Methods: A retrospective study was performed on ten patients treated with this novel technique. The technique involves a dorsal approach to the wrist through a 5–7 cm incision ulnar to Lister’s tubercle. After exposing the scapholunate joint, reduction is performed using Kirschner wires (K-wires) as joysticks, followed by stabilisation with three K-wires through the scapholunate, scapho-capitate, and radio-lunate joints. Two 2.3 mm suture anchors with double sutures are placed where the reduction K-wires were removed. One pair of sutures connects the anchors and any remaining SLIL tissue, while the second pair create a shoelace-like capsulodesis. Post-operative care includes staged K-wire removal at one and two months, with progressive rehabilitation before returning to weight-bearing activities at six months. Results: All patients improved in pain and function. The technique addresses SLIL injuries by restoring both coronal alignment through ligament repair and sagittal alignment via dorsal capsulodesis. The use of suture anchors and direct repair preserves the native tissue while reinforcing the dorsal capsule–scapholunate septum complex, avoiding the need for tendon grafts or extensive bone tunnelling. Conclusions: This ligament-sparing technique offers several advantages, including absence of donor site morbidity, minimal damage to carpal cartilage and vascularity, and preservation of surgical options should revision be necessary. The procedure effectively addresses both components of scapholunate instability while maintaining a relatively straightforward surgical approach. Full article
(This article belongs to the Section Hand Surgery and Research)
Show Figures

Figure 1

23 pages, 6291 KiB  
Article
Application of Standardized Rosa damascena Stem Cell-Derived Exosomes in Dermatological Wound Healing and Scar Management: A Retrospective Case-Series Study with Long-Term Outcome Assessment
by Lidia Majewska, Agnieszka Kondraciuk, Karolina Dorosz and Agnieszka Budzyńska
Pharmaceutics 2025, 17(7), 910; https://doi.org/10.3390/pharmaceutics17070910 - 14 Jul 2025
Cited by 2 | Viewed by 653
Abstract
Background: Scar formation and impaired wound healing represent significant challenges in dermatology and aesthetic medicine, with limited effective treatment options currently available. Objectives: To evaluate the efficacy and long-term outcomes of Damask rose stem-cell-derived exosome (RSCE) therapy in the management of [...] Read more.
Background: Scar formation and impaired wound healing represent significant challenges in dermatology and aesthetic medicine, with limited effective treatment options currently available. Objectives: To evaluate the efficacy and long-term outcomes of Damask rose stem-cell-derived exosome (RSCE) therapy in the management of diverse dermatological conditions, including traumatic wounds, surgical scars, and atrophic acne scars. Methods: We conducted a case series study from June 2023 to November 2024, documenting four cases with different types of skin damage treated with lyophilized RSCE products. Treatment protocols included a variety of delivery methods such as topical application, microneedling, and post-procedure care. Follow-up assessments were performed at intervals ranging from 7 days to 10 months. Results: All patients demonstrated significant improvements in scar appearance, skin elasticity, hydration, and overall tissue quality. In traumatic facial injury, RSCE therapy facilitated reduction in scar contracture and improved functional outcomes. For atrophic acne scars, comparative treatment of facial sides showed enhanced results with RSCE addition. Acute wounds exhibited accelerated healing with reduced inflammation, while chronic wounds demonstrated improved epithelialization and long-term scar quality. Conclusions: This case series provides preliminary evidence suggesting that RSCE therapy may offer significant benefits in wound healing and scar management. The observed improvements in tissue regeneration, inflammatory modulation, and long-term aesthetic outcomes warrant further investigation through controlled clinical trials. Full article
Show Figures

Figure 1

21 pages, 1099 KiB  
Review
The Roles of E3 Ubiquitin Ligases in Cerebral Ischemia–Reperfusion Injury
by Man Li, Xiaoxiao Yu, Qiang Liu, Zhi Fang and Haijun Wang
Int. J. Mol. Sci. 2025, 26(14), 6723; https://doi.org/10.3390/ijms26146723 - 13 Jul 2025
Viewed by 311
Abstract
The temporary or permanent occlusion of cerebral blood vessels results in ischemic stroke (IS). Ischemia per se causes focal neuronal damage, and the subsequent ischemia–reperfusion injury that occurs after blood flow restoration further compromises brain tissue and cells in the neurovascular unit, significantly [...] Read more.
The temporary or permanent occlusion of cerebral blood vessels results in ischemic stroke (IS). Ischemia per se causes focal neuronal damage, and the subsequent ischemia–reperfusion injury that occurs after blood flow restoration further compromises brain tissue and cells in the neurovascular unit, significantly contributing to poor patient outcomes and functional impairments. Current research indicates that the ubiquitin–proteasome system (UPS) plays a crucial role in the pathological processes associated with cerebral ischemia–reperfusion injury (CIRI). Notably, E3 ubiquitin (Ub) ligases, which are essential in the UPS, have garnered increasing attention as potential novel therapeutic targets for treating ischemia–reperfusion damage in the brain. This review focuses primarily on the background of E3 Ub ligases and explores their intricate relationships with the pathological processes of CIRI. Full article
(This article belongs to the Special Issue Latest Advances in Oxidative Stress and Brain Injury)
Show Figures

Figure 1

19 pages, 1277 KiB  
Review
What a Modern Physician Should Know About microRNAs in the Diagnosis and Treatment of Diabetic Kidney Disease
by Małgorzata Rodzoń-Norwicz, Patryk Kogut, Magdalena Sowa-Kućma and Agnieszka Gala-Błądzińska
Int. J. Mol. Sci. 2025, 26(14), 6662; https://doi.org/10.3390/ijms26146662 - 11 Jul 2025
Viewed by 323
Abstract
Diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease (ESKD) globally. Despite advances in our understanding of its pathophysiology, current therapies are often insufficient to stop its progression. In recent years, microRNAs (miRNAs)—small, non-coding RNA molecules involved in post-transcriptional gene [...] Read more.
Diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease (ESKD) globally. Despite advances in our understanding of its pathophysiology, current therapies are often insufficient to stop its progression. In recent years, microRNAs (miRNAs)—small, non-coding RNA molecules involved in post-transcriptional gene regulation—have emerged as critical modulators of key pathogenic mechanisms in DKD, including fibrosis, inflammation, oxidative stress, and apoptosis. Numerous studies have identified specific miRNAs that either exacerbate or mitigate renal injury in DKD. Among them, miR-21, miR-192, miR-155, and miR-34a are associated with disease progression, while miR-126-3p, miR-29, miR-146a, and miR-215 demonstrate protective effects. These molecules are also detectable in plasma, urine, and renal tissue, making them attractive candidates for diagnostic and prognostic biomarkers. Advances in therapeutic technologies such as antagomiRs, mimics, locked nucleic acids, and nanoparticle-based delivery systems have opened new possibilities for targeting miRNAs in DKD. Additionally, conventional drugs, including SGLT2 inhibitors, metformin, and GLP-1 receptor agonists, as well as dietary compounds like polyphenols and sulforaphane, may exert nephroprotective effects by modulating miRNA expression. Recent evidence also highlights the role of gut microbiota in regulating miRNA activity, linking metabolic and immune pathways relevant to DKD progression. Further research is needed to define stage-specific miRNA signatures, improve delivery systems, and develop personalized therapeutic approaches. Modulation of miRNA expression represents a promising strategy to slow DKD progression and improve patient outcomes. Full article
Show Figures

Figure 1

25 pages, 1696 KiB  
Review
Illustrating the Pathogenesis and Therapeutic Approaches of Epilepsy by Targeting Angiogenesis, Inflammation, and Oxidative Stress
by Lucy Mohapatra, Deepak Mishra, Alok Shiomurti Tripathi, Sambit Kumar Parida and Narahari N. Palei
Neuroglia 2025, 6(3), 26; https://doi.org/10.3390/neuroglia6030026 - 11 Jul 2025
Viewed by 421
Abstract
Epilepsy is one of the most prevalent chronic medical conditions that really can affect individuals at any age. A broader study of the pathogenesis of the epileptic condition will probably serve as the cornerstone for the development of new antiepileptic remedies that aim [...] Read more.
Epilepsy is one of the most prevalent chronic medical conditions that really can affect individuals at any age. A broader study of the pathogenesis of the epileptic condition will probably serve as the cornerstone for the development of new antiepileptic remedies that aim to treat epilepsy symptomatically as well as prevent the epileptogenesis process or regulate its progression. Cellular changes in the brain include oxidative stress, neuroinflammation, inflammatory cell invasion, angiogenesis, and extracellular matrix associated changes. The extensive molecular profiling of epileptogenic tissue has revealed details on the molecular pathways that might start and sustain cellular changes. In healthy brains, epilepsy develops because of vascular disruptions, such as blood–brain barrier permeability and pathologic angiogenesis. Key inflammatory mediators are elevated during epileptic seizures, increasing the risk of recurrent seizures and resulting in secondary brain injury. Prostaglandins and cytokines are well-known inflammatory mediators in the brain and, after seizures, their production is increased. These inflammatory mediators may serve as therapeutic targets in the clinical research of novel antiepileptic medications. The functions of inflammatory mediators in epileptogenesis are covered in this review. Oxidative stress also plays a significant role in the pathogenesis of various neurological disorders, specifically epilepsy. Antioxidant therapy seems to be crucial for treating epileptic patients, as it prevents neuronal death by scavenging excess free radicals formed during the epileptic condition. The significance of antioxidants in mitochondrial dysfunction prevention and the relationship between oxidative stress and inflammation in epileptic patients are the major sections covered in this review. Full article
Show Figures

Figure 1

19 pages, 1543 KiB  
Article
Peripheral Leukocyte Syndecan-3 Is Elevated in Alzheimer’s Disease: Evidence from a Human Study
by Anett Hudák, Annamária Letoha and Tamás Letoha
Int. J. Mol. Sci. 2025, 26(14), 6587; https://doi.org/10.3390/ijms26146587 - 9 Jul 2025
Viewed by 642
Abstract
Syndecan-3 (SDC3), a transmembrane heparan sulfate proteoglycan involved in cell signaling and endocytosis, has recently been implicated in the pathogenesis of neurodegenerative disorders. While preclinical studies have demonstrated its role in Alzheimer’s disease (AD), its diagnostic relevance in peripheral blood remains unexplored. In [...] Read more.
Syndecan-3 (SDC3), a transmembrane heparan sulfate proteoglycan involved in cell signaling and endocytosis, has recently been implicated in the pathogenesis of neurodegenerative disorders. While preclinical studies have demonstrated its role in Alzheimer’s disease (AD), its diagnostic relevance in peripheral blood remains unexplored. In this human cohort study, we measured SDC3 expression in peripheral blood mononuclear cells (PBMCs) from 22 clinically diagnosed AD patients and 20 cognitively unimpaired non-AD controls using a custom ELISA. The findings were compared with plasma p-tau217 levels and a panel of systemic laboratory markers. PBMC-expressed SDC3 was significantly elevated in AD patients and moderately correlated with AD status (r = 0.309, p = 0.0465) independent of age. Notably, SDC3 levels were inversely correlated with systemic inflammatory markers, including C-reactive protein (CRP; r = −0.421, p = 0.0055) and D-dimer (r = −0.343, p = 0.038), suggesting an AD-associated immune phenotype distinct from acute-phase or vascular inflammation. Conversely, plasma p-tau217 levels did not significantly differ between groups but correlated with markers of tissue injury and inflammation (LDH, GOT, and ferritin), potentially reflecting systemic influences in non-AD controls. A multivariable logistic regression model incorporating SDC3, p-tau217, and age demonstrated high diagnostic accuracy (AUC = 0.85). These findings identify PBMC-expressed SDC3 as a promising blood-based biomarker candidate for AD, warranting further validation in larger, biomarker-confirmed cohorts. Full article
Show Figures

Figure 1

36 pages, 2739 KiB  
Review
Advanced Bioactive Polymers and Materials for Nerve Repair: Strategies and Mechanistic Insights
by Nidhi Puranik, Shraddha Tiwari, Meenakshi Kumari, Shiv Kumar Yadav, Thakur Dhakal and Minseok Song
J. Funct. Biomater. 2025, 16(7), 255; https://doi.org/10.3390/jfb16070255 - 9 Jul 2025
Viewed by 1032
Abstract
Bioactive materials have recently shown potential in nerve repair and regeneration by promoting the growth of new cells, tissue repair, and restoring nerve function. These natural, synthetic, and hybrid materials offer a biomimetic structure, enhance cell attachment, and release bioactive molecules that promote [...] Read more.
Bioactive materials have recently shown potential in nerve repair and regeneration by promoting the growth of new cells, tissue repair, and restoring nerve function. These natural, synthetic, and hybrid materials offer a biomimetic structure, enhance cell attachment, and release bioactive molecules that promote the axonal extension of severed nerves. Scaffold-based preclinical studies have shown promising results on enhancing nerve repair; however, they are limited by the immune response and fabrication, scalability, and cost. Nevertheless, advances in manufacturing, including 3D bioprinting, and other strategies, such as gene editing by CRISPR, will overcome these shortcomings. The opportunity for the development of individualized approaches and specific treatment plans for each patient will also increase the effectiveness of bioactive materials for the treatment of nerve injuries. Combining bioactive materials with the neural interface can develop new reliable therapeutic solutions, particularly for neuroprosthetics. Finally, it is essential to stress a multidisciplinary focus, and future studies are needed to enhance the potential of bioactive materials for patients with nerve injuries and the field of regenerative medicine. Full article
(This article belongs to the Special Issue Active Biomedical Materials and Their Applications, 2nd Edition)
Show Figures

Figure 1

Back to TopTop