Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (227)

Search Parameters:
Keywords = pasture biomass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 237 KiB  
Communication
Grazing Reduces Field Bindweed Infestations in Perennial Warm-Season Grass Pastures
by Leonard M. Lauriault, Brian J. Schutte, Murali K. Darapuneni and Gasper K. Martinez
Agronomy 2025, 15(8), 1832; https://doi.org/10.3390/agronomy15081832 - 29 Jul 2025
Viewed by 204
Abstract
Field bindweed (Convolvulus arvensis L.) is a competitive herbaceous perennial weed that reduces productivity in irrigated pastures. Grazing might reduce competition by field bindweed when it begins growth in the spring, thereby encouraging encroachment by desirable grass species during the summer. To [...] Read more.
Field bindweed (Convolvulus arvensis L.) is a competitive herbaceous perennial weed that reduces productivity in irrigated pastures. Grazing might reduce competition by field bindweed when it begins growth in the spring, thereby encouraging encroachment by desirable grass species during the summer. To test this hypothesis, a two-year study was conducted in two adjacent, privately owned, irrigated, warm-season perennial grass pastures (replicates) that were heavily infested with field bindweed. Study sites were near Tucumcari, NM, USA. The fields were grazed with exclosures to evaluate ungrazed management. Aboveground biomass of field bindweed, other weeds, and perennial grass were measured, and field bindweed plants were counted in May of 2018 and 2019. There was no difference between years for any variable. Other weed biomass and field bindweed biomass and plant numbers were reduced (p < 0.05) by grazing (61.68 vs. 41.67 g bindweed biomass m−2 for ungrazed and grazed management, respectively, and 108.5 and 56.8 bindweed plants m−2 for ungrazed and grazed management, respectively). Otherwise, perennial grass production was unaffected by either year or management. These results indicate that grazing can be an effective tool to reduce field bindweed competition in warm-season perennial grass pastures. Full article
(This article belongs to the Section Weed Science and Weed Management)
22 pages, 4093 KiB  
Article
Community Structure and Influencing Factors of Macro-Benthos in Bottom-Seeded Marine Pastures: A Case Study of Caofeidian, China
by Xiangping Xue, Long Yun, Zhaohui Sun, Jiangwei Zan, Xinjing Xu, Xia Liu, Song Gao, Guangyu Wang, Mingshuai Liu and Fei Si
Biology 2025, 14(7), 901; https://doi.org/10.3390/biology14070901 - 21 Jul 2025
Viewed by 197
Abstract
To accurately assess the water quality, ecosystem status, distribution of large benthic organisms, and ecological restoration under human intervention, an analysis of benthic organisms on Caofeidian in September and November 2023 and January and May of the following year was conducted in this [...] Read more.
To accurately assess the water quality, ecosystem status, distribution of large benthic organisms, and ecological restoration under human intervention, an analysis of benthic organisms on Caofeidian in September and November 2023 and January and May of the following year was conducted in this work. By performing CCA (canonical correspondence analysis) and cluster and correlation coefficient (Pearson) analyses, the temporal variation characteristics of benthic abundance, dominant species, community structure and biodiversity were analyzed. A total of 79 species of macro-benthic animals were found in four months, including 32 species of polychaetes, cnidarians, 1 species of Nemertean, 19 species of crustaceans, and 24 species of molluscs. The use of conventional grab-type mud collectors revealed that the Musculus senhousei dominated the survey (Y > 0.02). While only a small number of Ruditapes philippinarum were collected from bottom-dwelling species, a certain number of bottom-dwelling species (Ruditapes philippinarum and Scapharca subcrenata) were also collected during the trawl survey. Additionally, a significant population of Rapana venosa was found in the area. It is speculated that the dual effects of predation and competition are likely the primary reasons for the relatively low abundance of bottom-dwelling species. The density and biomass of macro-benthos were consistent over time, which was the highest in May, the second highest in January, and the lowest in September and November. The main environmental factors affecting the large benthic communities in the surveyed sea areas were pH, DO, NO2-N, T, SAL and PO43−-P. Combined with historical data, it was found that although the environmental condition in the Caofeidian sea area has improved, the Musculus senhousei has been dominant. In addition, the abundance of other species is much less than that of the Musculus senhousei, and the diversity of the benthic community is still reduced. Our work provides valuable data support for the management and improvement of bottom Marine pasture and promotes the transformation of Marine resources from resource plunder to a sustainable resource. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
Show Figures

Figure 1

16 pages, 982 KiB  
Article
Silent Allies: Endophytic Entomopathogenic Fungi Promote Biological Control and Reduce Spittlebug Mahanarva spectabilis Distant, 1909 (Hemiptera: Cercopidae)
by Michelle O. Campagnani, Luís Augusto Calsavara, Charles Martins de Oliveira and Alexander Machado Auad
J. Fungi 2025, 11(7), 492; https://doi.org/10.3390/jof11070492 - 27 Jun 2025
Viewed by 340
Abstract
Urochloa ruziziensis (R. Germ. and C.M. Evrard) Crins (synonym Brachiaria ruziziensis) Poales: Poaceae) pastures are often attacked by spittlebugs, compromising their biomass for livestock usage. A sustainable control method involves the use of entomopathogenic fungi. Therefore, the objective of this study was [...] Read more.
Urochloa ruziziensis (R. Germ. and C.M. Evrard) Crins (synonym Brachiaria ruziziensis) Poales: Poaceae) pastures are often attacked by spittlebugs, compromising their biomass for livestock usage. A sustainable control method involves the use of entomopathogenic fungi. Therefore, the objective of this study was to evaluate the efficacy of controlling Mahanarva spectabilis Distant, 1909 (Hemiptera: Cercopidae), in greenhouse and field conditions via endophytic entomopathogenic fungi. In the greenhouse, the mortality of nymphs and adults was 100%, and more than 53% of the nymphs and 59% of the adults that fed on plants inoculated with Fusarium multiceps and Metarhizium anisopliae presented with these fungi in their cadavers. In the field, more than 45% of the insect cadavers that had fed on plants grown from fungus-treated seeds were found to contain the fungi. F. multiceps was found to be endophytic in more than 60% of the plants up to 90 days after seed treatment, and M. anisopliae was found in more than 70% of the plants up to 120 days after treatment. The damage scores of the control plants, both in the greenhouse and in the field, were greater than those of the plants inoculated with the fungi. F. multiceps and M. anisopliae in the endophytic pathway of U. ruziziensis are therefore efficient at controlling spittlebugs. Full article
Show Figures

Figure 1

25 pages, 3010 KiB  
Article
Wheat Straw Biochar Amendment Increases Salinity Stress Tolerance in Alfalfa Seedlings by Modulating Physiological and Biochemical Responses
by Shangzhi Zhong, Pengxin Hou, Congcong Zheng, Xuechen Yang, Qibo Tao and Juan Sun
Plants 2025, 14(13), 1954; https://doi.org/10.3390/plants14131954 - 26 Jun 2025
Viewed by 572
Abstract
Salinity stress is a major environmental challenge that adversely impacts the physiological and biochemical processes of pasture, consequently resulting in reduced yields and compromised quality. Biochar amendment has recently emerged as a promising strategy to alleviate the deleterious effects of salinity stress. However, [...] Read more.
Salinity stress is a major environmental challenge that adversely impacts the physiological and biochemical processes of pasture, consequently resulting in reduced yields and compromised quality. Biochar amendment has recently emerged as a promising strategy to alleviate the deleterious effects of salinity stress. However, the interactive influences of salinity stress and wheat straw biochar on the physiological, biochemical, and growth characteristics of alfalfa (Medicago sativa L.) remain underexplored. A factorial experiment was conducted using a randomized complete design with five salinity levels (0, 25, 50, 75, and 100 mM NaCl) and three application rates of biochar (0, 25, and 50 g kg−1) to evaluate wheat straw biochar’s potential in alleviating salinity stress in alfalfa. Results showed that salinity stress increased oxidative stress (hydrogen peroxide and malondialdehyde) and reduced chlorophyll fluorescence (maximum quantum efficiency of photosystem II by 1–27%), leading to decreasing photosynthetic parameters, thereby constraining biomass accumulation by 9–77%. Wheat straw biochar amendment under the highest salinity stress, particularly at 25 g kg−1, mitigated oxidative stress by reducing H2O2 and MDA levels by 35% and 33%, respectively, while decreasing the antioxidant enzymes activities of CAT, POD, and SOD by 47%, 42%, and 39%, respectively, compared to the control (non-biochar addition). Concurrently, biochar restored the osmoregulatory substance concentrations of proline and soluble sugar by 59% and 33%, respectively, compared to the control. Furthermore, wheat straw biochar amendment increased the net CO2 assimilation rate by 98%, thereby increasing biomass by 63%. Our study demonstrates that wheat straw biochar can contribute to protecting alfalfa against salinity stress by modulating physiological and biochemical responses. These findings demonstrate that the 25 g kg−1 wheat straw biochar application had the best performance, suggesting this amendment could be a viable strategy for improving alfalfa productivity in salt-affected soils. Future research should explore long-term field applications and the underlying mechanisms of biochar–plant–soil–plant interactions under diverse saline-alkali environments. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

18 pages, 11896 KiB  
Article
Spatio-Temporal Variations in Grassland Carrying Capacity Derived from Remote Sensing NPP in Mongolia
by Boldbayar Rentsenduger, Qun Guo, Javzandolgor Chuluunbat, Dul Baatar, Mandakh Urtnasan, Dashtseren Avirmed and Shenggong Li
Sustainability 2025, 17(12), 5498; https://doi.org/10.3390/su17125498 - 14 Jun 2025
Viewed by 492
Abstract
The escalation in the population of livestock coupled with inadequate precipitation has caused a reduction in pasture biomass, thereby resulting in diminished grassland carrying capacity (GCC) and pasture degradation. In this research, net primary productivity (NPP) data, sourced from the Global Land Surface [...] Read more.
The escalation in the population of livestock coupled with inadequate precipitation has caused a reduction in pasture biomass, thereby resulting in diminished grassland carrying capacity (GCC) and pasture degradation. In this research, net primary productivity (NPP) data, sourced from the Global Land Surface Satellite (GLASS) and Moderate Resolution Imaging Spectroradiometer (MODIS) datasets from 1982 to 2020, were initially transformed into aboveground biomass (AGB) estimates. These estimates were subsequently utilized to evaluate and assess the long-term trends of GCC across Mongolia. The MODIS data indicated an upward trend in AGB from 2000 to 2020, whereas the GLASS data reflected a downward trend from 1982 to 2018. Between 1982 and 2020, climatic analysis uncovered robust positive correlations between AGB and precipitation (R > 0.80) and negative correlations with temperature (R < −0.60). These climatic alterations have led to a reduction in AGB, further impairing the regenerative capacity of grasslands. Concurrently, livestock numbers have generally increased since 1982, with a decrease in certain years due to dzud and summer drought, leading to the increase in the GCC. GCC assessment found that 37.5% of grasslands experienced severe overgrazing and 31.9–40.7% was within sustainable limits. Spatially, the eastern region of Mongolia could sustainably support current livestock numbers; the western and southern regions, as well as parts of northern Mongolia, have exhibited moderate to critical levels of grassland utilization. A detailed analysis of GCC dynamics and its climatic impacts would offer scientific support for policymakers in managing grasslands in the Mongolian Plateau. Full article
(This article belongs to the Special Issue Remote Sensing for Sustainable Environmental Ecology)
Show Figures

Figure 1

19 pages, 1662 KiB  
Article
Apennine Natural Pasture Areas: Soil, Plant, and Livestock Interactions and Ecosystem Characterization
by Antonella Fatica, Alessio Manzo, Erika Di Iorio, Luana Circelli, Francesco Fantuz, Luca Todini, Thomas W. Crawford, Claudio Colombo and Elisabetta Salimei
Sustainability 2025, 17(12), 5238; https://doi.org/10.3390/su17125238 - 6 Jun 2025
Viewed by 571
Abstract
Grasslands and livestock are essential to support the diversity of soils, plants, and animals. This study analyzes changes that occurred from 2019 to 2022 in two protected pasture areas of the Italian Apennines, designated as UNESCO (area 1) and NATURA2000 (area 2). In [...] Read more.
Grasslands and livestock are essential to support the diversity of soils, plants, and animals. This study analyzes changes that occurred from 2019 to 2022 in two protected pasture areas of the Italian Apennines, designated as UNESCO (area 1) and NATURA2000 (area 2). In each area, three sampling sites were identified and georeferenced, and the soil was studied. Forage quality and productivity were assessed from botanical and chemical perspectives using biomass samples. Adult bovine unit and grazing index were calculated. Soils, classified as Phaeozems in area 1 and Fluvisols in area 2, exhibit a weak structure with an increased risk of compaction and erosion. The height of forage species and vegetal diversity increased during the study, and variations in botanical and chemical composition were observed. Forage productivity averaged 2760 (±1380 SEM) kg DM/ha in area 1 and 3740 (±1160) kg DM/ha in area 2. Animal population declined by 11.4% in area 1 and by 1.14% in area 2, along with a decrease in the number of livestock farms. From a multidisciplinary perspective, improving management would enhance the ecosystem services of pasture areas, including promoting the role of soil as a carbon sink. The results present means of resilience to enhance cultural and naturalistic values of sites in inner Mediterranean ecosystems. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

14 pages, 3284 KiB  
Article
Changes in Biomass Production, Plant Diversity, and Their Relationship During the Early Establishment of Artificial Alpine Grasslands with Different Species Combinations
by Shu Wang, Runfang Feng, Jikui Ma, Nannan Wang, Linfeng Ji, Xiufen Zhao, Xiaoli Wang, Fei Ren, Honglin Li, Defei Liang, Jing Hu, Xilai Li and Lanping Li
Diversity 2025, 17(5), 341; https://doi.org/10.3390/d17050341 - 12 May 2025
Viewed by 334
Abstract
The establishment of artificial grasslands is a highly effective strategy for the rapid restoration of degraded grasslands. To investigate the dynamics of biomass production and plant diversity—two critical objectives of grassland restoration—and their relationship during the early stages of artificial grassland establishment, we [...] Read more.
The establishment of artificial grasslands is a highly effective strategy for the rapid restoration of degraded grasslands. To investigate the dynamics of biomass production and plant diversity—two critical objectives of grassland restoration—and their relationship during the early stages of artificial grassland establishment, we conducted an experiment in Menyuan County, located in the northeastern region of the Qinghai-Tibet Plateau. The experiment involved sowing different combinations of species (one, three, six, and nine species). Using data collected over three years (2021–2023), we found that biomass production generally increased over time. Specifically, in the second year, biomass production exhibited a unimodal relationship with the number of sown species, while in the third year, it increased linearly with the number of sown species. Plant diversity, which includes both sown and naturally occurring species, initially increased with the number of sown species in the first year but decreased in mixed sown plots in the third year. In the first year, biomass production was not correlated with plant diversity, whereas in the second and third years, biomass production decreased as plant diversity increased. This pattern was primarily driven by the accelerated growth of Gramineae. These results highlight the complex dynamics between biomass production and plant diversity during the early stages of artificial alpine grassland establishment. Our findings suggest that a trade-off between biomass and biodiversity should be carefully considered when designing restoration strategies, as achieving both high productivity and biodiversity may require a more nuanced approach. Full article
Show Figures

Figure 1

14 pages, 3921 KiB  
Article
Soil Organic Carbon Content and Density in Response to Pika Outbreaks Along the Altitudinal Gradient in Alpine Meadows of the Qinghai–Tibet Plateau, West China
by Wenzhi Yao, Jing Zhang and Xilai Li
Land 2025, 14(5), 981; https://doi.org/10.3390/land14050981 - 1 May 2025
Viewed by 359
Abstract
This study investigated the effects of plateau pika (Ochotona curzoniae) disturbances and altitude on soil organic carbon (SOC) storage characteristics, including SOC content and SOC density (SOCD). In this study, plateau pika outbreak areas and non-outbreak areas at different altitudes were [...] Read more.
This study investigated the effects of plateau pika (Ochotona curzoniae) disturbances and altitude on soil organic carbon (SOC) storage characteristics, including SOC content and SOC density (SOCD). In this study, plateau pika outbreak areas and non-outbreak areas at different altitudes were compared in terms of vegetation biomass, soil physicochemical properties, SOC content and SOCD to establish the relationship between vegetation and soil characteristics (including SOC content and SOCD). The results showed that SOC and SOCD decreased significantly (p < 0.01) in plateau pika outbreak areas, but SOCD increased first and then decreased with elevation in non-outbreak areas. Soil total nitrogen (TN) content decreased significantly (p < 0.01) with elevation in both plateau pika outbreak and non-outbreak areas. There were significant differences (p < 0.05) in total phosphorus (TP) at low elevations and nitrate nitrogen (NO3-N) at high elevations between outbreak and non-outbreak areas, but other nutrients did not differ hugely between outbreak and non-outbreak areas at the same elevation. Correlation analysis revealed that belowground biomass (BGB) in the plateau pika outbreak area was significantly and positively correlated with SOC (p < 0.01); structural equation modeling (SEM) analysis revealed that altitude had a direct effect on SOC (path coefficient = −0.882, p < 0.001) in the plateau pika outbreak area, but only a reduced influence on SOC and SOCD in the non-outbreak area; nitrate nitrogen in the plateau pika outbreak area and TN were the key influencing factors, which exerted a strong direct influence on SOC and SOCD (path coefficient = −0.666 and 0.639 (p < 0.001), respectively). Therefore, increasing vegetation biomass and nitrogen nutrient content through reseeding pasture and fertilization can facilitate the accumulation and recovery of SOC and SOCD in the ecological restoration of degraded alpine meadows, and it is especially important to quickly enrich soil nitrogen content in the outbreak area of plateau pika populations at high altitudes. Full article
Show Figures

Figure 1

23 pages, 1032 KiB  
Article
The Role of Forest Conversion and Agroecological Practices in Enhancing Ecosystem Services in Tropical Oxisols of the Amazon Basin
by Tancredo Souza, Gislaine dos Santos Nascimento, Diego Silva Batista, Agnne Mayara Oliveira Silva and Milton Cesar Costa Campos
Forests 2025, 16(5), 740; https://doi.org/10.3390/f16050740 - 25 Apr 2025
Viewed by 472
Abstract
This study evaluates the effectiveness of agroecological practices—organic fertilization and biofertilization—in enhancing ecosystem services in agroforestry and pasture systems. A field experiment was conducted over three years, comparing these practices to a control treatment and a natural ecosystem as a reference. Soil chemical, [...] Read more.
This study evaluates the effectiveness of agroecological practices—organic fertilization and biofertilization—in enhancing ecosystem services in agroforestry and pasture systems. A field experiment was conducted over three years, comparing these practices to a control treatment and a natural ecosystem as a reference. Soil chemical, physical, and biological parameters were assessed, including soil organic carbon (SOC), microbial respiration, root density, and gene abundances of key microbial groups (Archaea, Bacteria, and Fungi). Organic fertilization resulted in a significant increase in SOC, phosphorus, microbial biomass, and root density, indicating improved soil structure and fertility. Biofertilization showed selective effects, promoting archaeal abundance but reducing bacterial and fungal diversity. Seasonal variation influenced nutrient cycling, with organic fertilization buffering against dry-season declines in microbial activity and nutrient availability. Aboveground dry biomass and litter deposition were highest in the natural ecosystem, followed by organic fertilization treatments in agroforestry and pasture systems. Despite improvements under agroecological management, the natural ecosystem consistently maintained superior soil quality and biological resilience. The findings highlight that organic inputs and diversified cropping systems enhance soil health but do not fully replicate the ecological benefits of undisturbed forests. In conclusion, agroecological practices provide viable alternatives to mitigate soil degradation and sustain ecosystem services in tropical Oxisols. Organic fertilization emerges as the most effective strategy, fostering long-term improvements in soil fertility and microbial dynamics. However, continued research is needed to optimize these practices for greater resilience and sustainability in Amazonian agroecosystems. Full article
(This article belongs to the Special Issue Fungal Metagenome of Tropical Soils)
Show Figures

Figure 1

31 pages, 10924 KiB  
Article
Agriculture’s Potential Regional Economic Contributions to the United States Economy When Supplying Feedstock to the Bio-Economy
by Burton C. English, Robert Jamey Menard, Daniel G. de la Torre Ugarte, Lixia H. Lambert, Chad M. Hellwinckel and Matthew H. Langholtz
Energies 2025, 18(8), 2081; https://doi.org/10.3390/en18082081 - 17 Apr 2025
Viewed by 373
Abstract
The economic impact of obtaining biomass could become significant to U.S. rural economies via the establishment of a bioeconomy. In 2023, the Bioenergy Technologies Office (BETO) and Oak Ridge National Laboratory provided a road map to obtain over a billion tons of biomass [...] Read more.
The economic impact of obtaining biomass could become significant to U.S. rural economies via the establishment of a bioeconomy. In 2023, the Bioenergy Technologies Office (BETO) and Oak Ridge National Laboratory provided a road map to obtain over a billion tons of biomass for conversion to bioenergy and other products. Using information from this roadmap, this study estimates the potential positive and negative economic impacts that occur because of land use change, along with increased technological advances. This is achieved by using the input–output model, IMPLAN, and impacting 179 Bureau of Economic Analysis regions in the conterminous United States. Biomass included in the analysis comprises dedicated energy crops, crop residues, and forest residues. The analysis found that managing pastures more intensively could result in releasing land to produce dedicated energy crops on 30.8 million hectares, resulting in the production of 361 million metric tons of biomass. This, coupled with crop residues from barley, corn, oats, sorghum, and wheat (162 million metric tons), plus forest residues (41 million metric tons), provide 564 million dry metric tons of biomass. Assuming the price for biomass in 2023 dollars was USD 77 per dry metric-ton, this additional production results in an economic benefit for the nation of USD 619 billion, an increase from the Business As Is scenario (Baseline) of almost USD 100 billion per year, assuming a mature biomass industry. An additional 700,000 jobs are required to grow, harvest/collect, and transport the biomass material from the land. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

30 pages, 4911 KiB  
Article
In-Field Forage Biomass and Quality Prediction Using Image and VIS-NIR Proximal Sensing with Machine Learning and Covariance-Based Strategies for Livestock Management in Silvopastoral Systems
by Claudia M. Serpa-Imbett, Erika L. Gómez-Palencia, Diego A. Medina-Herrera, Jorge A. Mejía-Luquez, Remberto R. Martínez, William O. Burgos-Paz and Lorena A. Aguayo-Ulloa
AgriEngineering 2025, 7(4), 111; https://doi.org/10.3390/agriengineering7040111 - 8 Apr 2025
Cited by 1 | Viewed by 835
Abstract
Controlling forage quality and grazing are crucial for sustainable livestock production, health, productivity, and animal performance. However, the limited availability of reliable handheld sensors for timely pasture quality prediction hinders farmers’ ability to make informed decisions. This study investigates the in-field dynamics of [...] Read more.
Controlling forage quality and grazing are crucial for sustainable livestock production, health, productivity, and animal performance. However, the limited availability of reliable handheld sensors for timely pasture quality prediction hinders farmers’ ability to make informed decisions. This study investigates the in-field dynamics of Mombasa grass (Megathyrsus maximus) forage biomass production and quality using optical techniques such as visible imaging and near-infrared (VIS-NIR) hyperspectral proximal sensing combined with machine learning models enhanced by covariance-based error reduction strategies. Data collection was conducted using a cellphone camera and a handheld VIS-NIR spectrometer. Feature extraction to build the dataset involved image segmentation, performed using the Mahalanobis distance algorithm, as well as spectral processing to calculate multiple vegetation indices. Machine learning models, including linear regression, LASSO, Ridge, ElasticNet, k-nearest neighbors, and decision tree algorithms, were employed for predictive analysis, achieving high accuracy with R2 values ranging from 0.938 to 0.998 in predicting biomass and quality traits. A strategy to achieve high performance was implemented by using four spectral captures and computing the reflectance covariance at NIR wavelengths, accounting for the three-dimensional characteristics of the forage. These findings are expected to advance the development of AI-based tools and handheld sensors particularly suited for silvopastoral systems. Full article
Show Figures

Graphical abstract

19 pages, 6453 KiB  
Article
The Response of Dung Beetle Communities to Land Use Change in the Brazilian Cerrado
by Pedro Gomes Peixoto, Gabriela de Sousa Barbosa, Heytor Lemos Martins, Ana Luíza Franco, Jhansley Ferreira da Mata and Vanesca Korasaki
Land 2025, 14(4), 781; https://doi.org/10.3390/land14040781 - 5 Apr 2025
Viewed by 739
Abstract
The transformation of the Cerrado biome into areas with different levels of activity and anthropic pressure negatively impacts biodiversity. This study evaluated the response of the dung beetle community to changes in land use systems: forests, rubber trees, pastures, and soybeans. Five areas [...] Read more.
The transformation of the Cerrado biome into areas with different levels of activity and anthropic pressure negatively impacts biodiversity. This study evaluated the response of the dung beetle community to changes in land use systems: forests, rubber trees, pastures, and soybeans. Five areas were sampled in each system with a minimum distance of 2 km between them. Dung beetles were collected using pitfall traps, and both local (vegetation density, basal area of wooded vegetation, fractal dimension, litter height, electrical conductance (mV), water content in the soil (%), and soil resistance (kPa)) and landscape-related environmental variables (land use and overall composition and configuration of the landscape surrounding the sampling areas) were measured. In total, 2294 specimens were collected and distributed among 34 species and 18 genera. There was no significant difference in abundance between the systems, but differences in the number of species and biomass were observed between forest and soybean systems, as well as a separation of communities between the tree-covered (forest and rubber tree) and open (pasture and soybean) systems. Density and arboreal basal area were the main predictive variables for the diversity of the dung beetle community, reinforcing the importance of vegetation cover for maintaining diversity, whereas local and landscape-related variables influenced community composition. Full article
(This article belongs to the Special Issue Agroforestry Systems for Biodiversity and Landscape Conservation)
Show Figures

Figure 1

11 pages, 1835 KiB  
Article
Biostimulants Do Not Mitigate the Effects of Pasture Dieback in the Australian Wet Subtropics
by Eric N. Mark, Abraham J. Gibson, Suzanne P. Boschma and Terry J. Rose
Sustainability 2025, 17(7), 3013; https://doi.org/10.3390/su17073013 - 28 Mar 2025
Cited by 1 | Viewed by 1395
Abstract
Pasture dieback is a disorder that causes the deterioration and death of susceptible tropical grass pastures in Eastern Australia. Previous reports from the Australian dry subtropics have suggested that biostimulants may be effective in mitigating the effects of pasture dieback. In this study, [...] Read more.
Pasture dieback is a disorder that causes the deterioration and death of susceptible tropical grass pastures in Eastern Australia. Previous reports from the Australian dry subtropics have suggested that biostimulants may be effective in mitigating the effects of pasture dieback. In this study, in two experiments (1 and 2), biostimulant products were applied to dieback-affected pastures, and pasture growth biomass and nutritional attributes (neutral detergent fiber and crude protein) were assessed 30 days after application compared to a control (water application only) treatment. In a third experiment (exp 3), biostimulant products were applied to a pasture prior to dieback incursion, and plant symptoms were assessed 16 days after application. In experiments 1 and 2, after 30 days, there was no significant difference in biomass production or nutritional attributes between any biostimulant treatments and the control, with mean biomass yields of 471 ± 61 kg ha−1 at site 1 and 1371 ± 78 kg ha−1 at site 2. In experiment 3, plant dieback symptoms progressed evenly across all plots, with no significant effect between treatments 16 days after treatment application. There was no evidence that the tested biostimulants were effective in preventing the spread of dieback or improving pasture recovery from dieback. Full article
Show Figures

Figure 1

22 pages, 4867 KiB  
Article
Integrating Proximal and Remote Sensing with Machine Learning for Pasture Biomass Estimation
by Bernardo Cândido, Ushasree Mindala, Hamid Ebrahimy, Zhou Zhang and Robert Kallenbach
Sensors 2025, 25(7), 1987; https://doi.org/10.3390/s25071987 - 22 Mar 2025
Cited by 1 | Viewed by 1115
Abstract
This study tackles the challenge of accurately estimating pasture biomass by integrating proximal sensing, remote sensing, and machine learning techniques. Field measurements of vegetation height collected using the PaddockTrac ultrasonic sensor were combined with vegetation indices (e.g., NDVI, MSAVI2) derived from Landsat 7 [...] Read more.
This study tackles the challenge of accurately estimating pasture biomass by integrating proximal sensing, remote sensing, and machine learning techniques. Field measurements of vegetation height collected using the PaddockTrac ultrasonic sensor were combined with vegetation indices (e.g., NDVI, MSAVI2) derived from Landsat 7 and Sentinel-2 satellite data. We applied the Boruta algorithm for feature selection to identify influential biophysical predictors and evaluated four machine learning models—Linear Regression, Decision Tree, Random Forest, and XGBoost—for biomass prediction. XGBoost consistently performed the best, achieving an R2 of 0.86, an MAE of 414 kg ha⁻1, and an RMSE of 538 kg ha⁻1 using Landsat 7 data across multiple years. Sentinel-2’s red-edge indices did not substantially improve predictions, suggesting a limited benefit from finer spectral resolutions in this homogenous pasture context. Nonetheless, these indices may offer value in more complex vegetation scenarios. The findings emphasize the effectiveness of combining detailed ground-based measurements with advanced machine learning and remote sensing data, providing a scalable and accurate approach to biomass estimation. This integrated framework provides practical insights for precision agriculture and optimized pasture management, significantly advancing efficient and sustainable rangeland monitoring. Full article
Show Figures

Figure 1

16 pages, 1186 KiB  
Article
Production of Panicum maximum cv. Mombaça Under Fertilization Management and Ozonation of Irrigation Water
by Wesley Lopes Cançado, Eugénio da Piedade Edmundo Sitoe, Job Teixeira de Oliveira, Lêda Rita D’Antonino Faroni, Ernandes Rodrigues de Alencar, Marcus Vinicius de Assis Silva and Fernando França da Cunha
Grasses 2025, 4(1), 11; https://doi.org/10.3390/grasses4010011 - 12 Mar 2025
Viewed by 1162
Abstract
Ozonation of irrigation water is a promising technology that improves the efficiency of irrigation systems. However, it is necessary to investigate the potential adverse effects of the continuous application of this technology on pastures, particularly on Mombaça grass (Panicum maximum cv. Mombaça), [...] Read more.
Ozonation of irrigation water is a promising technology that improves the efficiency of irrigation systems. However, it is necessary to investigate the potential adverse effects of the continuous application of this technology on pastures, particularly on Mombaça grass (Panicum maximum cv. Mombaça), to ensure that its benefits are not outweighed by negative impacts. This study aimed to evaluate the impact of ozonated irrigation water on the production of Mombaça grass under different fertilization management practices. The experiment was conducted in a controlled environment using 4.5 L pots, following a completely randomized design with five replications. The experimental setup employed a factorial arrangement, involving two irrigation water sources (with and without ozonation) and two fertilization managements (with and without N and K2O), resulting in 20 experimental units. A 60-day uniformity cycle and three 30-day cycles were performed, assessing water consumption as well as the morphogenic and agronomic characteristics of Mombaça grass. Fertilization with N and K2O increased water consumption and improved the agronomic characteristics of Mombaça grass, promoting greater development and growth in line with its morphogenic traits. Regardless of fertilization, ozonation of irrigation water did not cause harm to growth and biomass yield. Therefore, the technique of ozonating irrigation water can be used in the cultivation of Mombaça grass. Full article
Show Figures

Figure 1

Back to TopTop