Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = passively mode-locked fiber laser

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1732 KiB  
Communication
Nonlinear-Optical-Loop-Mirror-Based Mode-Locked Fiber Laser Sensor for Low-Temperature Measurement
by Xian-An Dou, Linchan Li, Chang Liang, Haiping Xu, Qing Ye, Hui Kong, Jintian Bian and Lei Guo
Photonics 2025, 12(5), 507; https://doi.org/10.3390/photonics12050507 - 19 May 2025
Viewed by 428
Abstract
A temperature-sensing scheme is realized by a passively mode-locked Yb-doped fiber laser based on the nonlinear optical loop mirror (NOLM). The ambient temperature can be measured by detecting the pulse repetition frequency of the mode-locked fiber laser by an oscilloscope. When the ambient [...] Read more.
A temperature-sensing scheme is realized by a passively mode-locked Yb-doped fiber laser based on the nonlinear optical loop mirror (NOLM). The ambient temperature can be measured by detecting the pulse repetition frequency of the mode-locked fiber laser by an oscilloscope. When the ambient temperature increases from −40 °C to 6 °C, the pulse repetition frequency decreases linearly with a temperature sensitivity of 72.548 Hz/°C. The experimental results prove the feasibility of the mode-locked laser sensor operating in a low-temperature environment. Full article
(This article belongs to the Special Issue Advances in Solid-State Laser Technology and Applications)
Show Figures

Figure 1

17 pages, 5454 KiB  
Article
Quasi-1D NbTe4 for Broadband Pulse Generation from 1.0 to 3.0 μm: Bridging the Near- and Mid-Infrared
by Zian Cai, Wenyao Zhang, Qi Kang, Hongfu Huang, Xin Xiang, Shunbin Lu and Qiao Wen
Nanomaterials 2025, 15(6), 424; https://doi.org/10.3390/nano15060424 - 10 Mar 2025
Viewed by 803
Abstract
Quasi-one-dimensional (quasi-1D) transition metal chalcogenides (TMCs), a subclass of low-dimensional materials, have attracted significant attention due to their unique optical and electronic properties, making them promising candidates for nonlinear photonics. In this work, NbTe4, a quasi-1D transition metal tetrachalcogenide, was synthesized [...] Read more.
Quasi-one-dimensional (quasi-1D) transition metal chalcogenides (TMCs), a subclass of low-dimensional materials, have attracted significant attention due to their unique optical and electronic properties, making them promising candidates for nonlinear photonics. In this work, NbTe4, a quasi-1D transition metal tetrachalcogenide, was synthesized and employed for the first time as a broadband saturable absorber (SA) for pulsed laser applications. The nonlinear optical (NLO) properties of NbTe4 were systematically characterized at 1.0 μm, 2.0 μm, and 3.0 μm, revealing saturation intensities of 59.53 GW/cm2, 14 GW/cm2, and 6.8 MW/cm2, with corresponding modulation depths of 17.4%, 5.3%, and 21.5%. Utilizing NbTe4-SA, passively Q-switched (PQS) pulses were successfully generated in the 1.0 μm and 2.0 μm bands, achieving pulse durations of 86 ns and 2 μs, respectively. Furthermore, stable mode-locked operation was demonstrated in an Er-doped fluoride fiber laser at 3.0 μm, yielding a pulse duration of 19 ps. These results establish NbTe4 as a highly promising broadband SA material for next-generation ultrafast photonic devices and pave the way for the development of other quasi-1D materials in nonlinear optics. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

13 pages, 4053 KiB  
Article
In Situ Preparation of Thin-Film Q-Switches Based on Vanadium Dioxide for Pulsed Fiber Lasers
by Dmitriy P. Sudas, Sergei M. Popov and Petr I. Kuznetsov
Photonics 2025, 12(2), 133; https://doi.org/10.3390/photonics12020133 - 3 Feb 2025
Cited by 1 | Viewed by 952
Abstract
In the presented work, erbium fiber lasers operating in the pulsed mode with a nonlinear element containing a vanadium oxide saturable absorber are demonstrated. The structure of the saturable absorber is based on a segment of thinned silica fiber coated with a thin-film [...] Read more.
In the presented work, erbium fiber lasers operating in the pulsed mode with a nonlinear element containing a vanadium oxide saturable absorber are demonstrated. The structure of the saturable absorber is based on a segment of thinned silica fiber coated with a thin-film vanadium oxide by the method of metalorganic chemical vapor deposition. A fiber laser scheme is demonstrated that allows controlling the transmission of the internal cavity of the resonator during laser generation and deposition of a thin film. We have demonstrated a method for obtaining and annealing nanocoatings with laser generation control. We controlled the laser output parameters directly during the synthesis of the saturable absorber material. Vanadium oxides obtained in the work demonstrated the Mott–Paierls phase transition practically at room temperature. In this work, the optical characteristics of the output radiation of a fiber laser with a saturable absorber were measured. At temperatures above 70 °C, the coatings demonstrate a passive Q-switch with a repetition rate of 38 kHz and a pulse duration of 3.8 μs. At temperatures below the phase transition, a short-term mode-locking mode occurs. The transmission jump at a wavelength of about 1350 nm during structural rearrangement was 24%. For comparison, VO2 nanopowder in a polydimethylsiloxane elastomer matrix was used as a saturable absorber material. The nanopowder modulator made it possible to obtain pulses with a frequency of 27 kHz and a duration of about 7.2 μs. Full article
(This article belongs to the Special Issue Cutting-Edge Developments in Fiber Laser)
Show Figures

Figure 1

12 pages, 9136 KiB  
Article
Cylindrical Vector Beams with an MOPA Amplifier Based on Nonlinear Polarization Rotation Mode-Locking
by Tianyu Zhang, Dong Li, Siqi Pei, Yun Zhu, Jiapeng Hu, Xuesheng Liu, Anru Yan, Youqiang Liu and Zhiyong Wang
Photonics 2024, 11(11), 1013; https://doi.org/10.3390/photonics11111013 - 28 Oct 2024
Viewed by 1015
Abstract
CVBs (cylindrical vector beams) are widely used in optical imaging, optical trapping, material processing, etc. In this study, based on mode-selective couplers and passive mode-locking fiber technology, a cylindrical vector fiber amplifier with an MOPA (master oscillator power amplifier) structure was developed. In [...] Read more.
CVBs (cylindrical vector beams) are widely used in optical imaging, optical trapping, material processing, etc. In this study, based on mode-selective couplers and passive mode-locking fiber technology, a cylindrical vector fiber amplifier with an MOPA (master oscillator power amplifier) structure was developed. In the experiment, the pre-amp stage reached 19.87 mW output power and a CVB output with a mode purity greater than 97%. The measured beam quality factor was M2 = 2.1. The CVB output power obtained by the first-amp stage was 152.4 mW, and the mode purity was greater than 92%. The measured beam quality factor was M2 = 1.99. The internal inhomogeneity and external effects of the isotropic LMA (large-mode-area) fiber led to a decrease in beam quality and mode purity. After amplification, the gain of the fundamental mode was higher and the power was greater, resulting in a greatly reduced mode purity. This CVB fiber amplifier yielded important research value in expanding the applications of high-power fiber lasers. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

9 pages, 8246 KiB  
Article
Passively Mode-Locked Erbium-Doped Fiber Laser and Application in Laser Thrombolysis
by Xiaoli Zhao, Linyu Cong, Congyu Zhang, Chenxi Zhang, Ijaz Ahmad and Bo Fu
Photonics 2024, 11(11), 1006; https://doi.org/10.3390/photonics11111006 - 25 Oct 2024
Cited by 2 | Viewed by 9859
Abstract
Fiber lasers have been widely used in surgery with the development of fiber photonics. Since the human body is prone to myocardial infarction caused by blood clots, laser thrombolysis was proposed as a safe and efficient treatment. Mode-locked fiber lasers have high peak [...] Read more.
Fiber lasers have been widely used in surgery with the development of fiber photonics. Since the human body is prone to myocardial infarction caused by blood clots, laser thrombolysis was proposed as a safe and efficient treatment. Mode-locked fiber lasers have high peak power and narrow pulse width. In order to observe the effect of laser thrombolysis with mode-locked fiber lasers, a 1.5 µm mode-locked fiber laser based on carbon nanotubes was built, showing a pulse width of 1.46 ps, a 3 dB bandwidth of 1.65 nm, and a repetition rate of 29.5 MHz. The output pulses were amplified by an erbium-doped fiber amplifier to the hundred-milliwatt level and were applied to the surface of a self-made thrombus. The influences of lasing power and time on the damage diameter of the thrombus surface were evaluated. A low threshold damage power of 45 mW was observed, which resulted from the high peak power of the mode-locked pulses. These results demonstrate that high ablation efficiency can be achieved by using mode-locked pulses with a narrow pulse width and high peak power. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

12 pages, 11748 KiB  
Article
Wavelength-Switchable Ytterbium-Doped Mode-Locked Fiber Laser Based on a Vernier Effect Filter
by Hailong Xu, Liqiang Zhang, Xiangdong Li, Jiaxin Li, Yuanzhen Liu, Yicun Yao and Minghong Wang
Micromachines 2024, 15(11), 1289; https://doi.org/10.3390/mi15111289 - 23 Oct 2024
Viewed by 1272
Abstract
A wavelength-switchable ytterbium-doped mode-locked fiber laser is reported in this article. Two Mach–Zehnder interferometers (MZIs, denoted as MZI1, MZI2) with close free spectral ranges (FSRs) are connected in series to form a Vernier effect sensor. By utilizing the filtering effect of the Vernier [...] Read more.
A wavelength-switchable ytterbium-doped mode-locked fiber laser is reported in this article. Two Mach–Zehnder interferometers (MZIs, denoted as MZI1, MZI2) with close free spectral ranges (FSRs) are connected in series to form a Vernier effect sensor. By utilizing the filtering effect of the Vernier effect sensor, the wavelength-switchable output of an ytterbium-doped mode-locked fiber laser is realized. When the 3 dB bandwidth of the Vernier effect filter is set to be 5.31 nm around 1073.42 nm, stable dissipative solitons are obtained. Stretching MZI1 horizontally, the central wavelengths of the pulses can be switched among 1073.42 nm, 1055.38 nm, and 1036.22 nm, with a total tunable central wavelength range of 37.2 nm. When the 3 dB bandwidth of the Vernier effect filter is set to be 4.07 nm, stable amplifier similaritons are obtained. Stretching MZI1 horizontally, the central wavelengths of the pulses are switchable among 1072.71 nm, 1060.15 nm, 1048.92 nm, and 1037.26 nm, with a total tunable central wavelength range of 35.15 nm. Compared with traditional fiber interference filters, the Vernier effect filter has a higher sensitivity, making wavelength switching more convenient and providing a wider tuning range for the ytterbium-doped mode-locked fiber laser. Full article
(This article belongs to the Special Issue High Power Fiber Laser Technology)
Show Figures

Figure 1

10 pages, 2246 KiB  
Article
Generation of Bright–Dark Pulse Pairs in the Er-Doped Mode-Locked Fiber Laser Based on Doped Fiber Saturable Absorber
by Yaoyao Qi, Qixing Yu, Wei Sun, Yaqing Gao, Yu Zhang, Zhenxu Bai, Jie Ding, Bingzheng Yan, Yulei Wang, Zhiwei Lu and Dapeng Yan
Photonics 2024, 11(6), 534; https://doi.org/10.3390/photonics11060534 - 3 Jun 2024
Cited by 5 | Viewed by 1333
Abstract
This study reports new types of passive mode-locked Er-doped fiber laser (EDFL) based on a segment of doped fiber saturable absorber (DFSA) with Tm/Ho-doped fiber (THDF), Yb-doped fiber (YDF), and Er-doped fiber (EDF). By employing THDF-SA, a bright pulse sequence with a fundamental [...] Read more.
This study reports new types of passive mode-locked Er-doped fiber laser (EDFL) based on a segment of doped fiber saturable absorber (DFSA) with Tm/Ho-doped fiber (THDF), Yb-doped fiber (YDF), and Er-doped fiber (EDF). By employing THDF-SA, a bright pulse sequence with a fundamental repetition rate of 17.86 MHz was obtained. In addition, various mode-locked output states, including dark pulses, dark–bright pulse pairs, bright–dark pulse pairs, and second-harmonic pulses, were obtained through polarization modulation and gain modulation, and the orthogonality of dark–bright pulses in both polarization directions was verified. Furthermore, using EDF-SA and YDF-SA, dark pulses and dark–bright pulses were obtained. A comparison of the three experiments revealed that THDF-SA effectively reduces the mode-locked threshold and improves the average output power. Compared with bright pulses, dark pulses offer several advantages such as resisting noise, increasing propagation speed, and suppressing nonlinear scattering (such as pulse-intrinsic Raman scattering); thus, the EDFL can find broad application in long-distance transmission, precision measurement, and other fields. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 2nd Edition )
Show Figures

Figure 1

11 pages, 5019 KiB  
Article
The Influence of Spectral Filtering Bandwidth and Laser Gain on the Bound-State Pulse Formation Mechanism and Evolutionary Dynamics in the All-Fiber Mamyshev Oscillator
by Yaoyao Qi, Tianchen Zhang, Zhenxu Bai, Jie Ding, Bingzheng Yan, Yulei Wang, Zhiwei Lu and Dapeng Yan
Photonics 2024, 11(2), 139; https://doi.org/10.3390/photonics11020139 - 1 Feb 2024
Cited by 5 | Viewed by 2405
Abstract
We present a numerical investigation of the bound-state pulse formation mechanism and evolutionary dynamics based on the pump strength and spectral filtering bandwidth in the all-fiber Mamyshev oscillator. Through the numerical simulation and analysis, the different mode-locked pulses’ (such as single pulses, bound-state [...] Read more.
We present a numerical investigation of the bound-state pulse formation mechanism and evolutionary dynamics based on the pump strength and spectral filtering bandwidth in the all-fiber Mamyshev oscillator. Through the numerical simulation and analysis, the different mode-locked pulses’ (such as single pulses, bound-state pulses, and chaotic multi-pulses) regime transformation conditions are quantified. The results suggest that with an increase in the pump strength, the sub-pulse energy and output coupler of the Mamyshev oscillator show an inverse proportion trend, which plays an important role in increasing the number of sub-pulses in the bound-state pulses’ state. Furthermore, optimization schemes, such as adjusting the filter bandwidth and slowing down the accumulation of nonlinear effects, are proposed to achieve a high-energy pulse output in the Mamyshev oscillator. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications)
Show Figures

Figure 1

10 pages, 2681 KiB  
Article
High-Mode Purity 1 μm Cylindrical Vector Beam All-Fiber Laser Based on a Symmetric Two-Mode Coupler
by Boyi Yang, Siqi Pei, Tianyu Zhang, Yizhuo Zhang, He Hao, Kun Zhang, Xuesheng Liu, Tian Lan, Anru Yan, Youqiang Liu and Zhiyong Wang
Appl. Sci. 2023, 13(11), 6490; https://doi.org/10.3390/app13116490 - 26 May 2023
Cited by 3 | Viewed by 1854
Abstract
Cylindrical vector beams (CVBs) are the product of polarization modulation of optical fields, and possess both unique focusing characteristics and excellent properties applicable to machining, imaging, communication and other fields. Mode selection couplers comprise a promising new method to realize the long-term stable [...] Read more.
Cylindrical vector beams (CVBs) are the product of polarization modulation of optical fields, and possess both unique focusing characteristics and excellent properties applicable to machining, imaging, communication and other fields. Mode selection couplers comprise a promising new method to realize the long-term stable output of cylindrical vector beam all-fiber lasers. Mode selection couplers have the advantages of a simple structure, high mode conversion efficiency and high mode purity. However, the production process of conventional asymmetric mode selection couplers is more complicated. Therefore, in this paper, a symmetric two-mode coupler with a 1 μm band is designed and fabricated using the finite element method, beam propagation method and fused pull-cone method, and a set of all-fiber passive mode-locked lasers based on symmetric dual-mode couplers are constructed. Finally, we obtain cylindrical vector beam outputs with central wavelengths of 1038.97 nm/1067.72 nm, a repetition rate of 8.78 MHz, pulse durations of 660 ps/656 ps, maximum average powers of 5.25 mW/5.2 mW, and the high mode purity of TM (transverse magnetic)01 mode and TE (transverse electric)01 mode is 97.18% and 97.07%, respectively. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

16 pages, 4978 KiB  
Article
Synthesis of Nano-Structured Ge as Transmissive or Reflective Saturable Absorber for Mode-Locked Fiber Laser
by Chi-Cheng Yang, Chih-Hsien Cheng, Ting-Hui Chen, Yung-Hsiang Lin, Jr-Hau He, Din-Ping Tsai and Gong-Ru Lin
Nanomaterials 2023, 13(10), 1697; https://doi.org/10.3390/nano13101697 - 22 May 2023
Cited by 1 | Viewed by 1774
Abstract
Amorphous-Ge (α-Ge) or free-standing nanoparticles (NPs) synthesized via hydrogen-free plasma-enhanced chemical vapor deposition (PECVD) were applied as transmissive or reflective saturable absorbers, respectively, for starting up passively mode-locked erbium-doped fiber lasers (EDFLs). Under a threshold pumping power of 41 mW for mode-locking the [...] Read more.
Amorphous-Ge (α-Ge) or free-standing nanoparticles (NPs) synthesized via hydrogen-free plasma-enhanced chemical vapor deposition (PECVD) were applied as transmissive or reflective saturable absorbers, respectively, for starting up passively mode-locked erbium-doped fiber lasers (EDFLs). Under a threshold pumping power of 41 mW for mode-locking the EDFL, the transmissive α-Ge film could serve as a saturable absorber with a modulation depth of 52–58%, self-starting EDFL pulsation with a pulsewidth of approximately 700 fs. Under a high power of 155 mW, the pulsewidth of the EDFL mode-locked by the 15 s-grown α-Ge was suppressed to 290 fs, with a corresponding spectral linewidth of 8.95 nm due to the soliton compression induced by intra-cavity self-phase modulation. The Ge-NP-on-Au (Ge-NP/Au) films could also serve as a reflective-type saturable absorber to passively mode-lock the EDFL with a broadened pulsewidth of 3.7–3.9 ps under a high-gain operation with 250 mW pumping power. The reflection-type Ge-NP/Au film was an imperfect mode-locker, owing to their strong surface-scattered deflection in the near-infrared wavelength region. From the abovementioned results, both ultra-thin α-Ge film and free-standing Ge NP exhibit potential as transmissive and reflective saturable absorbers, respectively, for ultrafast fiber lasers. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

17 pages, 8395 KiB  
Article
Dual Regime Mode-Locked and Q-Switched Erbium-Doped Fiber Laser by Employing Graphene Filament–Chitin Film-Based Passive Saturable Absorber
by Siti Nur Fatin Zuikafly, Harith Ahmad, Mohd Faizal Ismail, Mohd Azizi Abdul Rahman, Wira Jazair Yahya, Nurulakmar Abu Husain, Khairil Anwar Abu Kassim, Hafizal Yahaya and Fauzan Ahmad
Micromachines 2023, 14(5), 1048; https://doi.org/10.3390/mi14051048 - 14 May 2023
Cited by 5 | Viewed by 2252
Abstract
We investigate the dynamics of high energy dual regime unidirectional Erbium-doped fiber laser in ring cavity, which is passively Q-switched and mode-locked through the use of an environmentally friendly graphene filament–chitin film-based saturable absorber. The graphene–chitin passive saturable absorber allows the option for [...] Read more.
We investigate the dynamics of high energy dual regime unidirectional Erbium-doped fiber laser in ring cavity, which is passively Q-switched and mode-locked through the use of an environmentally friendly graphene filament–chitin film-based saturable absorber. The graphene–chitin passive saturable absorber allows the option for different operating regimes of the laser by simple adjustment of the input pump power, yielding, simultaneously, highly stable and high energy Q-switched pulses at 82.08 nJ and 1.08 ps mode-locked pulses. The finding can have applications in a multitude of fields due to its versatility and the regime of operation that is on demand. Full article
(This article belongs to the Special Issue Semiconductors and Nanostructures for Electronics and Photonics)
Show Figures

Figure 1

13 pages, 4485 KiB  
Article
Impact of Intracavity Power Variations toward Ultrashort Pulse Generation
by Ahmad Fauzi Abas, Kuen Yao Lau, Yahya Mohammed Al-Moliki, Yosef Taher Aladadi, Mohammed Thamer Alresheedi and Mohd Adzir Mahdi
Appl. Sci. 2023, 13(7), 4087; https://doi.org/10.3390/app13074087 - 23 Mar 2023
Cited by 1 | Viewed by 2002
Abstract
This study demonstrates a passive mode-locked erbium-doped fiber laser with a graphene nanoplatelet-saturable absorber (GNP-SA) that generates ultrashort pulses within femtosecond pulse duration. The GNP-SA is fabricated via a direct transfer approach by mechanically exfoliated graphene on a fiber ferrule. Its characteristics include [...] Read more.
This study demonstrates a passive mode-locked erbium-doped fiber laser with a graphene nanoplatelet-saturable absorber (GNP-SA) that generates ultrashort pulses within femtosecond pulse duration. The GNP-SA is fabricated via a direct transfer approach by mechanically exfoliated graphene on a fiber ferrule. Its characteristics include 0.8% modulation depth, 8.7 MW/cm2 saturation fluence, and 36.8% absorbance. The quality of ultrashort pulses is studied with a variation of intracavity circulating powers that is controlled through an optical coupler. By changing the light intensity in the cavity, the optical amplification property in the erbium-doped fiber is also impacted. The increment of the output coupling ratio increases the population inversion in the active gain medium, which leads to the change of lasing wavelength from 1558 to 1532 nm. Using a 50% output coupling ratio, the fiber laser generates 960 fs pulse duration, 11.08 MHz repetition rate, and 6.05 mW output power. This study contributes to the understanding of oscillating light behavior while changing its intracavity power that affects the optical amplification properties. Full article
(This article belongs to the Topic Fiber Optic Communication)
Show Figures

Figure 1

8 pages, 1553 KiB  
Article
Long- and Short-Term Stability of All Polarization-Maintaining Thulium Doped Passively Mode-Locked Fiber Lasers with Emission Wavelengths at 1.95 μm and 2.07 μm
by Christian Cuadrado-Laborde, Jose L. Cruz, Antonio Díez and Miguel V. Andrés
Appl. Sci. 2023, 13(3), 1981; https://doi.org/10.3390/app13031981 - 3 Feb 2023
Cited by 3 | Viewed by 2167
Abstract
In this work, we compare the operation of a passively modelocked polarization-maintaining emission in two thulium-doped fiber lasers pumped at 1561 nm, with emission at wavelengths of 1.951 μm in one case and 2.07 μm in the other. We obtained a sequence of [...] Read more.
In this work, we compare the operation of a passively modelocked polarization-maintaining emission in two thulium-doped fiber lasers pumped at 1561 nm, with emission at wavelengths of 1.951 μm in one case and 2.07 μm in the other. We obtained a sequence of light pulses at 15.6 MHz, whose temporal width was 81 ps at 1.95 μm, and a sequence of light pulses at 13.1 MHz, whose temporal width was 94 ps at 2.07 μm. Finally, we also measured the long-term stability of this setup during a 24-h operation, as well as the short-term stability in a simulated harsh environment. The results confirm the superior performance of fiber laser systems with a fully polarization-maintaining design. Full article
(This article belongs to the Special Issue Thulium-Doped Fiber Lasers—Advances and Applications)
Show Figures

Figure 1

10 pages, 2829 KiB  
Article
SiO2 Passivated Graphene Saturable Absorber Mirrors for Ultrashort Pulse Generation
by Hongpei Wang, Cheng Jiang, Huiyuan Chu, Hao Dai, Beibei Fu, Shulong Lu and Ziyang Zhang
Nanomaterials 2023, 13(1), 111; https://doi.org/10.3390/nano13010111 - 26 Dec 2022
Cited by 4 | Viewed by 2172
Abstract
Owing to its broadband absorption, ultrafast recovery time, and excellent saturable absorption feature, graphene has been recognized as one of the best candidates as a high-performance saturable absorber (SA). However, the low absorption efficiency and reduced modulation depth severely limit the application of [...] Read more.
Owing to its broadband absorption, ultrafast recovery time, and excellent saturable absorption feature, graphene has been recognized as one of the best candidates as a high-performance saturable absorber (SA). However, the low absorption efficiency and reduced modulation depth severely limit the application of graphene-based SA in ultrafast fiber lasers. In this paper, a single-layer graphene saturable absorber mirror (SG-SAM) was coated by a quarter-wave SiO2 passivated layer, and a significantly enhanced modulation depth and reduced saturation intensity were obtained simultaneously compared to the SG-SAM without the SiO2 coating layer. In addition, long-term operational stability was found in the device due to the excellent isolation and protection of the graphene absorption layer from the external environment by the SiO2 layer. The high performance of the SAM was further confirmed by the construction of a ring-cavity EDF laser generating mode-locked pulses with a central wavelength of 1563.7 nm, a repetition rate of 34.17 MHz, and a pulse width of 830 fs. Full article
(This article belongs to the Special Issue Molecular Beam Epitaxy Growth of Quantum Wires and Quantum Dots)
Show Figures

Figure 1

9 pages, 3267 KiB  
Article
Revealing the Evolution from Q-Switching to Mode-Locking in an Erbium-Doped Fiber Laser Using Tungsten Trioxide Saturable Absorber
by Xin Tan, Ya Liu, Yongkang Zheng, Zewu Xie and Guoqing Hu
Photonics 2022, 9(12), 962; https://doi.org/10.3390/photonics9120962 - 10 Dec 2022
Cited by 4 | Viewed by 3501
Abstract
Passively Q-switching and mode-locking technologies can generate short pulses with durations that differ by several orders of magnitude widely used in different applications. Recently, Q-switching and mode-locking realized in an identical laser cavity with saturable absorbers was reported. The analysis of pulse conversion [...] Read more.
Passively Q-switching and mode-locking technologies can generate short pulses with durations that differ by several orders of magnitude widely used in different applications. Recently, Q-switching and mode-locking realized in an identical laser cavity with saturable absorbers was reported. The analysis of pulse conversion is helpful for us to further understand the pulse dynamics of a laser. In this paper, the pulse evolution from Q-switching, Q-switched mode-locking to mode-locking, is demonstrated by using a tungsten trioxide saturable absorber in a ring-cavity erbium-doped fiber laser. Firstly, self-started Q-switching at 1563 nm is observed, the repetition rate continuously increases, and the duration decreases when the pump power increased. Then, with an adjusting intra-cavity state of polarization under a high pump power level, stable Q-switched mode-locking pulses evolved from Q-switching, are observed. The amplitude of the emerged pulse sequence with a period of 36.8 ns, determined by cavity length, is modulated by the Q-switched envelope with the period of 10.3 μs. By optimizing the intracavity polarization carefully, stable continuous wave mode-locking operation is achieved eventually. To the best of our knowledge, this is the first experimental demonstration of Q-switching and mode-locking, respectively, in an identical transition-metal-oxides-based pulsed fiber laser without modification of cavity structure. Full article
Show Figures

Figure 1

Back to TopTop