Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (371)

Search Parameters:
Keywords = pastoral areas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 177 KiB  
Essay
Cancer and Humility: Moving from “Why” to Hope
by Ronald T. Michener
Religions 2025, 16(8), 1010; https://doi.org/10.3390/rel16081010 - 5 Aug 2025
Viewed by 119
Abstract
If God cares and is present, can God use pain and suffering in my life? Absolutely. Does this mean that God planned, ordained, or designed the pain (or cancer) to be instrumental in my life for some sort of higher spiritual purpose? If [...] Read more.
If God cares and is present, can God use pain and suffering in my life? Absolutely. Does this mean that God planned, ordained, or designed the pain (or cancer) to be instrumental in my life for some sort of higher spiritual purpose? If so, why? Why does God allow cancer to invade and interrupt one’s life? There are no theologically sound or definitive answers to these questions. Although asking such questions is basic to our humanity, as we will observe in various passages of Scripture, the answers will always remain elusive. Instead of seeking to answer the question “why?”, I will suggest two areas for theological and pastoral reflection with respect to those facing cancer: humility and hope. Enduring cancer, from diagnosis through treatment, requires humility in mind and body before our Creator and before our caregivers. Cancer also provides an opportunity for Christians to embed themselves in the hope of resurrection and new creation. Resurrection hope is also not reduced to hope beyond death but hope that is manifested now through embodied resurrection “signs” and actions of human sacrificial love, both received and practiced by the patient undergoing illness and by the patient’s caregivers, family, and friends. Full article
(This article belongs to the Special Issue Cancer and Theology: Personal and Pastoral Perspectives)
14 pages, 5995 KiB  
Article
Integrated Remote Sensing Evaluation of Grassland Degradation Using Multi-Criteria GDCI in Ili Prefecture, Xinjiang, China
by Liwei Xing, Dongyan Jin, Chen Shen, Mengshuai Zhu and Jianzhai Wu
Land 2025, 14(8), 1592; https://doi.org/10.3390/land14081592 - 4 Aug 2025
Viewed by 124
Abstract
As an important ecological barrier and animal husbandry resource base in arid and semi-arid areas, grassland degradation directly affects regional ecological security and sustainable development. Ili Prefecture is located in the western part of Xinjiang, China, and is a typical grassland resource-rich area. [...] Read more.
As an important ecological barrier and animal husbandry resource base in arid and semi-arid areas, grassland degradation directly affects regional ecological security and sustainable development. Ili Prefecture is located in the western part of Xinjiang, China, and is a typical grassland resource-rich area. However, in recent years, driven by climate change and human activities, grassland degradation has become increasingly serious. In view of the lack of comprehensive evaluation indicators and the inconsistency of grassland evaluation grade standards in remote sensing monitoring of grassland resource degradation, this study takes the current situation of grassland degradation in Ili Prefecture in the past 20 years as the research object and constructs a comprehensive evaluation index system covering three criteria layers of vegetation characteristics, environmental characteristics, and utilization characteristics. Net primary productivity (NPP), vegetation coverage, temperature, precipitation, soil erosion modulus, and grazing intensity were selected as multi-source indicators. Combined with data sources such as remote sensing inversion, sample survey, meteorological data, and farmer survey, the factor weight coefficient was determined by analytic hierarchy process. The Grassland Degeneration Comprehensive Index (GDCI) model was constructed to carry out remote sensing monitoring and evaluation of grassland degradation in Yili Prefecture. With reference to the classification threshold of the national standard for grassland degradation, the GDCI grassland degradation evaluation grade threshold (GDCI reduction rate) was determined by the method of weighted average of coefficients: non-degradation (0–10%), mild degradation (10–20%), moderate degradation (20–37.66%) and severe degradation (more than 37.66%). According to the results, between 2000 and 2022, non-degraded grasslands in Ili Prefecture covered an area of 27,200 km2, representing 90.19% of the total grassland area. Slight, moderate, and severe degradation accounted for 4.34%, 3.33%, and 2.15%, respectively. Moderately and severely degraded areas are primarily distributed in agro-pastoral transition zones and economically developed urban regions, respectively. The results revealed the spatial and temporal distribution characteristics of grassland degradation in Yili Prefecture and provided data basis and technical support for regional grassland resource management, degradation prevention and control and ecological restoration. Full article
Show Figures

Figure 1

24 pages, 1386 KiB  
Article
Assessing Sustainable Growth: Evolution and Convergence of Green Total Factor Productivity in Tibetan Plateau Agriculture
by Mengmeng Zhang and Chengqun Yu
Sustainability 2025, 17(15), 6963; https://doi.org/10.3390/su17156963 - 31 Jul 2025
Viewed by 163
Abstract
Accurate assessment of green productivity is essential for advancing sustainable agriculture in ecologically fragile regions. This study examined the evolution of agricultural green total factor productivity (AGTFP) in Tibet over the period 2002–2021 by applying a super-efficiency SBM-GML model that accounts for undesirable [...] Read more.
Accurate assessment of green productivity is essential for advancing sustainable agriculture in ecologically fragile regions. This study examined the evolution of agricultural green total factor productivity (AGTFP) in Tibet over the period 2002–2021 by applying a super-efficiency SBM-GML model that accounts for undesirable outputs. We decompose AGTFP into technical change and efficiency change, conduct redundancy analysis to identify sources of inefficiency and explore its spatiotemporal dynamics through kernel density estimation and convergence analysis. Results show that (1) AGTFP in Tibet grew at an average annual rate of 0.78%, slower than the national average of 1.6%; (2) labor input, livestock scale, and agricultural carbon emissions are major sources of redundancy, especially in pastoral regions; (3) technological progress is the main driver of AGTFP growth, while efficiency gains have a limited impact, reflecting a technology-led growth pattern; (4) AGTFP follows a “convergence-divergence-reconvergence” trend, with signs of conditional β convergence after controlling for regional heterogeneity. These findings highlight the need for region-specific green agricultural policies. Priority should be given to improving green technology diffusion and input allocation in high-altitude pastoral areas, alongside strengthening ecological compensation and interregional coordination to enhance green efficiency and promote high-quality development across Tibet. Full article
Show Figures

Figure 1

11 pages, 1219 KiB  
Article
The Church and Academia Model: New Paradigm for Spirituality and Mental Health Research
by Marta Illueca, Samantha M. Meints, Megan M. Miller, Dikachi Osaji and Benjamin R. Doolittle
Religions 2025, 16(8), 998; https://doi.org/10.3390/rel16080998 - 31 Jul 2025
Viewed by 227
Abstract
Ongoing interest in the intersection of spirituality and health has prompted a need for integrated research. This report proposes a distinct approach in a model that allows for successful and harmonious cross-fertilization within these latter two areas of interest. Our work is especially [...] Read more.
Ongoing interest in the intersection of spirituality and health has prompted a need for integrated research. This report proposes a distinct approach in a model that allows for successful and harmonious cross-fertilization within these latter two areas of interest. Our work is especially pertinent to inquiries around the role of spirituality in mental health, with special attention to chronic pain conditions. The latter have become an open channel for novel avenues to explore the field of spirituality-based interventions within the arena of psychological inquiry. To address this, the authors developed and implemented the Church and Academia Model, a prototype for an innovative collaborative research project, with the aim of exploring the role of devotional practices, and their potential to be used as therapeutic co-adjuvants or tools to enhance the coping skills of patients with chronic pain. Keeping in mind that the church presents a rich landscape for clinical inquiry with broad relevance for clinicians and society at large, we created a unique hybrid research model. This is a new paradigm that focuses on distinct and well-defined studies where the funding, protocol writing, study design, and implementation are shared by experts from both the pastoral and clinical spaces. A team of theologians, researchers, and healthcare providers, including clinical pain psychologists, built a coalition leveraging their respective skill sets. Each expert is housed in their own environs, creating a functional network that has proven academically productive and pastorally effective. Key outputs include the creation and validation of a new psychometric measure, the Pain-related PRAYER Scale (PPRAYERS), an associated bedside prayer tool and a full-scale dissemination strategy through journal publications and specialty society conferences. This collaborative prototype is also an ideal fit for integrated knowledge translation platforms, and it is a promising paradigm for future collaborative projects focused on spirituality and mental health. Full article
Show Figures

Figure 1

16 pages, 3973 KiB  
Article
Toxicological Risk Assessment and Source Identification of Groundwater Pollution: A Case of Sheep Herd Damage in a Pastoral Area
by Wei Wang, Honger Cheng, Yuewei Yang, Jianjun Su, Jialu Sun, Xiaojing Li and Qian Zhao
Environments 2025, 12(7), 240; https://doi.org/10.3390/environments12070240 - 14 Jul 2025
Viewed by 506
Abstract
Improper emissions from industrial activities pose toxicological risks to groundwater safety. Based on an environmental forensic identification case involving livestock (sheep) damage caused by groundwater pollution in a pastoral area, we comprehensively evaluated groundwater quality risks, toxicological risks, and pollution sources using multivariate [...] Read more.
Improper emissions from industrial activities pose toxicological risks to groundwater safety. Based on an environmental forensic identification case involving livestock (sheep) damage caused by groundwater pollution in a pastoral area, we comprehensively evaluated groundwater quality risks, toxicological risks, and pollution sources using multivariate statistical methods, the Nemerow index method, and a non-carcinogenic health risk model. The potential specific pollutants in the region mainly included calcium, potassium, sodium, magnesium, manganese, fluoride, chloride, sulfate, ammonia nitrogen, total dissolved solids, and nitrate. An evaluation of the groundwater health risk factors showed that fluoride, nitrate, and manganese pose higher health risks (HQ > 1), as fluoride > nitrate > manganese. This suggests that these three pollutants were the primary causes of livestock damage. Identification of pollution sources using multivariate statistical analysis revealed that the main pollutants in the groundwater originate from two rare earth enterprises in the surrounding industrial park, followed by the emissions from animal husbandry. This study provides guidelines into comprehensive regional toxicological risk assessment and source tracing, offering an identification method for similar forensic environmental damage cases. Full article
Show Figures

Figure 1

28 pages, 1706 KiB  
Article
Adaptive Grazing and Land Use Coupling in Arid Pastoral China: Insights from Sunan County
by Bo Lan, Yue Zhang, Zhaofan Wu and Haifei Wang
Land 2025, 14(7), 1451; https://doi.org/10.3390/land14071451 - 11 Jul 2025
Viewed by 411
Abstract
Driven by climate change and stringent ecological conservation policies, arid and semi-arid pastoral areas face acute grassland degradation and forage–livestock imbalances. In Sunan County (Gansu Province, China), herders have increasingly turned to off-site grazing—leasing crop fields in adjacent oases during autumn and winter—to [...] Read more.
Driven by climate change and stringent ecological conservation policies, arid and semi-arid pastoral areas face acute grassland degradation and forage–livestock imbalances. In Sunan County (Gansu Province, China), herders have increasingly turned to off-site grazing—leasing crop fields in adjacent oases during autumn and winter—to alleviate local grassland pressure and adapt their livelihoods. However, the interplay between the evolving land use system (L) and this emergent borrowed pasture system (B) remains under-explored. This study introduces a coupled analytical framework linking L and B. We employ multi-temporal remote sensing imagery (2018–2023) and official statistical data to derive land use dynamic degree (LUDD) metrics and 14 indicators for the borrowed pasture system. Through entropy weighting and a coupling coordination degree model (CCDM), we quantify subsystem performance, interaction intensity, and coordination over time. The results show that 2017 was a turning point in grassland–bare land dynamics: grassland trends shifted from positive to negative, whereas bare land trends turned from negative to positive; strong coupling but low early coordination (C > 0.95; D < 0.54) were present due to institutional lags, infrastructural gaps, and rising rental costs; resilient grassroots networks bolstered coordination during COVID-19 (D ≈ 0.78 in 2023); and institutional voids limited scalability, highlighting the need for integrated subsidy, insurance, and management frameworks. In addition, among those interviewed, 75% (15/20) observed significant grassland degradation before adopting off-site grazing, and 40% (8/20) perceived improvements afterward, indicating its potential role in ecological regulation under climate stress. By fusing remote sensing quantification with local stakeholder insights, this study advances social–ecological coupling theory and offers actionable guidance for optimizing cross-regional forage allocation and adaptive governance in arid pastoral zones. Full article
Show Figures

Figure 1

23 pages, 6067 KiB  
Article
Daily-Scale Fire Risk Assessment for Eastern Mongolian Grasslands by Integrating Multi-Source Remote Sensing and Machine Learning
by Risu Na, Byambakhuu Gantumur, Wala Du, Sainbuyan Bayarsaikhan, Yu Shan, Qier Mu, Yuhai Bao, Nyamaa Tegshjargal and Battsengel Vandansambuu
Fire 2025, 8(7), 273; https://doi.org/10.3390/fire8070273 - 11 Jul 2025
Viewed by 713
Abstract
Frequent wildfires in the eastern grasslands of Mongolia pose significant threats to the ecological environment and pastoral livelihoods, creating an urgent need for high-temporal-resolution and high-precision fire prediction. To address this, this study established a daily-scale grassland fire risk assessment framework integrating multi-source [...] Read more.
Frequent wildfires in the eastern grasslands of Mongolia pose significant threats to the ecological environment and pastoral livelihoods, creating an urgent need for high-temporal-resolution and high-precision fire prediction. To address this, this study established a daily-scale grassland fire risk assessment framework integrating multi-source remote sensing data to enhance predictive capabilities in eastern Mongolia. Utilizing fire point data from eastern Mongolia (2012–2022), we fused multiple feature variables and developed and optimized three models: random forest (RF), XGBoost, and deep neural network (DNN). Model performance was enhanced using Bayesian hyperparameter optimization via Optuna. Results indicate that the Bayesian-optimized XGBoost model achieved the best generalization performance, with an overall accuracy of 92.3%. Shapley additive explanations (SHAP) interpretability analysis revealed that daily-scale meteorological factors—daily average relative humidity, daily average wind speed, daily maximum temperature—and the normalized difference vegetation index (NDVI) were consistently among the top four contributing variables across all three models, identifying them as key drivers of fire occurrence. Spatiotemporal validation using historical fire data from 2023 demonstrated that fire points recorded on 8 April and 1 May 2023 fell within areas predicted to have “extremely high” fire risk probability on those respective days. Moreover, points A (117.36° E, 46.70° N) and B (116.34° E, 49.57° N) exhibited the highest number of days classified as “high” or “extremely high” risk during the April/May and September/October periods, consistent with actual fire occurrences. In summary, the integration of multi-source data fusion and Bayesian-optimized machine learning has enabled the first high-precision daily-scale wildfire risk prediction for the eastern Mongolian grasslands, thus providing a scientific foundation and decision-making support for wildfire prevention and control in the region. Full article
Show Figures

Figure 1

17 pages, 233 KiB  
Article
Mental Health Clinical Pastoral Education—A Specialized CPE Program
by Angelika A. Zollfrank, Caroline C. Kaufman and David H. Rosmarin
Religions 2025, 16(7), 886; https://doi.org/10.3390/rel16070886 - 10 Jul 2025
Viewed by 409
Abstract
This article describes the design and implementation of a Specialized Mental Health Clinical Pastoral Education (CPE) program for clergy and theological students of all spiritual, religious, and cultural backgrounds. Addressing the need for mental health competencies in religious leaders and chaplains, this training [...] Read more.
This article describes the design and implementation of a Specialized Mental Health Clinical Pastoral Education (CPE) program for clergy and theological students of all spiritual, religious, and cultural backgrounds. Addressing the need for mental health competencies in religious leaders and chaplains, this training equips participants with specialized skills in individual and group mental health spiritual assessment and spiritual care. Program participants become effective members of a multiprofessional team, gain knowledge of mental health philosophies of concordant and discordant spiritual orienting systems, and gain greater relational capacity. The Mental Health CPE Program includes traditional and novel CPE elements: (1) clinical practice, (2) group and individual supervision, (3) didactic presentations and journal clubs, (4) verbatim (Protocols of patient encounters) and case presentations, (5) group leadership training and practica, and (6) experience of faith reflections. This article provides insights into the origins of CPE, a description of the implementation in a free-standing psychiatric hospital, and observed developmental changes of program participants. We include graduates’ anecdotal feedback about their learning experience and its impact on their leadership in chaplaincy and in religious communities. Additionally, we report on areas for future development and further study of the effectiveness of Mental Health CPE. Full article
18 pages, 10178 KiB  
Article
Effects of Legume–Grass Mixture Combinations and Planting Ratios on Forage Productivity and Nutritional Quality in Typical Sand-Fixing Vegetation Areas of the Mu Us Sandy Land
by Yuqing Mi, Hongbin Xu, Lei Zhang, Ruihua Pan, Shengnan Zhang, Haiyan Gao, Haibing Wang and Chunying Wang
Agriculture 2025, 15(14), 1474; https://doi.org/10.3390/agriculture15141474 - 9 Jul 2025
Viewed by 376
Abstract
Monoculture and legume–grass mixed cropping are the two most common planting methods, with mixed cropping generally demonstrating higher hay yield and superior nutritional quality compared to monoculture. However, research on legume–grass mixed cropping for establishing cultivated pastures in typical sand-fixing vegetation areas of [...] Read more.
Monoculture and legume–grass mixed cropping are the two most common planting methods, with mixed cropping generally demonstrating higher hay yield and superior nutritional quality compared to monoculture. However, research on legume–grass mixed cropping for establishing cultivated pastures in typical sand-fixing vegetation areas of the Mu Us Sandy Land remains scarce. These knowledge gaps have hindered the synergistic integration of forage production and ecological restoration in the region. This study conducted mixed cropping trials in the sand-fixing vegetation zone of the Mu Us Sandy Land using Dahurian wildrye (Elymus dahuricus), Mongolian wheatgrass (Agropyron mongolicum), and Standing milkvetch (Astragalus adsurgens) to investigate the effects of species combinations and planting ratios on forage productivity and nutritional quality, aiming to determine the optimal planting strategy. Results showed that in the first establishment year, the yield of all mixed cropping systems significantly exceeded that of monocultured Dahurian wildrye and Mongolian wheatgrass. All mixed cropping combinations exhibited land equivalent ratios (LER) and relative yield totals (RYT) below 1, indicating varying degrees of interspecific competition during the first year, with grass species generally demonstrating stronger competitive abilities than legumes. Mixed-cropped forages showed higher crude protein, crude fat, and crude ash content compared to monocultures, alongside lower neutral detergent fiber (NDF) and acid detergent fiber (ADF) levels, suggesting improved relative feed value (RFV). Among the combinations, E5A5 and E6A4 (5:5 and 6:4 ratio of Dahurian wildrye to Standing milkvetch) achieved higher RFV, with RFV gradually declining as the legume proportion decreased. In conclusion, both monoculture and legume–grass mixed cropping are viable in the Mu Us Sandy Land’s sand-fixing vegetation areas and the E5A5 combination (5:5 ratio of Dahurian wildrye to Standing milkvetch) as having the highest overall score, demonstrating that this mixed cropping ratio optimally balances yield and nutritional quality, making it the recommended planting protocol for the region. This mixed cropping system offers a theoretical foundation for efficiently establishing artificial pastures in the Mu Us Sandy Land, supporting regional pastoral industry development and desertification mitigation. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

27 pages, 18307 KiB  
Article
Analysis of Changes in Supply and Demand of Ecosystem Services in the Sanjiangyuan Region and the Main Driving Factors from 2000 to 2020
by Wenming Gao, Qian Song, Haoxiang Zhang, Shiru Wang and Jiarui Du
Land 2025, 14(7), 1427; https://doi.org/10.3390/land14071427 - 7 Jul 2025
Viewed by 318
Abstract
Research on the supply–demand relationships of ecosystem services (ESs) in alpine pastoral regions remains relatively scarce, yet it is crucial for regional ecological management and sustainable development. This study focuses on the Sanjiangyuan Region, a typical alpine pastoral area and significant ecological barrier, [...] Read more.
Research on the supply–demand relationships of ecosystem services (ESs) in alpine pastoral regions remains relatively scarce, yet it is crucial for regional ecological management and sustainable development. This study focuses on the Sanjiangyuan Region, a typical alpine pastoral area and significant ecological barrier, to quantitatively assess the supply–demand dynamics of key ESs and their spatial heterogeneity from 2000 to 2020. It further aims to elucidate the underlying driving mechanisms, thereby providing a scientific basis for optimizing regional ecological management. Four key ES indicators were selected: water yield (WY), grass yield (GY), soil conservation (SC), and habitat quality (HQ). ES supply and demand were quantified using an integrated approach incorporating the InVEST model, the Revised Universal Soil Loss Equation (RUSLE), and spatial analysis techniques. Building on this, the spatial patterns and temporal evolution characteristics of ES supply–demand relationships were analyzed. Subsequently, the Geographic Detector Model (GDM) and Geographically and Temporally Weighted Regression (GTWR) model were employed to identify key drivers influencing changes in the comprehensive ES supply–demand ratio. The results revealed the following: (1) Spatial Patterns: Overall ES supply capacity exhibited a spatial differentiation characterized by “higher values in the southeast and lower values in the northwest.” Areas of high ES demand were primarily concentrated in the densely populated eastern region. WY, SC, and HQ generally exhibited a surplus state, whereas GY showed supply falling short of demand in the densely populated eastern areas. (2) Temporal Dynamics: Between 2000 and 2020, the supply–demand ratios of WY and SC displayed a fluctuating downward trend. The HQ ratio remained relatively stable, while the GY ratio showed a significant and continuous upward trend, indicating positive outcomes from regional grass–livestock balance policies. (3) Driving Mechanisms: Climate and natural factors were the dominant drivers of changes in the ES supply–demand ratio. Analysis using the Geographical Detector’s q-statistic identified fractional vegetation cover (FVC, q = 0.72), annual precipitation (PR, q = 0.63), and human disturbance intensity (HD, q = 0.38) as the top three most influential factors. This study systematically reveals the spatial heterogeneity characteristics, dynamic evolution patterns, and core driving mechanisms of ES supply and demand in an alpine pastoral region, addressing a significant research gap. The findings not only provide a reference for ES supply–demand assessment in similar regions regarding indicator selection and methodology but also offer direct scientific support for precisely identifying priority areas for ecological conservation and restoration, optimizing grass–livestock balance management, and enhancing ecosystem sustainability within the Sanjiangyuan Region. Full article
(This article belongs to the Special Issue Water, Energy, Land, and Food (WELF) Nexus: An Ecosystems Perspective)
Show Figures

Figure 1

13 pages, 2434 KiB  
Article
Effects of Trichoderma harzianum on the Morphological and Physiological Characteristics of Three Turfgrass Species Grown on Eco-Concrete
by Xiaohu Chen, Xiaoyan Zeng, Yongjun Fei and Die Hu
Horticulturae 2025, 11(7), 746; https://doi.org/10.3390/horticulturae11070746 - 27 Jun 2025
Viewed by 300
Abstract
This study investigated the effects of Trichoderma harzianum inoculation on the growth, physiological responses, and soil nutrient uptake of three turfgrass species cultivated on eco-concrete—Axonopus compressus (Sw.) Beauv., Cynodon dactylon (L.) Pers., and Zoysia sinica Hance. A 2 × 2 factorial design [...] Read more.
This study investigated the effects of Trichoderma harzianum inoculation on the growth, physiological responses, and soil nutrient uptake of three turfgrass species cultivated on eco-concrete—Axonopus compressus (Sw.) Beauv., Cynodon dactylon (L.) Pers., and Zoysia sinica Hance. A 2 × 2 factorial design was used to evaluate plant growth, physiological responses, and soil metrics under cement stress, incorporating T. harzianum inoculation (inoculated vs. control) and substrate composition (eco-concrete vs. pastoral soil). Our results indicate that inoculation with Trichoderma harzianum significantly enhanced the growth potential of the three turfgrass species compared to uninoculated controls. Furthermore, under cement stress conditions in vegetated concrete, inoculation with T. harzianum significantly alleviated the inhibition of growth and development. More specifically, in the vegetated concrete habitat, inoculated plants exhibited significantly increased root length and surface area. This enhancement promoted the uptake of available nitrogen (AN), available phosphorus (AP), and available potassium (AK) from the soil. Concurrently, inoculated plants showed higher leaf epidermal cell density, stomatal width, soluble sugar content, and antioxidant enzyme activity (SOD, POD, CAT, and APX). Additionally, significant reductions were observed in root activity, relative conductivity, and malondialdehyde (MDA) and proline contents. In conclusion, T. harzianum inoculation promotes the growth of the three turfgrass species under cement stress, likely by enhancing root development, increasing osmoregulatory substance accumulation, and elevating antioxidant enzyme activities. Full article
Show Figures

Figure 1

14 pages, 1261 KiB  
Article
Influence of Pasture Diversity and NDVI on Sheep Foraging Behavior in Central Italy
by Sara Moscatelli, Simone Pesaresi, Martin Wikelski, Federico Maria Tardella, Andrea Catorci and Giacomo Quattrini
Geographies 2025, 5(2), 26; https://doi.org/10.3390/geographies5020026 - 16 Jun 2025
Viewed by 484
Abstract
Pastoral activities are an essential part of the cultural and ecological landscape of Central Italy. This traditional practice supports local economies, maintains biodiversity, and contributes to the sustainable use of natural resources. Understanding livestock behavior in response to environmental variability is essential for [...] Read more.
Pastoral activities are an essential part of the cultural and ecological landscape of Central Italy. This traditional practice supports local economies, maintains biodiversity, and contributes to the sustainable use of natural resources. Understanding livestock behavior in response to environmental variability is essential for improving grazing management and animal welfare and ensuring the sustainability of these systems. This study evaluated the movement patterns of sheep grazing on pastures with differing vegetation indices in the Sibillini Mountains. Twenty lactating ewes foraging on two different pastures were monitored from June to October 2023 using GPS collars and accelerometers. GPS tracks were segmented using the Expectation Maximization Binary Clustering (EmBC) method to characterize movement behaviors, such as foraging, traveling, and resting. The NDVI was used to characterize vegetation dynamics, showing notable differences between the two pastures and across the grazing season. Additive mixed models were used to analyze data, accounting for individual variability and temporal autocorrelation in the sample. The results suggest that variations in the NDVI influence grazing behavior, with sheep in areas of lower vegetation density exhibiting increased movement during foraging. These findings provide valuable insights for optimizing grazing practices and promoting sustainable land use. Full article
Show Figures

Graphical abstract

24 pages, 4178 KiB  
Article
Spatial Pattern and Driving Mechanisms of Settlements in the Agro-Pastoral Ecotone of Northern China: A Case Study of Eastern Inner Mongolia
by Ziqi Zhang, Xiaotong Wu, Song Chen, Lyuyuan Jia, Qianhui Wang, Zhiqing Zhang, Mingzhe Li, Ruofei Jia and Qing Lin
Land 2025, 14(6), 1268; https://doi.org/10.3390/land14061268 - 12 Jun 2025
Viewed by 1021
Abstract
Rural settlements in agro-pastoral ecotones reflect the complex interplay between natural constraints and human land use, particularly in ecologically sensitive and climatically transitional regions. This study investigated the agro-pastoral ecotone of eastern Inner Mongolia, a representative region characterized by environmental heterogeneity and competing [...] Read more.
Rural settlements in agro-pastoral ecotones reflect the complex interplay between natural constraints and human land use, particularly in ecologically sensitive and climatically transitional regions. This study investigated the agro-pastoral ecotone of eastern Inner Mongolia, a representative region characterized by environmental heterogeneity and competing land use functions. Landscape pattern indices, ordinary least squares (OLS) regression, and geographically weighted regression (GWR) were employed to analyze settlement morphology and its environmental determinants. The results reveal a distinct east–west spatial gradient: settlements are larger and more concentrated in low-elevation plains with favorable hydrothermal conditions, whereas those in mountainous and pastoral areas are smaller, sparser, and more fragmented. OLS regression revealed a strong positive correlation between arable land and settlement density (r > 0.8), whereas elevation and slope were significantly negatively correlated. GWR results further highlight spatial non-stationarity in the influence of key environmental factors. Average annual temperature generally shows a positive influence on settlement density, particularly in the central and eastern agricultural areas. In contrast, forest cover is predominantly negative, especially in the Greater Khingan Mountains. Proximity to water resources consistently enhances settlement density, although the magnitude of this effect varies across regions. Based on spatial characteristics and land use structure, rural settlements were categorized into four types: alpine pastoral, agro-pastoral transitional, river valley agricultural, and forest ecological. This study provides empirical evidence that natural factors (topography, climate, and hydrology) and land use variables (farmland, pasture, and woodland) collectively shape rural settlement patterns in transitional landscapes. The findings offer methodological and practical insights for targeted land management and sustainable rural development in agro-pastoral regions under ecological and socioeconomic pressures. Full article
(This article belongs to the Special Issue Sustainable Evaluation Methodology of Urban and Regional Planning)
Show Figures

Figure 1

30 pages, 8516 KiB  
Article
Spatiotemporal Patterns of Vegetation Coverage and Its Response to Land-Use Change in the Agro-Pastoral Ecotone of Inner Mongolia, China
by Hao Liu, Ya Na, Yatang Wu, Zhiguo Li, Zhiqiang Qu, Shijie Lv, Rong Jiang, Nan Sun and Dongkai Hao
Land 2025, 14(6), 1202; https://doi.org/10.3390/land14061202 - 4 Jun 2025
Viewed by 449
Abstract
In agro-pastoral transitional zones, monitoring vegetation fraction coverage (FVC) and understanding its relationship with land use and climate change are crucial for comprehending how complex land-use/land-cover change (LUCC) improves ecological restoration and land management. This study focuses on the agro-pastoral transitional zone of [...] Read more.
In agro-pastoral transitional zones, monitoring vegetation fraction coverage (FVC) and understanding its relationship with land use and climate change are crucial for comprehending how complex land-use/land-cover change (LUCC) improves ecological restoration and land management. This study focuses on the agro-pastoral transitional zone of Inner Mongolia, aiming to analyze vegetation cover changes from 2000 to 2020 using the Mann–Kendall (MK) significance test, Theil–Sen median trend analysis, and coefficient of variation (CV) analysis. Additionally, the study explores the impacts of LUCC, precipitation, and temperature on vegetation cover using methods such as geo-detector, pixel-based statistical analysis, and univariate linear regression. Based on the PLUS land-use prediction model and linear regression results, vegetation cover was simulated under different land-use scenarios for the future. The main findings are as follows: first, from 2000 to 2020, the spatial distribution of vegetation cover in the study area showed a distinct pattern of higher vegetation cover in the east compared to the west, with significant spatiotemporal heterogeneity. Although the overall vegetation cover slightly increased, there were notable differences in the trend across regions, with some areas experiencing a decrease in FVC. Second, LUCC is the most significant explanatory factor for vegetation cover changes, and the interactions between LUCC and other factors have a particularly notable impact on vegetation cover. Third, scenario simulations based on the PLUS model indicate that, by 2040, vegetation cover will perform optimally under the farmland protection and sustainable development scenarios. Particularly under the farmland protection scenario, the conversion of cropland, forestland, and grassland is notably suppressed. In contrast, the unmanaged natural development scenario will lead to a decline in vegetation cover. The results of this study show that vegetation cover in the agro-pastoral transitional zone of Inner Mongolia exhibits substantial fluctuations due to land-use change. Future ecological restoration policies should incorporate land-use optimization to promote vegetation recovery and address ecological degradation. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

20 pages, 808 KiB  
Review
Preserving Biodiversity of Sheep and Goat Farming in the Apulia Region
by Antonella Santillo, Antonella della Malva and Marzia Albenzio
Animals 2025, 15(11), 1610; https://doi.org/10.3390/ani15111610 - 30 May 2025
Viewed by 642
Abstract
The interconnection between biodiversity loss, food system and climate change is a complex issue with profound implications for global sustainability. Small ruminant farming is a crucial part of addressing these challenges as it contributes to environmental, social, and economic resilience. In Italy, sheep [...] Read more.
The interconnection between biodiversity loss, food system and climate change is a complex issue with profound implications for global sustainability. Small ruminant farming is a crucial part of addressing these challenges as it contributes to environmental, social, and economic resilience. In Italy, sheep and goat farming is most common in marginal areas with a prevalence of pastoral systems and low mechanization levels. In the Apulia region of Southern Italy, autochthonous small ruminant breeds are at high risk of extinction, due to changing agricultural practices and market pressures. Autochthonous breeds represent valuable genetic resources, adapted to the local environment and capable of producing high-quality products. Apulia boasts an ancient dairy tradition, producing a variety of cheeses from small ruminants, such as Canestrato Pugliese, a Protected Designation of Origin, and four cheeses (Cacioricotta, Pecorino Foggiano, Scamorza di Pecora, and Caprino) recognized as Traditional Agri-Food Products by the Italian Ministry of Agriculture, Food Sovereignty and Forests. These products represent an essential element for biodiversity conservation, encompassing ecosystems, autochthonous breeds, microbial diversity, traditional farming practices, and production systems. This review surveys the main small ruminant native breeds of Apulia region, highlighting their historical significance, distinctive traits, and traditional productions, to help shape strategies for animal biodiversity conservation. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Graphical abstract

Back to TopTop