Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (485)

Search Parameters:
Keywords = passive movements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4892 KB  
Article
Development of Variable Elastic Band with Adjustable Elasticities for Semi-Passive Exosuits
by Jaewook Ryu, Gyeongmo Kim and Giuk Lee
Biomimetics 2025, 10(11), 734; https://doi.org/10.3390/biomimetics10110734 - 1 Nov 2025
Viewed by 349
Abstract
Active exosuits provide various assistive force profiles but are limited by battery life, weight, and complex maintenance requirements. Passive exosuits, by contrast, are economical and lightweight while also offering unlimited usage times; however, due to their fixed stiffness levels, they can provide only [...] Read more.
Active exosuits provide various assistive force profiles but are limited by battery life, weight, and complex maintenance requirements. Passive exosuits, by contrast, are economical and lightweight while also offering unlimited usage times; however, due to their fixed stiffness levels, they can provide only a limited set of optimized assistive force profiles for different movements. To address these issues, this paper proposes a new variable elastic band for semi-passive exosuits. It comprises rubber bands and webbings connected in parallel, with the elongation of the rubber bands restricted according to the webbing length. By connecting these segments in series, a range of elasticities can be generated. Experimental results confirmed that the band could generate different stiffness levels, which were accurately predicted with an average coefficient of determination (R2) of 0.9985 and an average root mean square error of 0.8993. Additionally, based on tests involving participants wearing the device, the variable elastic band effectively modulated the assistive force profile. These findings overcome the previous limitations of passive components, opening the door to future research on enhancing the efficiency of passive systems and enabling further customization. Full article
Show Figures

Graphical abstract

24 pages, 5277 KB  
Article
Biomimetic Shading Systems: Integrating Motorised and Moisture-Responsive Actuation for Adaptive Façades
by Negin Imani, Marie-Joo Le Guen, Nathaniel Bedggood, Caelum Betteridge, Christian Gauss and Maxime Barbier
Biomimetics 2025, 10(10), 711; https://doi.org/10.3390/biomimetics10100711 - 20 Oct 2025
Viewed by 1045
Abstract
A biomimetic adaptive façade applies natural principles to building design using shading devices that dynamically respond to environmental changes, enhancing daylight, thermal comfort, and energy efficiency. While motorised systems offer precision through sensors and mechanical actuation, they consume energy and are complex. In [...] Read more.
A biomimetic adaptive façade applies natural principles to building design using shading devices that dynamically respond to environmental changes, enhancing daylight, thermal comfort, and energy efficiency. While motorised systems offer precision through sensors and mechanical actuation, they consume energy and are complex. In contrast, passively actuated systems use smart materials that respond to environmental stimuli, offering simpler and more sustainable operation, but often lack responsiveness to dynamic conditions. This study explores a sequential approach by initially developing motorised shading concepts before transitioning to a passive actuation strategy. In the first phase, nine mechanically actuated shading device concepts were designed, inspired by the opening and closing behaviour of plant stomata, and evaluated on structural robustness, actuation efficiency, ease of installation, and visual integration. One concept was selected for further development. In the second phase, a biocomposite made of polylactic acid (PLA) and regenerated cellulose fibres was used for Fused Deposition Modelling (FDM) to fabricate 3D-printed modules with passive, moisture-responsive actuation. The modules underwent environmental testing, demonstrating repeatable shape changes in response to heat and moisture. Moisture application increased the range of motion, and heating led to flap closure as water evaporated. Reinforcement and layering strategies were also explored to optimise movement and minimise unwanted deformation, highlighting the material’s potential for sustainable, responsive façade systems. Full article
(This article belongs to the Special Issue Biomimetic Adaptive Buildings)
Show Figures

Figure 1

14 pages, 248 KB  
Article
Thinking, Feeling, and Moving in Kindergarten Children: How Motor Competence Shapes Executive Function Skills and Emotion Comprehension in Girls
by Elena A. Chichinina, Aleksander N. Veraksa, Olga V. Almazova and Linda S. Pagani
Children 2025, 12(10), 1381; https://doi.org/10.3390/children12101381 - 13 Oct 2025
Viewed by 424
Abstract
Background/Objectives: Increased screen time partially replaces social interaction, physical activity, and outdoor play in kindergarten children, leading to a risk of decreased cognitive, emotional, and motor skills. Children with high motor skills are more likely to have access to challenging joint activities [...] Read more.
Background/Objectives: Increased screen time partially replaces social interaction, physical activity, and outdoor play in kindergarten children, leading to a risk of decreased cognitive, emotional, and motor skills. Children with high motor skills are more likely to have access to challenging joint activities that promote their cognitive and emotional development. This study examines the moderating role of motor competence in the relationship between executive function skills and emotion comprehension. Methods: A sample of 220 kindergarten children (101 girls, 119 boys) completed the NEPSY-II subtests and the ‘Dimensional Change Card Sort’ tool for executive function skills assessment, the Movement Assessment Battery for Children—Second Edition (MABC-2) for motor competence, and the Test of Emotion Comprehension (TEC) for emotion comprehension. Executive function skills and motor competence were assessed when children were in their penultimate year of kindergarten (children were aged on average 5 years 10 months), and emotion comprehension was assessed one year later, when children were in their final year of kindergarten. When children were in their penultimate year of kindergarten, caregivers also reported on children’s passive and active screen time, maternal education, and family income, which were used as control variables. Results: For girls, motor competence moderated the relationship between cognitive flexibility and later emotion comprehension. High motor competence amplified this relationship (B = 0.171; SE = 0.066; 95% CI [0.041, 0.302]; p = 0.011). For boys, there were no significant moderation effects. Conclusions: High motor competence can improve emotion comprehension in kindergarten girls. Emotional development may benefit from effective shared motor interventions for children. Full article
(This article belongs to the Special Issue Physical and Motor Development in Children)
14 pages, 419 KB  
Article
Effects of a Standing Program for Ambulatory Children with Myelomeningocele: A Single-Subject Design
by Marianne Hanover, Elizabeth M. Ardolino and Megan B. Flores
Healthcare 2025, 13(19), 2545; https://doi.org/10.3390/healthcare13192545 - 9 Oct 2025
Viewed by 508
Abstract
Background/Objectives: Children with myelomeningocele (MMC) often experience lower extremity muscular contractures, which can impact their functional mobility. While standing programs have demonstrated benefits for children with other neuromuscular conditions, there is limited evidence on their use in ambulatory children with MMC who have [...] Read more.
Background/Objectives: Children with myelomeningocele (MMC) often experience lower extremity muscular contractures, which can impact their functional mobility. While standing programs have demonstrated benefits for children with other neuromuscular conditions, there is limited evidence on their use in ambulatory children with MMC who have joint deformities. This single-subject design study examined the impact of a home-based standing program on two ambulatory children with MMC, focusing on lower extremity muscle flexibility, functional movement quality, gait velocity, and participation in daily activities. Methods: Two children participated in a multi-phase single-subject (ABABA) withdrawal design beginning with the baseline phase and then alternating between the intervention and withdrawal phases. The intervention consisted of 60-minute standing sessions, five days a week, using a sit-to-stand stander (STSS) with support and supervision from a physical therapist (PT) and the parent. Primary outcomes included goniometric passive range of motion (PROM) and 10-Meter Walk Test (10 MWT). Secondary outcomes included the Pediatric Neuromuscular Recovery Scale (Peds NRS) and the Pediatric Evaluation of Disability Inventory Computer Adaptive Test (PEDI-CAT). Results: Improvements in hip and knee muscle flexibility were observed during the intervention phases, with some loss during the withdrawal phase. Functional movement quality improved in both children. Gait velocity and participation in daily activity scores remained stable during intervention phases. Parental feedback reflected increased independence and high engagement with the home program. One child discontinued due to a heel injury, highlighting the need for individualized support. Conclusions: Personalized standing programs may improve muscle flexibility and functional movement quality in ambulatory children with MMC. Further research is warranted to determine the optimal dosing regimen, ensure safety, and assess long-term functional outcomes. Full article
(This article belongs to the Section Chronic Care)
Show Figures

Figure 1

18 pages, 1949 KB  
Article
EEG-Based Analysis of Motor Imagery and Multi-Speed Passive Pedaling: Implications for Brain–Computer Interfaces
by Cristian Felipe Blanco-Diaz, Aura Ximena Gonzalez-Cely, Denis Delisle-Rodriguez and Teodiano Freire Bastos-Filho
Signals 2025, 6(4), 52; https://doi.org/10.3390/signals6040052 - 1 Oct 2025
Viewed by 626
Abstract
Decoding motor imagery (MI) of lower-limb movements from electroencephalography (EEG) signals remains a challenge due to the involvement of deep cortical regions, limiting the applicability of Brain–Computer Interfaces (BCIs). This study proposes a novel protocol that combines passive pedaling (PP) as sensory priming [...] Read more.
Decoding motor imagery (MI) of lower-limb movements from electroencephalography (EEG) signals remains a challenge due to the involvement of deep cortical regions, limiting the applicability of Brain–Computer Interfaces (BCIs). This study proposes a novel protocol that combines passive pedaling (PP) as sensory priming with MI at different speeds (30, 45, and 60 rpm) to improve EEG-based classification. Ten healthy participants performed PP followed by MI tasks while EEG data were recorded. An increase in spectral relative power around Cz associated with both PP and MI was observed, varying with speed and suggesting that PP may enhance cortical engagement during MI. Furthermore, our classification strategy, based on Convolutional Neural Networks (CNNs), achieved an accuracy of 0.87–0.89 across four classes (three speeds and rest). This performance was also compared with the standard Common Spatial Patterns (CSP) and Linear Discriminant Analysis (LDA), which achieved an accuracy of 0.67–0.76. These results demonstrate the feasibility of multiclass decoding of imagined pedaling velocities and lay the groundwork for speed-adaptive BCIs, supporting future personalized and user-centered neurorehabilitation interventions. Full article
(This article belongs to the Special Issue Advances in Biomedical Signal Processing and Analysis)
Show Figures

Figure 1

19 pages, 2497 KB  
Article
Path-Based Progression Optimization Model for Multimodal Traffic System Signal Coordination
by Qi Cao, Changjian Wu, Shunchao Wang, Hongtian Liu and Weihan Chen
Systems 2025, 13(10), 854; https://doi.org/10.3390/systems13100854 - 28 Sep 2025
Viewed by 459
Abstract
Passive transit signal priority (TSP) strategies are widely recognized as effective tools for mitigating bus delays along urban arterials. However, existing TSP models primarily focus on through movements of transit vehicles, leading to potential delays for buses making turning movements. Moreover, these models [...] Read more.
Passive transit signal priority (TSP) strategies are widely recognized as effective tools for mitigating bus delays along urban arterials. However, existing TSP models primarily focus on through movements of transit vehicles, leading to potential delays for buses making turning movements. Moreover, these models do not adequately address signal coordination in multi-modal traffic systems involving both buses and private vehicles, resulting in increased delays and frequent stops for private vehicles. To address these limitations, this study proposes a binary mixed-integer linear programming (BMILP)-based signal progression band optimization model designed for multi-modal, path-level signal coordination. The model creates multiple progression bands for both straight and turning buses to minimize potential transit delays and enhance public transport service levels. By incorporating the mutual interactions between buses and private vehicles, progression bands for private vehicles are simultaneously optimized, enabling coordinated signal control that considers all users. The objective function maximizes passenger-equivalent service demand satisfied by the progression bands, explicitly accounting for mixed traffic flows and passenger loads. Numerical experiments on an urban arterial corridor demonstrate that, compared with the benchmark BUSBAND method, the proposed model achieves a 26% reduction in average bus delays, a 37% reduction in passenger car delays, and a 22% decrease in total stops, while also improving overall travel time reliability. Full article
Show Figures

Figure 1

33 pages, 520 KB  
Article
The Political Ideologies of the United Church of Christ in the Philippines (UCCP) Under the Marcos Regimes
by Christian P. Gopez, Marie_Valen N. Cortez, Belle Beatriex’ M. Alemania and Feorillo A. Demeterio
Religions 2025, 16(9), 1212; https://doi.org/10.3390/rel16091212 - 21 Sep 2025
Viewed by 1935
Abstract
Using Demeterio’s modified ideological spectrum, this article examines the dominant political ideologies reflected in the pastoral statements of the United Church of Christ in the Philippines (UCCP) under the administrations of Ferdinand Marcos Sr. and Ferdinand Marcos Jr. Through a hermeneutic lens grounded [...] Read more.
Using Demeterio’s modified ideological spectrum, this article examines the dominant political ideologies reflected in the pastoral statements of the United Church of Christ in the Philippines (UCCP) under the administrations of Ferdinand Marcos Sr. and Ferdinand Marcos Jr. Through a hermeneutic lens grounded in a two-dimensional spectrum, progressive–retrogressive and libertarian–authoritarian, the analysis reveals that under Marcos Sr., the UCCP adopted a conservative and authoritarian position. From 1973 to 1975, its pastoral statements issued general appeals for peace and human dignity, while avoiding direct criticism of the regime. However, by the mid to late 1970s, the UCCP began to exhibit signs of quiet resistance. In contrast, during the administration of Marcos Jr., the UCCP’s stance became more assertive and prophetic. These statements directly addressed issues such as human rights violations, environmental justice, and the defense of historical truth. In Demeterio’s spectrum, this contemporary position aligns with moderate progressivism, occasionally leaning toward radical progressivism, particularly in its advocacy for grassroots movements and democratic participation. This study is therefore significant as it illustrates the ideological transformation of the UCCP, from conservative restraint to active resistance, and underscores the capacity of religious institutions to evolve from passive complicity into agents of prophetic resistance. Full article
Show Figures

Figure 1

14 pages, 1440 KB  
Article
Sex Differences in Cortical Hemodynamic Responses During Interactive and Passive Tasks: An fNIRS Study Using the Nefroball System
by Karolina Jezierska, Agnieszka Turoń-Skrzypińska, Iwona Rotter, Anna Syroka and Aleksandra Rył
Sensors 2025, 25(18), 5897; https://doi.org/10.3390/s25185897 - 20 Sep 2025
Viewed by 497
Abstract
The present study aimed to investigate sex differences in the hemodynamic response of the cerebral cortex during interactive and passive tasks using functional near-infrared spectroscopy fNIRS. Ninety-seven healthy adults (63 women, 34 men) participated in the study. Participants performed two tasks: an interactive [...] Read more.
The present study aimed to investigate sex differences in the hemodynamic response of the cerebral cortex during interactive and passive tasks using functional near-infrared spectroscopy fNIRS. Ninety-seven healthy adults (63 women, 34 men) participated in the study. Participants performed two tasks: an interactive motor game and a passive hand movement, and activation was measured in five cortical regions. Statistically significant differences in the amplitude of the hemodynamic response of oxygenated haemoglobin ΔHbO levels were observed, particularly in the parietal cortex, where men showed higher activation levels. The differences remained significant in the parietal, prefrontal, left hemisphere, and visual cortex. The differences were more pronounced in the passive task, which may indicate different processing strategies in women and men. Although no significant group differences were found in the latency time of maximum reaction tmax, men tended to have longer times in the visual cortex. Additionally, a moderate positive correlation between ΔHbO and tmax was observed among men, particularly in the prefrontal cortex. These results highlight the importance of considering biological sex in neuroimaging studies and suggest directions for further analysis. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

14 pages, 3698 KB  
Article
Active Gaze Guidance and Pupil Dilation Effects Through Subject Engagement in Ophthalmic Imaging
by David Harings, Niklas Bauer, Damian Mendroch, Uwe Oberheide and Holger Lubatschowski
J. Eye Mov. Res. 2025, 18(5), 45; https://doi.org/10.3390/jemr18050045 - 19 Sep 2025
Viewed by 586
Abstract
Modern ophthalmic imaging methods such as optical coherence tomography (OCT) typically require expensive scanner components to direct the light beam across the retina while the patient’s gaze remains fixed. This proof-of-concept experiment investigates whether the patient’s natural eye movements can replace mechanical scanning [...] Read more.
Modern ophthalmic imaging methods such as optical coherence tomography (OCT) typically require expensive scanner components to direct the light beam across the retina while the patient’s gaze remains fixed. This proof-of-concept experiment investigates whether the patient’s natural eye movements can replace mechanical scanning by guiding the gaze along predefined patterns. An infrared fundus camera setup was used with nine healthy adults (aged 20–57) who completed tasks comparing passive viewing of moving patterns to actively tracing them by drawing using a touchpad interface. The active task involved participant-controlled target movement with real-time color feedback for accurate pattern tracing. Results showed that active tracing significantly increased pupil diameter by an average of 17.8% (range 8.9–43.6%; p < 0.001) and reduced blink frequency compared to passive viewing. More complex patterns led to greater pupil dilation, confirming the link between cognitive load and physiological response. These findings demonstrate that patient driven gaze guidance can stabilize gaze, reduce blinking, and naturally dilate the pupil. These conditions might enhance the quality of scannerless OCT or other imaging techniques benefiting from guided gaze and larger pupils. There could be benefits for children and people with compliance issues, although further research is needed to consider cognitive load. Full article
(This article belongs to the Special Issue Eye Tracking and Visualization)
Show Figures

Figure 1

12 pages, 4591 KB  
Article
Toward a Better Understanding of Hip Adductor Function: Internal Rotation Capability Revealed by Anatomical and MRI Evaluation
by Kazuhiro Hirano, Kazuo Kinoshita, Atsushi Senoo and Masaru Watanabe
J. Funct. Morphol. Kinesiol. 2025, 10(3), 354; https://doi.org/10.3390/jfmk10030354 - 16 Sep 2025
Viewed by 1407
Abstract
Background: At present, the rotational function of the hip adductor muscle group remains unclear. This study aimed to clarify the rotational function and stabilizing role of the pectineus, adductor longus, and adductor brevis (adductor muscle group) based on anatomical findings and T [...] Read more.
Background: At present, the rotational function of the hip adductor muscle group remains unclear. This study aimed to clarify the rotational function and stabilizing role of the pectineus, adductor longus, and adductor brevis (adductor muscle group) based on anatomical findings and T2 values (ms) obtained from magnetic resonance imaging (MRI). T2 values are prolonged in tissues with higher water content, and in skeletal muscle, it has been demonstrated that T2 values increase in proportion to exercise intensity. Methods: Using fixed specimens (n = 6, aged 61–96 years), we observed the three-dimensional arrangement of muscles in the neutral position of the hip joint and observed the extension or shortening of muscles associated with passive maximum internal and external rotation of the hip joint. In addition, we evaluated the activity of the adductor muscle group by T2 values (ms) from MRI pre- and post-internal rotation (forward step with the left leg) and pre- and post-external rotation (backward step with the left leg) movements of the right hip joint in a standing position (n = 8, healthy adult subjects, mean age 29.1 ± 5.3 years). Results: Regarding functional anatomy, the arrangement of the gluteus minimus and adductor muscle groups was almost parallel across the femoral neck. In the evaluation of adductor muscle group activity using MRI, the percent change in T2 values (%) of the pectineus was 6.38 ± 1.35 pre- and post-internal rotation and 1.35 ± 0.71 pre- and post-external rotation, whereas that of the adductor longus and brevis was 4.84 ± 1.31 pre- and post-internal rotation and 1.31 ± 0.68 pre- and post-external rotation. The percent change in T2 values pre- and post-internal rotation exercise was significantly greater than that pre- and post-external rotation exercise in the pectineus, adductor longus, and brevis muscles (p < 0.05). Conclusions: The adductor muscle groups are suggested to contribute to joint stability in the coronal plane and provide joint internal rotation in the standing position. Full article
Show Figures

Figure 1

32 pages, 9586 KB  
Article
Experimental Study on the Horizontal Bearing Performance of Pile–Soil Composite Foundation Under Coupled Action of Active and Passive Loads
by Yuhao Zhang, Yuancheng Guo and Qianyi Zhang
Buildings 2025, 15(17), 3184; https://doi.org/10.3390/buildings15173184 - 4 Sep 2025
Viewed by 730
Abstract
The pile–soil composite foundation system, highly acclaimed for its remarkable load-bearing capacity and limited deformation characteristics, has emerged as a fundamental element in geotechnical engineering practices. In the applications of adjacent slope engineering, such composite foundations are influenced by intricate loading scenarios. These [...] Read more.
The pile–soil composite foundation system, highly acclaimed for its remarkable load-bearing capacity and limited deformation characteristics, has emerged as a fundamental element in geotechnical engineering practices. In the applications of adjacent slope engineering, such composite foundations are influenced by intricate loading scenarios. These scenarios involve both active vertical–horizontal combined load and passive soil-displacement forces generated due to the alteration of soil constraints. In this study, a self-designed movable retaining wall model box was employed. By applying different vertical and horizontal loads and controlling the rotation of the retaining wall around its base, a systematic investigation was conducted on the horizontal bearing mechanisms of single-pile and four-pile composite. The experimental data indicate that for every increment of 15 kPa in the vertical load, the horizontal bearing capacity experiences an average growth of approximately 18.9%, and the extreme value of the bending moment shows an average increase of 19.6. The analysis reveals coupled effects in internal force distribution and deformation patterns within load-bearing pile segments under concurrent active–passive loading conditions, while the embedded sections remain unaffected. Among four-pile composite foundations, the horizontal bearing mechanism of the front-row piles is consistent with that of a single-pile system. However, the maximum bending moments of the front-row and rear-row piles, compared to the single-pile system, have reached 0.68 times and 1.74 times, respectively. Notably, the bending moment of the front-row piles under the translational mode of the retaining wall is approximately 2.9 times that under the rotational mode, posing a potential risk of damage to the retaining structure, and necessary intervention is required. The results of this study provide a scientific basis for the force and deformation mechanism of piles at different positions in the composite foundation near foundation pit engineering, as well as their design for bending and shear resistance. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 1790 KB  
Article
Stabilization of Floating Offshore Wind Turbines with a Passive Stability-Enhancing Skirted Trapezoidal Platform
by Hanbyeol Kim, Hassan Saghi, Injae Jeon and Goangseup Zi
J. Mar. Sci. Eng. 2025, 13(9), 1658; https://doi.org/10.3390/jmse13091658 - 29 Aug 2025
Viewed by 734
Abstract
In this study, an innovative passive stability-enhancing barge platform geometry is presented to improve the operational efficiency of floating offshore wind turbines (FOWTs) by mitigating platform motion caused by wave action. Barge-type FOWTs, which primarily rely on surface support, have received less attention [...] Read more.
In this study, an innovative passive stability-enhancing barge platform geometry is presented to improve the operational efficiency of floating offshore wind turbines (FOWTs) by mitigating platform motion caused by wave action. Barge-type FOWTs, which primarily rely on surface support, have received less attention in terms of geometric optimization. The proposed design incorporates skirts and a trapezoidal cross-sectional shape for the barge platforms.To achieve effective stability given cost-effect considerations, geometrical optimization was performed while maintaining the same mass as the original design. Positioning the skirt with a height-to-diameter ratio of 0.8 reduces platform movements considerably, decreasing the heave by approximately 20% and the pitch by up to 70% relative to the original design. In addition, the analysis demonstrated that increasing the moonpool area to approximately 400 m2 (approximately 10% of the platform’s surface area) led to an additional reduction in the heave and pitch responses. A specific moonpool diameter saturation point value was identified to increase the stability of the floater. Finally, the platform configuration yielded consistently lower peak motions across different wave angles, demonstrating improved stability. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Structures)
Show Figures

Figure 1

19 pages, 4805 KB  
Article
Comparative Analysis of Passive Movement During Robot-Assisted and Therapist-Led Rehabilitation Exercises
by Iwona Chuchnowska, Jolanta Mikulska, Michał Burkacki, Marta Chmura, Miłosz Chrzan, Jan Kalinowski, Sławomir Suchoń, Marek Ples, Mariusz Sobiech, Piotr Szaflik, Hanna Zadoń and Beniamin Watoła
Sensors 2025, 25(17), 5334; https://doi.org/10.3390/s25175334 - 28 Aug 2025
Viewed by 929
Abstract
The growing number of patients in need of rehabilitation, largely due to an aging population and the increasing incidence of strokes, drives the search for more effective therapeutic methods. Stroke remains a leading cause of adult disability, increasing demand for rehabilitation services. Robotic-assisted [...] Read more.
The growing number of patients in need of rehabilitation, largely due to an aging population and the increasing incidence of strokes, drives the search for more effective therapeutic methods. Stroke remains a leading cause of adult disability, increasing demand for rehabilitation services. Robotic-assisted therapy presents a promising solution by offering precision and repeatability, complementing traditional methods. This study compared traditional rehabilitation led by a physiotherapist with robotic-assisted therapy using the UR10e robot. The research consisted of two stages: in the first, a physiotherapist guided passive upper limb movements, and in the second, the same movements were replicated by the UR10e robot with a specialized adapter for arm positioning. Movements were measured using the Noraxon Ultium Motion system, analyzing flexion, extension, and rotation angles at the shoulder and elbow joints. Full article
(This article belongs to the Special Issue State of the Art in Wearable Sensors for Health Monitoring)
Show Figures

Figure 1

14 pages, 11011 KB  
Article
The Musculoskeletal Advanced Transillumination Technique (MATT): A Descriptive Proof-of-Concept Study of a New Method for the Study of the Iliotibial Tract Tested on Fresh Cadaveric Specimens
by Sonia Bédard, Alexandre Bédard, Nathaly Gaudreault, Matteo Izzo and François Vézina
J. Funct. Morphol. Kinesiol. 2025, 10(3), 327; https://doi.org/10.3390/jfmk10030327 - 26 Aug 2025
Viewed by 1308
Abstract
Background: The iliotibial band (ITB) is an anatomically complex structure with multiple proximal and distal attachments, making its mechanical behavior difficult to interpret. In the study of iliotibial band syndrome (ITBS), prior research has often considered the underlying lateral femoral epicondyle (LFE) as [...] Read more.
Background: The iliotibial band (ITB) is an anatomically complex structure with multiple proximal and distal attachments, making its mechanical behavior difficult to interpret. In the study of iliotibial band syndrome (ITBS), prior research has often considered the underlying lateral femoral epicondyle (LFE) as a fixed reference to describe ITB movement during knee flexion, potentially misrepresenting true tissue dynamics. This proof-of-concept study introduces the musculoskeletal advanced transillumination technique (MATT) to visualize and measure LFE displacement relative to the ITB and the tubercule of the ITB (tITB) on the tibia during passive knee flexion. Methods: Un-embalmed donor knees (n = 8) were dissected to expose the ITB and positioned on a device allowing standardized passive motion from 0° to 30°. A trocar was inserted between the femoral epicondyles, and a 300-watt xenon light source illuminated the LFE. Video was recorded with an iPhone 15, and key frames were analyzed using ImageJ Version 1.54i, and a custom Python (Version 3.12.5) script to quantify LFE displacement relative to the ITB and to the tITB. Results: Median absolute LFE displacement from 0° to 30° was 9.18 mm (IQR 7.23–10.95). Between 0° and 30°, the LFE shifted anteriorly by −1.76 mm (IQR −10.28 to −8.72) relative to the anterior border of the ITB, and by 11.26 mm (IQR 8.27 to 26.33) relative to its posterior border. The LFE-tITB distance increased from 51.98 mm (IQR 49.13–52.36) at 0° to 53.66 mm (IQR 50.08–60.11) at 30°, with a median displacement of 3.92 mm (IQR: 2.48–5.73). Conclusions: Musculoskeletal Advance Transillumination Technique (MATT) is a straightforward and reproducible technique that offers direct visualization of the dynamic relationship between a skeletal landmark and myofascial structures, such as the LFE and the ITB. By challenging the assumption that the LFE is a fixed reference point, MATT opens new perspectives for investigating the biomechanical mechanisms underlying conditions like iliotibial band syndrome. Full article
(This article belongs to the Section Functional Anatomy and Musculoskeletal System)
Show Figures

Figure 1

21 pages, 3286 KB  
Article
ELM-GA-Based Active Comfort Control of a Piggyback Transfer Robot
by Liyan Feng, Xinping Wang, Teng Liu, Kaicheng Qi, Long Zhang, Jianjun Zhang and Shijie Guo
Machines 2025, 13(8), 748; https://doi.org/10.3390/machines13080748 - 21 Aug 2025
Viewed by 622
Abstract
The improvement of comfort in the human–robot interaction for care recipients is a significant challenge in the development of nursing robots. The existing methods for enhancing comfort largely depend on subjective comfort questionnaires, which are prone to unavoidable errors. Additionally, traditional passive movement [...] Read more.
The improvement of comfort in the human–robot interaction for care recipients is a significant challenge in the development of nursing robots. The existing methods for enhancing comfort largely depend on subjective comfort questionnaires, which are prone to unavoidable errors. Additionally, traditional passive movement control approaches lack the ability to adapt and effectively improve care recipient comfort. To address these problems, this paper proposes an active, personalized intelligent control method based on neural networks. A muscle activation prediction model is established for the piggyback transfer robot, enabling dynamic adjustments during the care process to improve human comfort. Initially, a kinematic analysis of the piggyback transfer robot is conducted to determine the optimal back-carrying trajectory. Experiments were carried out to measure human–robot contact forces, chest holder rotation angles, and muscle activation levels. Subsequently, an Online Sequential Extreme Learning Machine (OS-ELM) algorithm is used to train a predictive model. The model takes the contact forces and chest holder rotation angle as inputs, while outputting the latissimus dorsi muscle activation levels. The Genetic Algorithm (GA) is then employed to dynamically adjust the chest holder’s rotation angle to minimize the difference between actual muscle activation and the comfort threshold. Comparative experiments demonstrate that the proposed ELM-GA-based active control method effectively enhances comfort during the piggyback transfer process, as evidenced by both subjective feedback and objective measurements of muscle activation. Full article
(This article belongs to the Special Issue Vibration Isolation and Control in Mechanical Systems)
Show Figures

Figure 1

Back to TopTop