Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (167)

Search Parameters:
Keywords = pasture utilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5702 KiB  
Article
Monitoring Tropical Forest Disturbance and Recovery: A Multi-Temporal L-Band SAR Methodology from Annual to Decadal Scales
by Derek S. Tesser, Kyle C. McDonald, Erika Podest, Brian T. Lamb, Nico Blüthgen, Constance J. Tremlett, Felicity L. Newell, Edith Villa-Galaviz, H. Martin Schaefer and Raul Nieto
Remote Sens. 2025, 17(13), 2188; https://doi.org/10.3390/rs17132188 - 25 Jun 2025
Viewed by 500
Abstract
Tropical forests harbor a significant portion of global biodiversity but are increasingly degraded by human activity. Assessing restoration efforts requires the systematic monitoring of tropical ecosystem status and recovery. Satellite-borne synthetic aperture radar (SAR) supports monitoring changes in vegetation structure and is of [...] Read more.
Tropical forests harbor a significant portion of global biodiversity but are increasingly degraded by human activity. Assessing restoration efforts requires the systematic monitoring of tropical ecosystem status and recovery. Satellite-borne synthetic aperture radar (SAR) supports monitoring changes in vegetation structure and is of particular utility in tropical regions where clouds obscure optical satellite observations. To characterize tropical forest recovery in the Lowland Chocó Biodiversity Hotspot of Ecuador, we apply over a decade of dual-polarized (HH + HV) L-band SAR datasets from the Japanese Space Agency’s (JAXA) PALSAR and PALSAR-2 sensors. We assess the complementarity of the dual-polarized imagery with less frequently available fully-polarimetric imagery, particularly in the context of their respective temporal and informational trade-offs. We examine the radar image texture associated with the dual-pol radar vegetation index (DpRVI) to assess the associated determination of forest and nonforest areas in a topographically complex region, and we examine the equivalent performance of texture measures derived from the Freeman–Durden polarimetric radar decomposition classification scheme applied to the fully polarimetric data. The results demonstrate that employing a dual-polarimetric decomposition classification scheme and subsequently deriving the associated gray-level co-occurrence matrix mean from the DpRVI substantially improved the classification accuracy (from 88.2% to 97.2%). Through this workflow, we develop a new metric, the Radar Forest Regeneration Index (RFRI), and apply it to describe a chronosequence of a tropical forest recovering from naturally regenerating pasture and cacao plots. Our findings from the Lowland Chocó region are particularly relevant to the upcoming NASA-ISRO NISAR mission, which will enable the comprehensive characterization of vegetation structural parameters and significantly enhance the monitoring of biodiversity conservation efforts in tropical forest ecosystems. Full article
(This article belongs to the Special Issue NISAR Global Observations for Ecosystem Science and Applications)
Show Figures

Figure 1

19 pages, 2310 KiB  
Article
Ecosystem Multifunctionality Regulated by Soil Microbial Activity and Indicator Taxa Versus Biodiversity for Industrial Solar Facilities on the Qinghai–Tibet Plateau
by Yu Liu, Chengxiang Ding, Tiemei Wang, Derong Su, Zhuoqing Li, Chaoyang Feng and Zhanjun Quan
Microorganisms 2025, 13(7), 1464; https://doi.org/10.3390/microorganisms13071464 - 24 Jun 2025
Viewed by 445
Abstract
The drive towards carbon neutrality has prompted the worldwide expansion of utility-scale solar facilities. Previous studies have reported the positive effects of solar facilities’ installation on pasture productivity and biodiversity in arid regions. However, our understanding of how solar facilities influence a wide [...] Read more.
The drive towards carbon neutrality has prompted the worldwide expansion of utility-scale solar facilities. Previous studies have reported the positive effects of solar facilities’ installation on pasture productivity and biodiversity in arid regions. However, our understanding of how solar facilities influence a wide range of ecosystem functions simultaneously, and the relative contributions of soil microbial attributes, remains incomplete. To address this gap, we assessed the changes in ecosystem multifunctionality following solar facility installation in an alpine desert grassland in the Qinghai–Tibet plateau by measuring twenty-three ecosystem function indicators comprising primary production, the soil nutrient pool, carbon cycling, nitrogen cycling, phosphorus cycling and oxidation–reduction. Furthermore, we estimated the soil microbial diversity, microbial indicator taxa and microbial activity to identify the primary driving factors. The results showed that solar facilities had positive effects on ecosystem multifunctionality; the positive effect size was higher in the initial installation period (31.4%) than in the constant running period (3.5%). The enhancements in ecosystem multifunctionality were mainly due to enhanced nutrient cycling induced by the increased abundance of fungal indicator taxa and microbial activity. Moreover, the structural equation model revealed distinct regulatory paths between the two periods and a transition in the primary driving factors of ecosystem multifunctionality from microbial indicator taxa to microbial activity. In conclusion, our study demonstrates the positive influence of solar facilities on multiple ecosystem functions, emphasizing the critical role of soil microbial mechanisms in regulating ecosystem multifunctionality. These findings provide valuable insights into soil biota-driven processes that could inform strategies aimed at enhancing soil health and ecosystem functionality in arid grasslands under human-managed systems. Full article
(This article belongs to the Special Issue State-of-the-Art Environmental Microbiology in China 2025)
Show Figures

Figure 1

18 pages, 11896 KiB  
Article
Spatio-Temporal Variations in Grassland Carrying Capacity Derived from Remote Sensing NPP in Mongolia
by Boldbayar Rentsenduger, Qun Guo, Javzandolgor Chuluunbat, Dul Baatar, Mandakh Urtnasan, Dashtseren Avirmed and Shenggong Li
Sustainability 2025, 17(12), 5498; https://doi.org/10.3390/su17125498 - 14 Jun 2025
Viewed by 532
Abstract
The escalation in the population of livestock coupled with inadequate precipitation has caused a reduction in pasture biomass, thereby resulting in diminished grassland carrying capacity (GCC) and pasture degradation. In this research, net primary productivity (NPP) data, sourced from the Global Land Surface [...] Read more.
The escalation in the population of livestock coupled with inadequate precipitation has caused a reduction in pasture biomass, thereby resulting in diminished grassland carrying capacity (GCC) and pasture degradation. In this research, net primary productivity (NPP) data, sourced from the Global Land Surface Satellite (GLASS) and Moderate Resolution Imaging Spectroradiometer (MODIS) datasets from 1982 to 2020, were initially transformed into aboveground biomass (AGB) estimates. These estimates were subsequently utilized to evaluate and assess the long-term trends of GCC across Mongolia. The MODIS data indicated an upward trend in AGB from 2000 to 2020, whereas the GLASS data reflected a downward trend from 1982 to 2018. Between 1982 and 2020, climatic analysis uncovered robust positive correlations between AGB and precipitation (R > 0.80) and negative correlations with temperature (R < −0.60). These climatic alterations have led to a reduction in AGB, further impairing the regenerative capacity of grasslands. Concurrently, livestock numbers have generally increased since 1982, with a decrease in certain years due to dzud and summer drought, leading to the increase in the GCC. GCC assessment found that 37.5% of grasslands experienced severe overgrazing and 31.9–40.7% was within sustainable limits. Spatially, the eastern region of Mongolia could sustainably support current livestock numbers; the western and southern regions, as well as parts of northern Mongolia, have exhibited moderate to critical levels of grassland utilization. A detailed analysis of GCC dynamics and its climatic impacts would offer scientific support for policymakers in managing grasslands in the Mongolian Plateau. Full article
(This article belongs to the Special Issue Remote Sensing for Sustainable Environmental Ecology)
Show Figures

Figure 1

25 pages, 933 KiB  
Review
Influence of Virtual Fencing Technology in Cattle Management and Animal Welfare
by Ishaya Usman Gadzama, Homa Asadi, Qazal Hina and Saraswati Ray
Ruminants 2025, 5(2), 21; https://doi.org/10.3390/ruminants5020021 - 29 May 2025
Viewed by 1381
Abstract
Virtual fencing (VF) technology represents an innovative approach to livestock management, utilizing GPS-enabled collars to establish invisible boundaries through auditory and mild electrical stimuli. While VF offers potential benefits such as enhanced pasture management flexibility and reduced labor costs, its widespread adoption faces [...] Read more.
Virtual fencing (VF) technology represents an innovative approach to livestock management, utilizing GPS-enabled collars to establish invisible boundaries through auditory and mild electrical stimuli. While VF offers potential benefits such as enhanced pasture management flexibility and reduced labor costs, its widespread adoption faces challenges including high initial investment costs, connectivity issues, GPS accuracy limitations, potential device durability concerns, and individual animal variability in learning and response. Furthermore, despite studies showing rapid learning and generally minimal long-term welfare impacts, questions remain regarding optimizing training protocols, addressing occasional short-term behavioral disruptions and collar abrasions, assessing long-term welfare effects across diverse systems (especially intensive and dairy), and improving scalability. To comprehensively assess the potential and limitations of this technology and guide its future development and implementation, a review integrating existing knowledge on the efficacy, welfare implications, and practical applications of VF in cattle production systems is essential. This review examines the efficacy, welfare implications, and practical applications of VF in cattle production systems. Studies demonstrate that cattle rapidly learn to associate auditory cues with electrical pulses, achieving high containment rates (≥90%) within days, with minimal long-term welfare impacts as indicated by stable cortisol levels. However, short-term behavioral disruptions and occasional collar-related abrasions have been reported, particularly in dairy cattle. While VF enhances pasture management flexibility and reduces labor costs, challenges such as connectivity issues, individual animal variability, and high initial investment costs limit its widespread adoption. The findings suggest that VF is a promising tool for precision livestock farming, though further research is needed to optimize training protocols, assess long-term welfare effects, and improve scalability across diverse farming systems. Full article
(This article belongs to the Special Issue Feature Papers of Ruminants 2024–2025)
Show Figures

Graphical abstract

16 pages, 3687 KiB  
Article
Filling the Spring Gap in Southern Australia: Seasonal Activity of Four Dung Beetle Species Selected to Be Imported from Morocco
by Hasnae Hajji, Abdellatif Janati-Idrissi, Alberto Zamprogna, José Serin, Jean-Pierre Lumaret, Nassera Kadiri, Saleta Pérez Vila, Patrick V. Gleeson, Jane Wright and Valérie Caron
Insects 2025, 16(5), 538; https://doi.org/10.3390/insects16050538 - 20 May 2025
Viewed by 609
Abstract
Dung beetles are important ecosystem engineers, as they utilize the excrement produced by animals. For nearly 60 years, several species of dung beetle have been introduced to Australia to help mitigate the problems caused by the accumulation of livestock dung. The twenty-three successfully [...] Read more.
Dung beetles are important ecosystem engineers, as they utilize the excrement produced by animals. For nearly 60 years, several species of dung beetle have been introduced to Australia to help mitigate the problems caused by the accumulation of livestock dung. The twenty-three successfully established species directly contribute to reducing the environmental impacts from dung accumulation, providing improvements to soil health, pasture productivity and pest fly reduction. Despite this success, there are still geographical and seasonal gaps in dung beetle activity, causing dung to remain on the soil surface. The continued importation of new dung beetle species is warranted to fill these gaps. One of the significant remaining gaps is during spring in southern Australia. Four spring-active dung species from Morocco were selected for a new importation program (2018–2022): Euonthophagus crocatus, Onthophagus vacca, Onthophagus marginalis subsp. andalusicus and Gymnopleurus sturmi. These species were surveyed at four sites in Morocco on an altitudinal gradient to assess their seasonal activity. The four species were found at all sites during spring, but in varying abundances, with different species dominating different sites. This is most likely due to differences in local conditions such as soil type. Seasonal activity varied depending on elevation. Gymnopleurus sturmi was found to be active later in the season and should be considered as a summer species. The four species selected will be, if they establish, a useful addition to the already introduced and established dung beetle fauna in Australia. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

22 pages, 4533 KiB  
Article
Meta-Analysis of Mixed Sowing Effects on Forage Yield and Water Use Efficiency in China: Influencing Factors and Optimal Conditions
by Weiqiang Guo, Yuanbo Jiang, Minhua Yin, Yi Ling, Yanxia Kang, Guangping Qi, Yaya Duan, Yanlin Ma, Yushuo Liu, Gen Ling and Kaili Pan
Plants 2025, 14(9), 1283; https://doi.org/10.3390/plants14091283 - 23 Apr 2025
Viewed by 594
Abstract
Mixed sowing of forage grass can reduce soil erosion, improving forage nutritional composition, enhancing grassland productivity, and increasing community stability. It addresses issues faced by sown pasture, including a lack of diversity in planting patterns, low resource utilization efficiency, and poor sustainability. However, [...] Read more.
Mixed sowing of forage grass can reduce soil erosion, improving forage nutritional composition, enhancing grassland productivity, and increasing community stability. It addresses issues faced by sown pasture, including a lack of diversity in planting patterns, low resource utilization efficiency, and poor sustainability. However, the effects of mixed sowing on forage yield and water use efficiency (WUE) vary depending on regional environmental conditions, management practices, and temporal factors. Based on publicly available field experiment data, this study utilized meta-analysis to quantitatively examine the effects of mixed sowing on forage yield and WUE in China. Additionally, a random forest model was employed to analyze the main influencing factors. The results showed that, compared with monoculture, mixed sowing significantly improved forage yield and WUE, with average increases of 58.3% (confidence interval: 44.3–72.3%) and 32.0% (confidence interval: 19.2–44.8%), respectively. Regarding yield, the effect of mixed sowing was the most pronounced in Shaanxi. Optimal conditions included experiments conducted during 2006–2008, annual precipitation of 200–600 mm, soil pH of 4−5, average annual temperature of 10–15 °C, altitudes below 2000 m, alfalfa (Medicago sativa) and Bromus inermis as the forage combination, two species in the mixture, a legume-to-grass species ratio of 1:1, a total seeding rate of 40–50 kg·ha−1, and mixed sowing in the same row. For WUE, significant effects were observed in Gansu under the following conditions: experiments conducted during 2018–2020, annual precipitation of 400–600 mm, an average annual temperature of 5–10 °C, a soil pH of 8–9, altitudes of 1000–2000 m, oats (Avena sativa) and peas (Pisum sativum) as the forage combination, two species in the mixture, a legume-to-grass species ratio of 1:1, a total seeding rate of <50 kg·ha−1, and mixed sowing in alternate rows. The random forest model indicated that the effects of mixed sowing on forage yield were primarily influenced by annual precipitation, average annual temperature, and experimental region. In contrast, the effects on WUE were mainly determined by forage combination, species type, and the legume-to-grass species ratio. This study provides a reference for enhancing alfalfa productivity and achieving efficient water use. Full article
Show Figures

Figure 1

20 pages, 6894 KiB  
Article
Restoring Soil Health with Legume-Based Integrated Farming Systems
by Ana Clara Santos Duarte, Jaqueline de Cássia de Oliveira, Warley Rodrigues de Oliveira, Igor Costa de Freitas, Álissam de Sá Cardoso, Alex José Silva Couto, Walter José Rodrigues Matrangolo, Karina Toledo da Silva, Rodinei Facco Pegoraro and Leidivan Almeida Frazão
Sustainability 2025, 17(8), 3340; https://doi.org/10.3390/su17083340 - 9 Apr 2025
Viewed by 670
Abstract
Faced with the dual challenge of increasing agricultural production (both intensified and diversified) and improving soil health, this study investigated the capacity of legume-based integrated farming systems to restore soil health in the Brazilian Cerrado. For that, we evaluated two experiments in the [...] Read more.
Faced with the dual challenge of increasing agricultural production (both intensified and diversified) and improving soil health, this study investigated the capacity of legume-based integrated farming systems to restore soil health in the Brazilian Cerrado. For that, we evaluated two experiments in the Minas Gerais State comparing the following land use systems: native vegetation (NV), conventional tillage with Zea mays (CT-8), two pasture systems with Urochloa decumbens (PAST-13) and Urochloa brizantha (PAST-1), and three integrated production systems arranged with Cratylia argentea + Zea mays (IPS-8A), Gliricidia sepium + Zea mays (IPS-8B) and Cratylia argentea + Urochloa brizantha (IPS-1). To assess seasonal variations in microbial attributes (microbial carbon [Cmic], microbial quotient (qMIC), and enzymatic activity, we collected soil samples during the rainy season (December 2021) and the dry season (July 2022). Soil carbon (C) and nitrogen (N) stocks were also evaluated. The soil C and N stocks in pasture systems were similar to VN, with values of 120 and 8.2 Mg ha−1 in PAST-1 at 0–30 cm. Additionally, integrated systems with legume crops promoted an increase in soil C stocks up to 24% (IPS-8B) when compared to monoculture cultivated under conventional tillage (CT-8). We also found that the legume-based integrated farming systems increased Cmic and β-glucosidase activity at the surface layers. Our findings demonstrate that integrated systems utilizing Cratylia argentea and Gliricidia sepium offer a promising approach to soil health restoration and a potential replacement for annual crop and pasture monocultures in the Brazilian Cerrado. Full article
(This article belongs to the Special Issue Sustainable Crop Production and Agricultural Practices)
Show Figures

Figure 1

12 pages, 1982 KiB  
Article
Validating a Bayesian Spatio-Temporal Model to Predict La Crosse Virus Human Incidence in the Appalachian Mountain Region, USA
by Maggie McCarter, Stella C. W. Self, Huixuan Li, Joseph A. Ewing, Lídia Gual-Gonzalez, Mufaro Kanyangarara and Melissa S. Nolan
Microorganisms 2025, 13(4), 812; https://doi.org/10.3390/microorganisms13040812 - 3 Apr 2025
Cited by 1 | Viewed by 868
Abstract
La Crosse virus (LACV) is a rare cause of pediatric encephalitis, yet identifying and mitigating transmission foci is critical to detecting additional cases. Neurologic disease disproportionately occurs among children, and survivors often experience substantial, life-altering chronic disability. Despite its severe clinical impact, public [...] Read more.
La Crosse virus (LACV) is a rare cause of pediatric encephalitis, yet identifying and mitigating transmission foci is critical to detecting additional cases. Neurologic disease disproportionately occurs among children, and survivors often experience substantial, life-altering chronic disability. Despite its severe clinical impact, public health resources to detect and mitigate transmission are lacking. This study aimed to design a Bayesian modelling approach to effectively identify and predict LACV incidence for geospatially informed public health interventions. A Bayesian negative binomial spatio-temporal regression model best fit the data and demonstrated high accuracy. Nine variables were statistically significant in predicting LACV incidence for the Appalachian Mountain Region. Proportion of children, proportion of developed open space, and proportion of barren land were positively associated with LACV incidence, while vapor pressure deficit index, year, and proportions of developed high intensity land, evergreen forest, hay pasture, and woody wetland were negatively associated with LACV incidence. Model prediction error was low, less than 2%, indicating high accuracy in predicting annual LACV human incidence at the county level. In summary, this study demonstrates the utility of Bayesian negative binomial spatio-temporal regression models for predicting rare but medically important LACV human cases. Future studies could examine more granular models for predicting LACV cases from localized variables such as mosquito control efforts, local reservoir host density and local weather fluctuations. Full article
(This article belongs to the Special Issue Interactions between Parasites/Pathogens and Vectors)
Show Figures

Figure 1

29 pages, 1296 KiB  
Review
Livestock Slurry and Sustainable Pasture Management: Microbial Roles, Environmental Impacts, and Regulatory Perspectives in Ireland and Europe
by Mariana Juca Silva, Ismin Zainol, João Rui Tanoeiro, Aline Sitowski, Ian Major, Emma J. Murphy and Gustavo Waltzer Fehrenbach
Microorganisms 2025, 13(4), 788; https://doi.org/10.3390/microorganisms13040788 - 29 Mar 2025
Viewed by 1033
Abstract
Pastures serve as the primary source of grass and forage plants for grazing livestock, requiring adequate nutrient input to sustain growth and soil fertility. Slurry from the livestock industry is widely utilized as a sustainable and cost-effective alternative to chemical fertilizers. Microorganisms within [...] Read more.
Pastures serve as the primary source of grass and forage plants for grazing livestock, requiring adequate nutrient input to sustain growth and soil fertility. Slurry from the livestock industry is widely utilized as a sustainable and cost-effective alternative to chemical fertilizers. Microorganisms within the slurry–pasture system are essential for breaking down organic matter, facilitating nutrient cycling, and improving soil health. However, mismanagement or inefficient microbial decomposition can lead to significant issues, such as nutrient leaching into water bodies, causing eutrophication, antimicrobial resistance, and reduced nutrient availability in pastures, which, in turn, may negatively impact livestock productivity. Thus, this paper investigates the composition and benefits of livestock slurry in pasture management, highlights microbial roles in nutrient cycling, and evaluates regulatory frameworks in Ireland and Europe. Additionally, it examines the environmental risks associated with improper slurry application, providing insights to support sustainable management practices. Full article
Show Figures

Figure 1

14 pages, 4222 KiB  
Article
Genetic Structure and Selection Signals for Extreme Environment Adaptation in Lop Sheep of Xinjiang
by Chenchen Yang, Jieru Wang, Lanshu Bi, Di Fang, Xin Xiang, Abliz Khamili, Waili Kurban, Chunmei Han and Qinghua Gao
Biology 2025, 14(4), 337; https://doi.org/10.3390/biology14040337 - 25 Mar 2025
Viewed by 686
Abstract
Objective: Lop sheep species exhibit remarkable adaptability to desert pastures and extreme arid climates, demonstrating tolerance to rough feeding and high resistance to stress. However, little is known about the population genetic diversity of Lop sheep and the genetic mechanisms underlying their adaptability [...] Read more.
Objective: Lop sheep species exhibit remarkable adaptability to desert pastures and extreme arid climates, demonstrating tolerance to rough feeding and high resistance to stress. However, little is known about the population genetic diversity of Lop sheep and the genetic mechanisms underlying their adaptability to extreme environments. Methods: Blood samples were collected from a total of 110 individuals comprising 80 Ruoqiang Lop sheep and 30 Yuli Lop sheep. A total of 110 Lop sheep were subjected to whole genome resequencing to analyze genetic diversity, population structure, and signatures of selection in both regions. Results: The genetic diversity of the Lop sheep population is substantial, and the degree of inbreeding is low. In comparison to the Lop sheep in Yuli County, the genetic diversity and linkage disequilibrium analysis results for the Lop sheep population in Ruoqiang County are slightly lower. Population structure analysis indicates that Ruoqiang and Yuli Lop sheep have differentiated into two independent groups. Using Yuli Lop sheep as the reference group, an analysis of the extreme environmental adaptability selection signal of Lop sheep was conducted. The FST and π ratio under the 1% threshold identified 1686 and 863 candidate genes, respectively, with their intersection yielding a total of 122 candidate genes. Functional annotation revealed that these genes are associated with various traits, including immune response (SLC12A2, FOXP1, PANX1, DYNLRB2, RAP1B, and SEMA4D), heat and cold resistance (DNAJC13, PLCB1, HIKESHI, and PITPNC1), desert adaptation (F13A1, PANX1, ST6GAL1, STXBP3, ACTN4, and ATP6V1A), and reproductive performance (RAP1B, RAB6A, PLCB1, and METTL15). Conclusions: These research findings provide a theoretical foundation for understanding the survival and reproductive characteristics of Lop sheep in extreme environments, and they hold practical value for the conservation and utilization of Lop sheep genetic resources, as well as for genetic improvement efforts. Full article
(This article belongs to the Section Zoology)
Show Figures

Figure 1

15 pages, 1997 KiB  
Article
Accounting for Diurnal Variation in Enteric Methane Emissions from Growing Steers Under Grazing Conditions
by Edward J. Raynor, Pedro H. V. Carvalho, Juan de J. Vargas, Edilane C. Martins, Willian A. Souza, Anna M. Shadbolt, Afrin Jannat, Sara E. Place and Kimberly R. Stackhouse-Lawson
Grasses 2025, 4(1), 12; https://doi.org/10.3390/grasses4010012 - 14 Mar 2025
Viewed by 1091
Abstract
Automated head chamber systems (AHCS) are increasingly deployed to measure enteric emissions in vivo. However, guidance for AHCS-derived emissions data analyses pertains to confined settings, such as feedlots, with less instruction for grazing systems. Accordingly, our first objective in this experiment was to [...] Read more.
Automated head chamber systems (AHCS) are increasingly deployed to measure enteric emissions in vivo. However, guidance for AHCS-derived emissions data analyses pertains to confined settings, such as feedlots, with less instruction for grazing systems. Accordingly, our first objective in this experiment was to determine the utility of two data preprocessing approaches for grazing-based analyses. Using Pearson’s correlation, we compared “simple arithmetic” and “time-bin” averaging to arrive at a single estimate of daily gas flux. For our second objective, we evaluated test period length averaging at 1, 3, 7, and 14 d intervals to determine daily pasture-based emissions estimates under two experimental conditions: herd access to a single AHCS unit vs. two AHCS units. Unlike findings from the confinement-based literature, where slight improvements have been observed, time-bin averaging, compared to simple arithmetic averaging, did not improve gas flux estimation from grazing for CH4 (p ≥ 0.46) or CO2 (p ≥ 0.60). Irrespective of experimental condition, i.e., herd access to a single AHCS unit vs. two AHCS units, assessment of variability of diurnal emissions patterns revealed CH4 flux on pasture had at least half as much variability for the same individuals acclimated in confinement. Using a 7-day test period length interval, aggregating gas flux data at 7 d at a time was adequate for capturing diurnal emissions variation in grazing steers, as no improvement was observed in the percentage of individuals with five of six time bins measured for a 14-day test period length interval. This analysis should provide insights into future research to standardize AHCS data preprocessing across experiments and research groups. Full article
(This article belongs to the Special Issue Advances in Grazing Management)
Show Figures

Figure 1

24 pages, 9612 KiB  
Article
Developing an Urban Digital Twin for Environmental and Risk Assessment: A Case Study on Public Lighting and Hydrogeological Risk
by Vincenzo Barrile, Emanuela Genovese, Clemente Maesano, Sonia Calluso and Maurizio Pasquale Manti
Future Internet 2025, 17(3), 110; https://doi.org/10.3390/fi17030110 - 1 Mar 2025
Viewed by 1535
Abstract
Improvements in immersive technology are opening up new opportunities for land management and urban planning, enabling the creation of detailed virtual models for examining and simulating real-world short-, medium-, and long-term scenarios. The goal of this research is to present the creation of [...] Read more.
Improvements in immersive technology are opening up new opportunities for land management and urban planning, enabling the creation of detailed virtual models for examining and simulating real-world short-, medium-, and long-term scenarios. The goal of this research is to present the creation of an urban digital twin based on a virtual reality city replica, that models and visualizes the urban environment in three dimensions using advanced geomatics techniques and IoT technologies. The methodology focuses on two case studies that utilize environmental analysis and virtual simulation: assessing hydrogeological risk and evaluating public light pollution. The Cesium platform was employed to build high-precision 3D models based on topographic, meteorological, and infrastructure data. The proposed methodology calculated a correlation between light pollution and CO2 equal to 0.51 and a correlation between precipitation, slope, and risk area higher than 0.80. The most critical and high-risk classes are as follows: Dense Discontinuous Urban Fabric, Roads and Associated Lands, Pastures, and Forests. Results show how an urban digital twin can be a powerful tool for monitoring and territorial planning, with concrete applications in the public and risk management fields. This study also highlights the importance of geomatics technologies in the creation of realistic and functional virtual environments for the assessment and sustainable management of urban resources. Full article
(This article belongs to the Special Issue Advances in Smart Environments and Digital Twin Technologies)
Show Figures

Figure 1

19 pages, 1200 KiB  
Article
Lowland Sedge Meadows as a Potential Source of Macro and Micronutrient Supplementation
by Magdalena Janyszek-Sołtysiak, Maciej Murawski, Leszek Majchrzak and Bogusława Waliszewska
Agronomy 2025, 15(3), 539; https://doi.org/10.3390/agronomy15030539 - 23 Feb 2025
Viewed by 496
Abstract
From the point of view of farming utilization, investigations on the recognition of the mineral composition of sedges appears important, appropriate and useful. Sedges are often found in many meadow and pasture communities. It is therefore worth paying attention to the mineral content [...] Read more.
From the point of view of farming utilization, investigations on the recognition of the mineral composition of sedges appears important, appropriate and useful. Sedges are often found in many meadow and pasture communities. It is therefore worth paying attention to the mineral content of their tissues and their possible impact on the organisms of farm animals such as pigs. The basic objective of this study was to determine the concentration of selected macro and microelements: phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), silicon (Si), copper (Cu), zinc (Zn), chrome (Cr) and nickel (Ni) in the biomass of seven sedge species, potentially used as fodder, commonly occurring in natural sites in Central Europe. The material was collected twice during one growing season in the Krześniczka (N 52°37′14′ E 14°46′06′)—lubuskie voivodeship. The first harvest was carried out at the beginning of May, during the shooting and earring phase. The collected plant material included stems and leaves. The second harvest—the end of June—was collected at a time when the seedlings were developing flowers and young fruits, and their vegetative organs were developing dynamically. In June, the collected material represented organs in all possible development phases. The collected material was dried at a temperature of 65 °C, ground, and analyzed. The obtained results showed a difference in the content of microelements between the May and June harvest dates in the dry matter of all analyzed sedge species, which differed statistically significantly only in relation to copper. The harvest date had a statistically significant impact on the change in the content of macroelements in the dry matter of all analyzed sedge species and was associated with a decrease in the content of phosphorus, magnesium and calcium, while in the case of silicon, the delay in mowing resulted in an increase in the content of this element. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

18 pages, 2357 KiB  
Article
Pastureland Soil Organic Carbon Storage Regulated by Pasture Species and Age Under Nitrogen and Water Addition in Northern China
by Meji Cuo, Lijun Xu, Bo Yuan, Yingying Nie and Jiaqiang Wei
Agronomy 2025, 15(2), 399; https://doi.org/10.3390/agronomy15020399 - 2 Feb 2025
Cited by 2 | Viewed by 1112
Abstract
Soil organic carbon (SOC) is a key indicator of soil quality and an important component of the global carbon cycle. Enhancing SOC through crop rotation is a promising strategy; yet, the underlying mechanisms for SOC accumulation remain unclear. This study aimed to evaluate [...] Read more.
Soil organic carbon (SOC) is a key indicator of soil quality and an important component of the global carbon cycle. Enhancing SOC through crop rotation is a promising strategy; yet, the underlying mechanisms for SOC accumulation remain unclear. This study aimed to evaluate the effects of different pasture age, pasture species, irrigation, and nitrogen (N) fertilization treatments on SOC content and storage in pastureland, analyzing the SOC content and below-ground biomass (BGB) data of different soil layers (0–10 cm, 10–20 cm, 20–40 cm, 40–60 cm) of each treatment under three factors (pasture species (Bromus inermis, Medicago varia, the 1:1 mixture), irrigation (CK, dry-season supplementation), and N fertilization (0 kg N hm−2 y−1, 75 kg N hm−2 y−1, and 150 kg N hm−2 y−1)), as well as the interaction effects of these factors. Pasture species, water and N addition levels, and pasture age all had significant (p < 0.05) effects on BGB. At the age of 1–3, the SOC content of monocultured Bromus inermis was slightly higher than the monocultured Medicago varia and the mixture, and at the age of 4–5, monocultured Medicago varia and the mixture were slightly higher than the monocultured Bromus inermis. Among them, the mixture was the highest. At the age of 2–5, the BGB of pastureland was significantly influenced by pasture species, N and water addition, and pasture age. Over a 5-year period, SOCs in the surface layer of the fallowed cropland accumulated 32.35 Mg ha−1, showing a very good carbon sequestration effect; especially the planting of a mixed pasture had a more significant positive effect on the accumulation of SOC. Therefore, for the low and medium yielding fields in China, according to the crop utilization target and production cycle, the purpose of improving soil quality can be effectively achieved through crop and grass rotation. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

12 pages, 2268 KiB  
Article
Milk Performance and Grazing Behaviour of Cinisara Cows Supplemented with Low- and High-Polyphenols Faba Bean Varieties
by Massimiliano Lanza, Marialetizia Ponte, Marianna Pipi, Adriana Bonanno, Antonino Di Grigoli, Marcella Avondo and Serena Tumino
Animals 2025, 15(3), 335; https://doi.org/10.3390/ani15030335 - 24 Jan 2025
Viewed by 802
Abstract
The high degradability of crude protein (CP) from fresh grass can impair its utilization in ruminants. The presence of a moderate level of polyphenolic substances in the diet of grazing animals could help to overcome this problem. The study aimed to evaluate the [...] Read more.
The high degradability of crude protein (CP) from fresh grass can impair its utilization in ruminants. The presence of a moderate level of polyphenolic substances in the diet of grazing animals could help to overcome this problem. The study aimed to evaluate the effects of supplementation with two varieties of faba bean, with different polyphenol contents, on milk yield and quality, as well as on grazing behaviour, in Cinisara grazing cows. A total of 30 cows, homogeneous per days in milk (61 ± 29) and milk yield (12.9 kg ± 3.2), fed on a mixed pasture (CP 17.9% DM) and supplied with grains (an equal mixture of barley, oats, and wheat) and mixed hay (CP 10.2% DM), were assigned to three dietary treatments and supplemented as follows: control group (C, 10 cows), 1 kg of hay, 6 kg of grains mixture, and 0.4 kg soybean meal; low polyphenols group (LP, 10 cows), 1 kg of hay, 4 kg of grains mixture, and 2 kg/d of faba bean var. Torrelama (total polyphenols 4.4 mg GAE/g DM; CP 28.4% DM); high polyphenols group (HP, 10 cows), 2 kg of hay, 4 kg of grains mixture, and 2 kg/d of faba bean var. Fanfare (total polyphenols 16.4 mg GAE/g DM; CP 28.9% DM). All groups were allowed to graze for 20 h/d on natural pasture forage. The HP supplement tended to increase the milk yield compared to that of the LP and C groups (17.1 vs. 15.3 and 14.6 kg/d, respectively; p = 0.057) but reduced the protein (3.20 vs. 3.39 and 3.47%; p = 0.009) and casein proportions (2.45 vs. 2.67 and 2.74%, respectively; p = 0.007) compared to those from the LP and C treatments. HP milk also showed a higher milk urea nitrogen (MUN) value compared to that of C milk, while an intermediate level was measured in LP milk (25.5 vs. 22.9 and 20.9 mg/dl, respectively; p = 0.036). No dietary effect was evident in the milk fatty acid profile. Eating time at pasture and biting rate were not affected by supplementation. The results do not seem to suggest a difference in the efficiency of use of supplements with different polyphenol contents. In any case, they seem to demonstrate that the use of faba beans, regardless of their polyphenol content, represents a valid alternative to soyabeans, also taking into account the tendency for an increased milk yield found by integrating pasture grazing with faba beans possessing a high level of polyphenols, without significant worsening of the qualitative characteristics of the milk or negatively affecting grazing behaviour. Full article
(This article belongs to the Special Issue Sustainable Practices for Forage-Based Livestock Production Systems)
Show Figures

Figure 1

Back to TopTop