Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (130)

Search Parameters:
Keywords = paste-backfilling mining

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 840 KB  
Article
Life Cycle Assessment of Portland Cement Alternatives in Mine Paste Backfill
by Martín J. Valenzuela-Díaz, Antonio J. Diosdado-Aragón, José Charango Munizaga-Rosas and Manuel Caraballo
Appl. Sci. 2025, 15(18), 9996; https://doi.org/10.3390/app15189996 - 12 Sep 2025
Viewed by 272
Abstract
Mining activities generate huge volumes of mine tailings (MTs), which pose huge environmental management challenges. Reuse as cemented paste backfill (CPB), a mixture of tailings with water and a binder—often cementitious or alkaline—is amongst the best methods to reduce surface disposal, and it [...] Read more.
Mining activities generate huge volumes of mine tailings (MTs), which pose huge environmental management challenges. Reuse as cemented paste backfill (CPB), a mixture of tailings with water and a binder—often cementitious or alkaline—is amongst the best methods to reduce surface disposal, and it is used to backfill underground mine voids. Although the most widely used binder in CPB production remains Ordinary Portland Cement (OPC), it is associated with a high carbon footprint and a high economic cost. In this study, both the economic feasibility and the environmental performance of three alkaline activators—sodium hydroxide (NaOH), sodium silicate (Na2SiO3), and a high MgCO3 and MgO content calcined magnesite residue—are evaluated as OPC replacements in CPB products. A gate-to-grave life cycle assessment (LCA) was performed at a CPB plant located in southwestern Spain with the use of tailings from a massive sulfide deposit. The results from the uniaxial compressive strength test and LCA demonstrate that paste formulations using the magnesite residue achieve comparable mechanical performance while significantly reducing both the environmental footprint and total cost relative to OPC-based mixtures. These results support the use of alkaline binders as viable substitutes that enable more sustainable and cost-effective tailings management practices in the mining sector. Full article
Show Figures

Figure 1

42 pages, 15245 KB  
Article
Effect of Mixing Water Temperature on the Thermal and Microstructural Evolution of Cemented Paste Backfill in Underground Mining
by Amin Safari, Cody Tennant, Aliakbar Gholampour, Jeremy Palmer and Abbas Taheri
Minerals 2025, 15(9), 887; https://doi.org/10.3390/min15090887 - 22 Aug 2025
Viewed by 554
Abstract
Cemented paste backfill (CPB) gains strength through the hydration of the binder constituent of the CPB, where mix temperature is a key influencing factor. Both rate of strength development and ultimate strength are influenced by the overarching temperature conditions in which the binder [...] Read more.
Cemented paste backfill (CPB) gains strength through the hydration of the binder constituent of the CPB, where mix temperature is a key influencing factor. Both rate of strength development and ultimate strength are influenced by the overarching temperature conditions in which the binder hydration occurs. This study investigates the influence of mixing water temperature on the thermal behaviour, hydration kinetics, and microstructural development of CPB using a combination of thermal finite element modelling, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Five CPB mixtures were prepared, with water temperatures ranging from 5 °C to 50 °C, and tested under controlled conditions to isolate the effects of the initial thermal input. Results show that moderate mixing water temperatures (20–35 °C) optimize hydration and mechanical strength, while excessive temperatures (≥50 °C) increase the risk of thermal cracking due to generation of excessive heat. The thermal modelling results demonstrated that the highest temperatures were observed in the bottom section of the fill mass, in contact with the surrounding rock, where the combined effects of mix-generated heat and rock conduction were most pronounced. The 50 °C mix reached a peak internal temperature of 85.6 °C with a thermal gradient of 40.5 °C, while the 5 °C mix recorded a much lower peak of 55.7 °C and a gradient of 16.8 °C. These results highlight that higher mixing water temperatures accelerate early hydration reactions and significantly influence the internal thermal profile during the first 21 days of curing. Based on these findings, the design of paste plants can be improved by incorporating a heating/cooling system for the mixing water tank—firstly, to ensure the water temperature does not exceed 50 °C and secondly, to maintain water within an optimal temperature range, potentially reducing binder consumption. Full article
Show Figures

Figure 1

24 pages, 3412 KB  
Review
Comparative and Meta-Analysis Evaluation of Non-Destructive Testing Methods for Strength Assessment of Cemented Paste Backfill: Implications for Sustainable Pavement and Concrete Materials
by Sakariyau Babatunde Abdulkadir, Qiusong Chen, Erol Yilmaz and Daolin Wang
Materials 2025, 18(12), 2888; https://doi.org/10.3390/ma18122888 - 18 Jun 2025
Cited by 2 | Viewed by 677
Abstract
Cemented paste backfill (CPB) plays an important role in sustainable mining by providing structural support and reducing surface subsidence. While traditional destructive testing methods such as unconfined compressive strength (UCS) tests offer valuable understanding of material strength, they require a lot of resources, [...] Read more.
Cemented paste backfill (CPB) plays an important role in sustainable mining by providing structural support and reducing surface subsidence. While traditional destructive testing methods such as unconfined compressive strength (UCS) tests offer valuable understanding of material strength, they require a lot of resources, are time-consuming, and environmentally unfriendly. However, non-destructive testing (NDT) techniques such as ultrasonic pulse velocity (UPV), electrical resistivity (ER), and acoustic emission (AE) provide sustainable alternatives by preserving sample integrity, minimizing waste, and enabling real-time monitoring. This study systematically reviews and quantitatively compares the effectiveness of UPV, ER, and AE in predicting the strength of CPB. Meta-analysis of 30 peer-reviewed studies reveals that UPV and AE provide the most consistent and reliable correlations with UCS, with R2 values of 0.895 and 0.896, respectively, while ER shows more variability due to its sensitivity to environmental factors. Additionally, a synthetic model combining UPV, AE and ER demonstrates improved accuracy in predicting strength. This hybrid approach enhances predictions of material performance while supporting sustainability in mining and construction. Our research advocates for better testing practices and presents a promising direction for future infrastructure projects, where real-time, non-invasive monitoring can enhance material performance evaluation and optimize resource use. Full article
Show Figures

Graphical abstract

21 pages, 5770 KB  
Article
Numerical Simulation-Based Study on the Arching Effect in Subsequent Backfill
by Xuebin Xie and Wei Wang
Appl. Sci. 2025, 15(10), 5649; https://doi.org/10.3390/app15105649 - 19 May 2025
Viewed by 596
Abstract
To explore the influence of the arching effect on stress distribution in jointed backfill structures, this study employs three-dimensional numerical modeling to systematically analyze the mechanical behavior of backfill materials. A finite-difference approach was adopted to establish a representative stope model incorporating interface [...] Read more.
To explore the influence of the arching effect on stress distribution in jointed backfill structures, this study employs three-dimensional numerical modeling to systematically analyze the mechanical behavior of backfill materials. A finite-difference approach was adopted to establish a representative stope model incorporating interface elements to simulate rock–backfill interactions. The methodology involved parametric studies examining key material properties (internal friction angle, cohesion, elastic modulus, Poisson’s ratio) and geometric configurations, with boundary conditions derived from typical mining scenarios. The results demonstrate that stress distribution follows nonlinear relationships with all investigated parameters. Increasing the internal friction angle and the cohesion reduce internal stresses, though the arch effect exhibits a distinct upper limit. Mechanical properties significantly influence stress transfer characteristics, with the elastic modulus governing stiffness response and the Poisson’s ratio affecting lateral stress development. Geometric parameters control the spatial extent of arching, with larger dimensions modifying the stress redistribution pattern. This research quantitatively establishes the operational limits of arching in backfill structures, providing crucial thresholds to prevent stability risks from overestimating its benefits. The findings offer practical guidelines for optimizing backfill design in deep mining and paste filling applications, contributing both technical solutions for mine safety and fundamental insights for geomechanical theory. The developed methodology serves as a robust framework for future studies on complex backfill behavior under various loading conditions. Full article
Show Figures

Figure 1

22 pages, 12029 KB  
Article
Study on the Rheological Properties of High Calcium Desulfurization Ash–Slag-Based Paste Backfill Material
by Weigao Ling, Jun Chen and Wenbo Ma
Appl. Sci. 2025, 15(9), 5105; https://doi.org/10.3390/app15095105 - 4 May 2025
Viewed by 597
Abstract
The environmental hazards caused by the massive generation and improper disposal of industrial solid wastes (e.g., high calcium desulphurization ash, HCDA) and the growing safety risks posed by the increasing number of underground mine goafs generated by mining activities have become serious environmental [...] Read more.
The environmental hazards caused by the massive generation and improper disposal of industrial solid wastes (e.g., high calcium desulphurization ash, HCDA) and the growing safety risks posed by the increasing number of underground mine goafs generated by mining activities have become serious environmental and geotechnical challenges. To address the dual issues, this study develops a novel desulfurization ash–slag-based paste backfill (DSPB) material using HCDA and granulated blast furnace slag (GBFS) as primary constituents. The effects of cementitious material ratios, polycarboxylate superplasticizer (PCE), and sodium silicate (SS) on rheological properties of DSPB were investigated through a shear rheology experiment and fitting rheological model to assess the flow conditions in pipeline transportation. In addition, the mechanism was investigated through microanalysis. The results showed that with the decrease in desulfurization ash-to-slag ratio, the initial yield stress and plastic viscosity decreased by up to 88% and 34.9%, respectively; PCE via “card house” structural effects made the rheological parameters increase and then decrease, and a dosage of more than 1.2% significantly improved the rheological properties; and SS initially reduced the rheological parameters, but excessive doping (greater than 1.0%) led to an increase. These findings establish the relationship between DSPB composition and rheological properties, provide a practical solution for waste resource utilization and surface stabilization, and provide a scientific basis for the microstructure–rheology relationship of cementitious systems. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

14 pages, 1714 KB  
Article
Optimizing Lime-Based Cemented Paste Backfill for Potash Mines: A Comprehensive Loop Test Study on Slurry Transportation Characteristics
by Rongzhen Jin, Jiajie Li, Xue Wang, Xuming Ma, Desire Ntokoma, Huimin Huo, Siqi Zhang, Wen Ni and Michael Hitch
Processes 2025, 13(4), 1171; https://doi.org/10.3390/pr13041171 - 12 Apr 2025
Cited by 3 | Viewed by 496
Abstract
Utilizing potassium salt aggregates and waste brine to produce underground cemented filling materials can address the waste storage issue. However, it is essential for the backfill materials to meet specific transport characteristics. This paper examines the transportation characteristics of lime-cemented mine backfill for [...] Read more.
Utilizing potassium salt aggregates and waste brine to produce underground cemented filling materials can address the waste storage issue. However, it is essential for the backfill materials to meet specific transport characteristics. This paper examines the transportation characteristics of lime-cemented mine backfill for a potash mine. The parameters were optimized for the cemented backfill process of potash mines through loop experiments and model simulations. Results indicate that the slump and fluidity of the backfill slurry diminished with increasing lime content and solid concentration. Additionally, the growth rate of pressure loss at the bent pipe and the pressure loss per unit distance in a horizontal pipe increased rapidly over transportation time, indicating a decline in the flowability of the backfill slurry. The lime dosage and solid concentration must align with the backfill requirements. When the lime dosage is 0.5%, the solid content is 70–75%; conversely, with a lime dosage of 0.7% and solid content of 65%, the maximum pumpable time extends to 1 h. The compressive strength of the cured backfill material after 28 days exceeds 1.01 MPa, meeting the transportation requirements for 300 m vertical pipes and 5000 m horizontal pipes. In the case study, the actual flow rate of backfill slurry surpasses the calculated critical flow rate. The estimated and measured values of on-site pressure loss per unit distance in a horizontal pipe exhibit a strong correlation. As the pressure loss per unit distance in a horizontal pipe rises, the discrepancy between the calculated and measured values also increases. When the solid content exceeds 65%, the loop test slightly enhances the compressive strength of the lime-cemented backfill. The findings from this article can aid in determining the on-site backfill process parameters with lime as a binder. Full article
(This article belongs to the Special Issue Advances in Chemical Looping Technologies)
Show Figures

Figure 1

18 pages, 5858 KB  
Article
Reinforcement Effect of CaCl2 on Cementation Performance of Solid-Waste-Based Cementitious Materials for Fine Tailings
by Qing Liu and Yanan Wu
Molecules 2025, 30(7), 1520; https://doi.org/10.3390/molecules30071520 - 29 Mar 2025
Viewed by 451
Abstract
Cemented paste backfill with mine tailings provides a desirable solution for maximally utilizing mine tailings. Ordinary Portland cement (OPC) is the most widely used binder for cemented tailings backfills; however, the serious environmental problems resulting from OPC production and the drawbacks of OPC [...] Read more.
Cemented paste backfill with mine tailings provides a desirable solution for maximally utilizing mine tailings. Ordinary Portland cement (OPC) is the most widely used binder for cemented tailings backfills; however, the serious environmental problems resulting from OPC production and the drawbacks of OPC in cementing fine tailings motivate the investigation of novel binders characterized by environmental friendliness, cost-effectiveness, and efficiency. We previously synthesized solid-waste-based cementitious materials (SWCMs) for cementing fine tailings. In this study, CaCl2 was added as an accelerator to further enhance the cementing performance of SWCMs for fine tailings. Adding a small amount of CaCl2 accelerated the hydration of raw materials and prompted the formation of larger amounts of hydration products. As a result, the cementing performance of SWCMs for fine tailings was significantly enhanced through the combined effect of C-S-H gel and ettringite. The cemented fine tailings backfill can be hardened only after curing for ~36 h, with a 50% decrease in hardening duration compared to the control sample without CaCl2. The optimal amount of CaCl2 was controlled at 1.5 wt.%, and the sample strength reached 0.21 MPa at 36 h, even at a low binder-to-tailings ratio of 1:8, meeting the requirement of early strength of common cemented tailings backfills. The rapid hardening of cemented fine tailings backfills has significant implications for accelerating ore mining speed, improving mining production capacity, ensuring the safe environment of underground mining sites, and preventing the movement of surface masses in the terrain where mining production takes place. Full article
Show Figures

Figure 1

15 pages, 3438 KB  
Article
One-Part Alkali-Activated Wood Biomass Binders for Cemented Paste Backfill
by Kunlei Zhu, Haijun Wang, Lu Dong, Xulin Zhao, Junchao Jin, Yang Liu, Jianbo Liu and Dingchao Lv
Minerals 2025, 15(3), 273; https://doi.org/10.3390/min15030273 - 7 Mar 2025
Viewed by 1099
Abstract
This study developed a one-part alkali-activated slag/wood biomass fly ash (WBFA) binder (AAS) for preparing cemented paste backfill (CPB) as an alternative to traditional cement. Through multi-scale characterizations (XRD, FTIR, TGA, rheological testing, and MIP) and performance analyses, the regulation mechanisms of slag/WBFA [...] Read more.
This study developed a one-part alkali-activated slag/wood biomass fly ash (WBFA) binder (AAS) for preparing cemented paste backfill (CPB) as an alternative to traditional cement. Through multi-scale characterizations (XRD, FTIR, TGA, rheological testing, and MIP) and performance analyses, the regulation mechanisms of slag/WBFA ratios on hydration behavior, microstructure, and mechanical properties were systematically revealed. Results demonstrate that high slag proportions significantly enhance slurry rheology and mechanical strength, primarily through slag hydration generating dense gel networks of hydration products and promoting particle aggregation via reduced zeta potential. Although inert components in WBFA inhibit early hydration, the long-term reactivity of slag effectively counteracts these negative effects, achieving comparable 28-day compressive strength between slag/WBFA-based CPB (4.11 MPa) and cement-based CPB (4.16 MPa). Microstructural analyses indicate that the disordered gels in AAS systems exhibit silicon–oxygen bond polymerization degrees (950 cm−1) comparable to cement, while WBFA regulates Ca/Si ratios to induce bridging site formation (900 cm−1), significantly reducing porosity and enhancing structural compactness. This research provides theoretical support and process optimization strategies for developing low-cost, high-performance mine filling materials using industrial solid wastes, advancing sustainable green mining practices. Full article
Show Figures

Figure 1

26 pages, 5575 KB  
Article
Rheological Properties of Aluminium Oxide Nanoparticle-Modified Cemented Paste Tailings Materials
by Raouf Kaviani and Mamadou Fall
Minerals 2025, 15(3), 246; https://doi.org/10.3390/min15030246 - 27 Feb 2025
Viewed by 822
Abstract
There is currently no research examining the rheological properties of cementitious paste backfill (CPB) materials containing aluminium oxide nanoparticles (nAlO). Knowing the yield stress and viscosity of CPB containing nAlO is crucial, especially when applying nano-CPB technology in underground mines. The purpose of [...] Read more.
There is currently no research examining the rheological properties of cementitious paste backfill (CPB) materials containing aluminium oxide nanoparticles (nAlO). Knowing the yield stress and viscosity of CPB containing nAlO is crucial, especially when applying nano-CPB technology in underground mines. The purpose of this work is to thoroughly examine how nAlO affects the rheological characteristics of CPB and how those characteristics change over time. Yield stress and viscosity measurements are performed on CPB samples with different compositions (e.g., nAlO content, binder type, and superplasticizer content) at intervals of 0 min, 20 min, 1 h, 2 h, and 4 h. The study also includes measurements of the pH and zeta potential of the materials, microstructural studies (TG/DTG and XRD), and electrical conductivity (EC). The findings show that adding nAlO to CPB significantly changes its rheological properties, which in turn affects flowability. The yield stress and viscosity of CPB samples are greatly increased by the incorporation of nAlO, with the degree of influence varying based on variables including water content, curing duration, and type of binder. Because of the nAlO-induced microstructural changes in the CPB material, the interaction of nAlO and a larger fraction of nAlO, along with an increase in curing time, raises rheological characteristics and decreases paste flowability. The results of EC, DTG, and XRD, which show that binder hydration improves with nAlO dosage, corroborate this. Moreover, as nAlO content increases, the zeta potential decreases in magnitude, resulting in stronger repulsion forces and reduced flowability. However, EC, XRD, and DTG analyses suggest that the addition of 0.125% superplasticizer counteracts the flowability reduction caused by nAlO, as the superplasticizer slows down the cement hydration rate at very early curing stages. Moreover, the increase in the slag percentage from 0% to 50% and 75% of the binder content slightly decreases viscosity but greatly increases yield stress. The study’s fresh perspectives contribute to the advancement of nano-CPB technology and have important ramifications for the practical use of this technology in underground mine backfill operations. Full article
(This article belongs to the Special Issue Mechanical and Rheological Properties of Cemented Tailings Backfill)
Show Figures

Figure 1

20 pages, 3910 KB  
Article
Slag Substitution Effect on Features of Alkali-Free Accelerator-Reinforced Cemented Paste Backfill
by Ibrahim Cavusoglu
Minerals 2025, 15(2), 135; https://doi.org/10.3390/min15020135 - 29 Jan 2025
Cited by 1 | Viewed by 760
Abstract
Cemented paste backfill (CPB) improves underground stability by filling mine voids, but the high cost of cement presents economic challenges for miners. While alternative binders and admixtures have been explored, the combined impact of slag substitution and alkali-free (AF) accelerators on CPB performance [...] Read more.
Cemented paste backfill (CPB) improves underground stability by filling mine voids, but the high cost of cement presents economic challenges for miners. While alternative binders and admixtures have been explored, the combined impact of slag substitution and alkali-free (AF) accelerators on CPB performance is not yet fully understood. This study investigates the influences of slag substitution and AF accelerators on the performance of CPB through a comprehensive experimental approach. CPB samples were prepared with slag substitution ratios of 25%, 50%, and 75%, maintaining a fixed AF accelerator content of 0.4%. Various test techniques, including unconfined comprehensive strength (UCS), mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and thermal analysis (TG/DTA), were employed to study their mechanical and microstructural properties. Monitoring tests were also conducted to thoroughly assess the performance of CPB, including suction (self-desiccation), electrical conductivity (EC), and volumetric water content (VWC) tests. The results showed that the PCI50–SL50–0.4AF sample exhibited 2.3 times higher strength than the control sample for 28 days, with this improvement attributed to enhanced pozzolanic reactions contributing to better microstructural compactness. Monitoring tests revealed accelerated hydration kinetics and reduced water content in slag-reinforced CPB, highlighting the significant role of AF accelerator in facilitating rapid setting and improving early-age mechanical strength. Microstructural findings revealed that porosity decreased and C–S–H gel formation increased in the specimen containing slag and AF accelerators, contributing to increased strength and durability. These findings highlight the potential usage of slag and AF accelerators to enhance CPB’s mechanical, microstructural, and hydration properties, offering significant benefits for mining operations by improving backfill performance, while contributing to environmental sustainability through reduced cement consumption and associated CO2 emissions. Full article
(This article belongs to the Special Issue Cemented Mine Waste Backfill: Experiment and Modelling: 2nd Edition)
Show Figures

Figure 1

20 pages, 8406 KB  
Article
Mechanical and Microstructural Behavior of Cemented Paste Backfill Under Cyclic Loading
by Amin Safari, Abbas Taheri and Murat Karakus
Minerals 2025, 15(2), 123; https://doi.org/10.3390/min15020123 - 26 Jan 2025
Cited by 1 | Viewed by 1049
Abstract
Understanding the mechanical and physical behavior of aged CPB under cyclic loading is a significant area of research. Many parameters such as cementation (hydration) and the microstructure, which dictate the arrangement of particles and permeability, affect the mechanical features of cemented paste backfill [...] Read more.
Understanding the mechanical and physical behavior of aged CPB under cyclic loading is a significant area of research. Many parameters such as cementation (hydration) and the microstructure, which dictate the arrangement of particles and permeability, affect the mechanical features of cemented paste backfill (CPB). The impact of a wide range of external energy sources within the mining environment, such as cyclic loading resulting from long-term blasting, can significantly alter the applied stresses on the backfill mass. This paper aims to delve into this crucial area of research. A series of uniaxial cyclic tests were conducted on CPB, utilizing samples made from tailing materials sourced from a copper mine in South Australia. Different loading levels were applied at various curing times. All samples exhibited cyclic loading hardening behavior for cyclic loading levels between 80% and 93% of monotonic unconfined compressive strength (UCS), and a cyclic loading damage behavior was observed for 96% of UCS loading level for both 14- and 28-day curing periods. To further investigate these findings, scanning electron microscope analysis as well as sonic velocity tests were conducted for capturing microstructural changes in the samples before and after tests. These findings can be used to indicate a safe firing distance to a filled mass. Full article
Show Figures

Figure 1

18 pages, 3357 KB  
Review
Trends and Applications of Green Binder Materials for Cemented Paste Backfill Mining in China
by Jiandong Wang, Bolin Xiao, Xiaohui Liu and Zhuen Ruan
Minerals 2025, 15(2), 97; https://doi.org/10.3390/min15020097 - 21 Jan 2025
Cited by 5 | Viewed by 1370
Abstract
The backfill binder material is the key to the cost and performance of cemented paste backfill. This study aims to understand the current situation of metal ore backfill binders, identify industry challenges, inspire research ideas, and explore development directions. Current research investigates trends [...] Read more.
The backfill binder material is the key to the cost and performance of cemented paste backfill. This study aims to understand the current situation of metal ore backfill binders, identify industry challenges, inspire research ideas, and explore development directions. Current research investigates trends and developments of backfill binders through literature review, experience summary, field research, statistical analysis, and other methods. Firstly, the main backfill binder types are summarized, including cement, metallurgical slag, thermal slag, chemical slag, and tailings binders. Secondly, the research progress regarding reactivity activation, hydration mechanism, harmful ion solidification, energy conservation, and carbon reduction is summarized. Thirdly, three industrial applications of new backfill binders are introduced and summarized. Cement is still the most common, followed by slag powder binder. The cases of steel slag binder and semi-hydrated phosphogypsum backfill have shown significant effects. Solid waste-based backfill binder materials are gradually replacing cement, which is a trend. Finally, further research is discussed, including hydration modeling and simulation, material properties under extreme environments, hardening process control, and technical standards for backfill binders. This work provides a reference and basis for promoting green and efficient paste backfill and sustainable industry development. Full article
(This article belongs to the Topic Innovative Strategies to Mitigate the Impact of Mining)
Show Figures

Figure 1

14 pages, 2307 KB  
Article
Quantitative Analysis of Yield Stress and Its Evolution in Fiber-Reinforced Cemented Paste Backfill
by Shili Hu, Jingping Qiu, Qingsong Zhang, Zhenbang Guo and Chen Liu
Minerals 2025, 15(1), 81; https://doi.org/10.3390/min15010081 - 16 Jan 2025
Cited by 2 | Viewed by 871
Abstract
Fiber-reinforced cemented paste backfill (FR-CPB) has attracted considerable attention in modern mining applications due to its superior mechanical properties and adaptability. Despite its potential, understanding its rheological behavior remains limited, largely because of the absence of quantitative methods for assessing fiber packing behavior [...] Read more.
Fiber-reinforced cemented paste backfill (FR-CPB) has attracted considerable attention in modern mining applications due to its superior mechanical properties and adaptability. Despite its potential, understanding its rheological behavior remains limited, largely because of the absence of quantitative methods for assessing fiber packing behavior within CPB. This study develops a rheology-based approach to determine the maximum packing fraction of polypropylene fibers in fresh CPB, revealing that shorter fibers (3 mm) achieve a maximum packing fraction of 0.661, significantly higher than longer fibers (12 mm) with 0.534. Building on these findings, a quantitative model for the static yield stress of FR-CPB was developed, showing that under a high fiber content (0.9%) and with longer fibers (12 mm), the yield stress reached 274.34 kPa, a 40% increase compared to shorter fibers. Additionally, the study modeled the time-dependent evolution of yield stress, achieving a prediction accuracy with a correlation coefficient of 0.92. These advancements enable the optimization of FR-CPB composition, which can reduce material usage, enhance pipeline transport efficiency, and improve backfill stability in underground voids. By minimizing the risk of structural failure and optimizing resource allocation, this research provides a theoretical foundation for safer and more cost-effective mining operations. Full article
(This article belongs to the Special Issue Advances in Mine Backfilling Technology and Materials)
Show Figures

Figure 1

24 pages, 9657 KB  
Article
Study on the Stability and Control of Gob-Side Entry Retaining in Paste Backfill Working Face
by Changtao Xu, Xiangyu Wang, Dingchao Chen, Guanghui Wang, Zhenpeng Niu and Huixing Lu
Appl. Sci. 2025, 15(2), 528; https://doi.org/10.3390/app15020528 - 8 Jan 2025
Cited by 2 | Viewed by 1021
Abstract
Due to the poor stability of the roof and floor of the roadway in the 3-1 coal seam of Chahasu Coal Mine, traditional gob-side entry retaining (GER) methods fail to meet the production safety requirements. To address this, a GER technology using paste [...] Read more.
Due to the poor stability of the roof and floor of the roadway in the 3-1 coal seam of Chahasu Coal Mine, traditional gob-side entry retaining (GER) methods fail to meet the production safety requirements. To address this, a GER technology using paste backfill was proposed. This study reveals the stability mechanism of the surrounding rock in GER with paste backfill through theoretical analysis, numerical simulation, and industrial experiments. First, theoretical analysis was conducted to determine the overburden movement characteristics under varying backfill ratios. Uniaxial compressive tests on the paste material demonstrated that its bearing capacity reaches a relatively stable state after 14–28 days of curing. Second, numerical simulations were performed to study the deformation patterns of the surrounding rock and mine pressure characteristics under backfill ratios of 65%, 75%, 85%, and 95%. The Strain-Softening model was used to calibrate the backfill material parameters. The results showed that as the backfill ratio increased, the support provided by the backfill material improved, leading to enhanced bearing capacity of the overlying strata, reduced mine pressure intensity, significantly decreased deformation of the roadway, and substantially improved stability of the surrounding rock. Third, under a backfill ratio of 95%, the evolution of the abutment stress during face advancement was investigated. It was found that as the working face advanced, the backfill material and the overlying strata gradually formed a stable composite structure, with the abutment stress in the mining area stabilizing over time. Finally, to address the issue of insufficient initial strength and limited support capacity of the paste backfill material, a comprehensive control system for surrounding rock stability was proposed. This system integrates a basic bolt-mesh-cable support structure with localized reinforcement using portal hydraulic supports. Field industrial practices demonstrated that after applying this comprehensive control technology, the convergence of roof and floor was approximately 190 mm and the convergence of two ribs was about 140 mm, effectively ensuring the stability of surrounding rock in GER with paste backfill working face. Full article
Show Figures

Figure 1

16 pages, 2067 KB  
Article
Effects of Superfine Cement on Fluidity, Strength, and Pore Structure of Superfine Tailings Cemented Paste Backfill
by Kunlei Zhu, Haijun Wang, Xulin Zhao, Guanghua Luo, Kewei Dai, Qinghua Hu, Yang Liu, Baowen Liu, Yonggang Miao, Jianbo Liu and Dingchao Lv
Minerals 2025, 15(1), 24; https://doi.org/10.3390/min15010024 - 27 Dec 2024
Cited by 3 | Viewed by 857
Abstract
Advancements in mine tailings treatment technology have increased the use of superfine tailings, but their extremely fine particle size and high specific surface area limit the performance of superfine tailings cemented paste backfill (STCPB). This study investigates the effects of using superfine cement [...] Read more.
Advancements in mine tailings treatment technology have increased the use of superfine tailings, but their extremely fine particle size and high specific surface area limit the performance of superfine tailings cemented paste backfill (STCPB). This study investigates the effects of using superfine cement as a binder to enhance the fluidity, strength, and pore structure of STCPB. The influence of water film thickness (WFT) on STCPB performance is also examined. The results show that the cement-to-tailings ratio (CTR) and solid content (SC) significantly affect the spread diameter (SD) and unconfined compressive strength (UCS), following distinct linear/logarithmic and exponential trends, respectively. WFT has an exponential impact on SD and a non-linear effect on UCS, enhancing strength at low levels (0 μm < WFT < 0.0071 μm) and balancing hydration and flowability at moderate levels (0.0071 μm < WFT < 0.0193 μm) but reducing strength at high levels (WFT > 0.0193 μm). Additionally, superfine cement significantly improves the pore structure of STCPB by reducing porosity and macropore content. These findings provide valuable insights into optimizing STCPB for enhanced performance and sustainability in mine backfilling applications. Full article
(This article belongs to the Special Issue Cemented Mine Waste Backfill: Experiment and Modelling: 2nd Edition)
Show Figures

Figure 1

Back to TopTop