Thinking, Feeling, and Moving in Kindergarten Children: How Motor Competence Shapes Executive Function Skills and Emotion Comprehension in Girls
Abstract
Highlights
- In girls, high motor competence at 5 years 10 months (Time 1) amplified the relationship between cognitive flexibility at Time 1 and emotion comprehension one year later (Time 2).
- Both verbal and visual working memory at Time 1 predicted emotion comprehension at Time 2; in girls, motor inhibition at Time 1 predicted emotion comprehension at Time 2; and in boys, it was cognitive inhibition.
- Joint physical activities, which also challenge executive function skills, may help foster emotion comprehension development.
- The findings highlight the role of motor interventions and joint physical activities when it comes to choosing activities for young children.
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant Selection and Description
2.2. Measures
2.2.1. Measures: Predictor Variables—EF Skills (Time 1)
2.2.2. Measures: Moderator Variable—Motor Competence (Time 1)
2.2.3. Measures: Outcome Variable—Emotion Comprehension (Time 2)
2.2.4. Measures: Confound Control Variables (Time 1)
2.3. Procedure
2.4. Data Analytic Procedures
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fitzpatrick, C.; Florit, E.; Lemieux, A.; Garon-Carrier, G.; Mason, L. Associations Between Preschooler Screen Time Trajectories and Executive Function. Acad. Pediatr. 2025, 25, 102603. [Google Scholar] [CrossRef]
- Moore, S.A.; Faulkner, G.; Rhodes, R.E.; Brussoni, M.; Chulak-Bozzer, T.; Ferguson, L.J.; Mitra, R.; O’Reilly, N.; Spence, J.C.; Vanderloo, L.M.; et al. Impact of the COVID-19 virus outbreak on movement and play behaviours of Canadian children and youth: A national survey. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 85. [Google Scholar] [CrossRef]
- Lee, S.; Kim, D.; Shin, Y. Screen time among preschoolers: Exploring individual, familial, and environmental factors. Clin. Exp. Pediatr. 2024, 67, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Korzeniowski, C.; Ison, M.S.; Difabio de Anglat, H.A. Summary of the Developmental Trajectory of Executive Functions from Birth to Adulthood. In Psychiatry and Neuroscience Update; Gargiulo, P.Á., Mesones Arroyo, H.L., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Tervo-Clemmens, B.; Calabro, F.J.; Parr, A.C.; Fedor, J.; Foran, W.; Luna, B. A canonical trajectory of executive function maturation from adolescence to adulthood. Nat. Commun. 2023, 14, 6922. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Demetriou, A.; Kazali, E.; Spanoudis, G.; Makris NKazi, S. Executive function: Debunking an overprized construct. Dev. Rev. 2024, 74, 101168. [Google Scholar] [CrossRef]
- Sambol, S.; Suleyman, E.; Scarfo, J.; Ball, M. A true reflection of executive functioning or a representation of task-specific variance? Re-evaluating the unity/diversity framework. Acta Psychol. 2023, 236, 103934. [Google Scholar] [CrossRef]
- Souissi, S.; Chamari, K.; Bellaj, T. Assessment of executive functions in school-aged children: A narrative review. Front. Psychol. 2022, 13, 991699. [Google Scholar] [CrossRef]
- Mengxia, L. Preschoolers’ cognitive flexibility and emotion understanding: A developmental perspective. Front. Psychol. 2024, 15, 1280739. [Google Scholar] [CrossRef]
- Morra, S.; Parrella, I.; Camba, R. The role of working memory in the development of emotion comprehension. Br. J. Dev. Psychol. 2011, 29, 744–764. [Google Scholar] [CrossRef]
- Richard, S.; Cavadini, T.; Dalla-Libera NAngonin, S.; Alaria, L.; Lafay, A.; Berger, C.; Gentaz, E. The development of specific emotion comprehension components in 1285 preschool children. Sci. Rep. 2025, 15, 8562. [Google Scholar] [CrossRef]
- Belasheva, I.V.; Ermakov, P.N. Subjective Well-Being of Students with Alexithymia in the Context of Development of their Emotional Competencies during the COVID-19 Pandemic. Natl. Psychol. J. 2023, 18, 165–176. [Google Scholar] [CrossRef]
- Pons, F.; Harris, P.L.; De Rosnay, M. Emotion comprehension between 3 and 11 years: Developmental periods and hierarchical organization. Eur. J. Dev. Psychol. 2004, 1, 127–152. [Google Scholar] [CrossRef]
- Leontiev, A.N. Activity, Consciousness, and Personality; Politisdat: Moscow, Russia, 1975; p. 304. [Google Scholar]
- Li, Q.; Liu, P.; Yan, N.; Feng, T. Executive Function Training Improves Emotional Competence for Preschool Children: The Roles of Inhibition Control and Working Memory. Front. Psychol. 2020, 11, 347. [Google Scholar] [CrossRef] [PubMed]
- Zinchenko, Y.P.; Sobkin, V.S. L.S. Vygotsky: History of the future. Lomonosov Psychol. J. 2024, 47, 11–23. [Google Scholar] [CrossRef]
- Zaporozhets, A.V. Nurturing emotions and feelings in preschoolers. In Emotional Development of a Preschooler; Kosheleva, A.D., Ed.; Prosveshchenie: Moscow, Russia, 1985. [Google Scholar]
- Piaget, J. The Moral Judgment of the Child, 1st ed.; Routledge: London, UK, 1932. [Google Scholar]
- Utesch, T.; Bardid, F.; Büsch, D.; Strauss, B. The Relationship Between Motor Competence and Physical Fitness from Early Childhood to Early Adulthood: A Meta-Analysis. Sports Med. 2019, 49, 541–551. [Google Scholar] [CrossRef]
- Henderson, S.E.; Sugden, D.A.; Barnett, A.L. Movement Assessment Battery for Children-2, 2nd ed.; Pearson: London, UK, 2007. [Google Scholar]
- Malambo, C.; Nová, A.; Clark, C.; Musálek, M. Associations between Fundamental Movement Skills, Physical Fitness, Motor Competency, Physical Activity, and Executive Functions in Pre-School Age Children: A Systematic Review. Children 2022, 9, 1059. [Google Scholar] [CrossRef]
- Willoughby, M.T.; Hudson, K. Contributions of motor skill development and physical activity to the ontogeny of executive function skills in early childhood. Dev. Rev. 2023, 70, 101102. [Google Scholar] [CrossRef]
- Mohammadi Orangi, B.; Lenoir, M.; Yaali, R.; Ghorbanzadeh, B.; O’Brien-Smith, J.; Galle, J.; De Meester, A. Emotional intelligence and motor competence in children, adolescents, and young adults. Eur. J. Dev. Psychol. 2023, 20, 66–85. [Google Scholar] [CrossRef]
- Hill, P.J.; Mcnarry, M.A.; Mackintosh, K.A.; Murray, M.A.; Pesce, C.; Valentini, N.C.; Getchell, N.; Tomporowski, P.D.; Robinson, L.E.; Barnett, L.M. The Influence of Motor Competence on Broader Aspects of Health: A Systematic Review of the Longitudinal Associations Between Motor Competence and Cognitive and Social-Emotional Outcomes. Sports Med. 2024, 54, 375–427. [Google Scholar] [CrossRef]
- Martin-Rodriguez, A.; Gostian-Ropotin, L.A.; Beltran-Velasco, A.I.; Belando-Pedreno, N.; Simon, J.A.; Lopez-Mora, C.; Navarro-Jimenez, E.; Tornero-Aguilera, J.F.; Clemente-Suarez, V.J. Sporting Mind: The Interplay of Physical Activity and Psychological Health. Sports 2024, 12, 37. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Q.; Xin, Z.; Gu, H. The Impact of Gross Motor Skills on the Development of Emotion Understanding in Children Aged 3-6 Years: The Mediation Role of Executive Functions. Int. J. Environ. Res. Public Health 2022, 19, 14807. [Google Scholar] [CrossRef]
- Berenbaum, S.; Martin, C.; Hanish, L.; Briggs, P.; Fabes, R. Sex Differences in Children’s Play. In Sex Differences in the Brain: From Genes to Behavior; Becker, J.B., Berkley, K.J., Geary, N., Hampson, E., Herman, J.P., Young, E., Eds.; Oxford University Press: Oxford, UK, 2007. [Google Scholar] [CrossRef]
- Sobkin, V.; Skobeltsina, K. Shared activities of parents and their preschool children during family pastime. Psychol. Russ. State Art 2015, 8, 52–60. [Google Scholar] [CrossRef]
- Twenge, J.M.; Farley, E. Not all screen time is created equal: Associations with mental health vary by activity and gender. Soc. Psychiatry Psychiatr. Epidemiol. 2021, 56, 207–217. [Google Scholar] [CrossRef]
- Shinohara, I.; Moriguchi, Y. Are there sex differences in the development of prefrontal function during early childhood? Dev. Psychobiol. 2020, 63, 641–649. [Google Scholar] [CrossRef]
- Smits-Engelsman, B.; Coetzee, D.; Valtr, L.; Verbecque, E. Do Girls Have an Advantage Compared to Boys When Their Motor Skills Are Tested Using the Movement Assessment Battery for Children, 2nd Edition? Children 2023, 10, 1159. [Google Scholar] [CrossRef]
- Korkman, M.; Kirk, U.; Kemp, S. NEPSY II: Clinical and Interpretive Manual, 2nd ed.; Harcourt Assessment, Psychological Corporation: San Antonio, TX, USA, 2007. [Google Scholar]
- Zelazo, P.D. The Dimensional Change Card Sort (DCCS): A method of assessing executive function in children. Nat. Protoc. 2006, 1, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Pons, F.; Harris, P. Test of Emotion Comprehension: TEC; University of Oxford: Oxford, UK, 2000. [Google Scholar]
- Veraksa, A.N.; Almazova, O.V.; Bukhalenkova, D.A. Executive functions assessment in senior preschool age: A battery of methods. Psychol. J. 2020, 41, 108–118. [Google Scholar] [CrossRef]
- Veraksa, N.E.; Veraksa, A.N.; Gavrilova, M.N.; Bukhalenkova, D.A.; Tarasova, K.S. The Russian Version of the Test of Emotion Comprehension: Adaptation and Validation for Use in Preschool Children. Psychology. J. High. Sch. Econ. 2021, 18, 56–70. [Google Scholar] [CrossRef]
- Tong, F. Imagery and visual working memory: One and the same? Trends Cogn. Sci. 2013, 17, 489–490. [Google Scholar] [CrossRef]
- Bukhalenkova, D.A.; Veraksa ANGuseva, U.D.; Oshchepkova, E.S. The relationship between vocabulary size and emotion understanding in children aged 5–7 years. Lomonosov Psychol. J. 2024, 47, 150–176. [Google Scholar] [CrossRef]
- García, J.L.; Aadland, E.; Berger NHansen, B.H.; Benadjaoud, M.A.; van Hees, V.; Danilevicz, I.M.; Sabia, S. Differences in the activity intensity distribution over the day between boys and girls aged 3 to 17 years. Sci. Rep. 2025, 15, 18636. [Google Scholar] [CrossRef]
- Ming, H.; Zhang, F.; Jiang, Y.; Ren, Y.; Huang, S. Family socio-economic status and children’s executive function: The moderating effects of parental subjective socio-economic status and children’s subjective social mobility. Br. J. Psychol. 2021, 112, 720–740. [Google Scholar] [CrossRef]
- Yang, L.; Corpeleijn, E.; Hartman, E. Daily Physical Activity, Sports Participation, and Executive Function in Children. JAMA Netw. Open 2024, 7, e2449879. [Google Scholar] [CrossRef]
Boys | Girls | |||||||
---|---|---|---|---|---|---|---|---|
N | Mean | SD | Range | N | Mean | SD | Range | |
Predictor variable (Time 1) | ||||||||
Verbal working memory | 113 | 19.2 | 3.4 | 12–27 | 94 | 19.6 | 3.4 | 12–31 |
Visual working memory | 114 | 71.2 | 20.5 | 34–120 | 94 | 70.9 | 19.8 | 34–120 |
Cognitive inhibition | 117 | 10.9 | 3.0 | 4–18 | 98 | 11.1 | 3.0 | 5–17 |
Motor inhibition | 115 | 26.5 | 3.9 | 10–30 | 97 | 27.2 | 2.9 | 14–30 |
Cognitive flexibility | 113 | 20.1 | 2.9 | 10–24 | 98 | 20.6 | 2.8 | 12–24 |
Moderator variable (Time 1) | ||||||||
Motor competence | 119 | 69.9 | 13.5 | 30–97 | 101 | 73.6 | 11.8 | 36–94 |
Outcome variable (Time 2) | ||||||||
Emotion comprehension | 119 | 5.9 | 1.4 | 2–9 | 101 | 6.0 | 1.3 | 2–8 |
Control variables (Time 1) | ||||||||
Child’s passive screen time, minutes per week | 88 | 536.6 | 358.6 | 60–1800 | 73 | 549.0 | 378.4 | 60–1925 |
Child’s active screen time, minutes per week | 87 | 163.5 | 211.1 | 0–1080 | 73 | 171.6 | 287.1 | 0–1900 |
Maternal education | 96 | 16.3 | 1.4 | 11–20 | 81 | 15.8 | 1.5 | 11–20 |
Child’s age, months | 119 | 70.3 | 3.8 | 63–78 | 101 | 69.9 | 3.7 | 56–79 |
N | % | N | % | |||||
Family income | 95 | 82 | ||||||
below average | 5 | 0 | ||||||
average | 68 | 78 | ||||||
above average | 27 | 22 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | B | 0.230 * | ||||||||||
G | 0.223 * | |||||||||||
3 | B | 0.184 | 0.394 *** | |||||||||
G | 0.149 | 0.161 | ||||||||||
4 | B | 0.342 *** | 0.114 | 0.015 | ||||||||
G | 0.154 | 0.075 | 0.092 | |||||||||
5 | B | 0.361 *** | 0.238 * | 0.233 * | 0.315 *** | |||||||
G | 0.328 ** | 0.246 * | 0.183 | 0.066 | ||||||||
6 | B | 0.033 | 0.100 | 0.078 | 0.340 *** | 0.133 | ||||||
G | 0.033 | 0.364 *** | 0.007 | 0.288 ** | 0.081 | |||||||
7 | B | 0.291 ** | 0.280 ** | 0.207 * | 0.020 | 0.128 | 0.141 | |||||
G | 0.284 ** | 0.260 * | 0.171 | 0.204 * | 0.101 | −0.049 | ||||||
8 | B | −0.161 | 0.138 | −0.003 | −0.188 | −0.167 | −0.057 | −0.153 | ||||
G | −0.102 | 0.051 | 0.078 | 0.030 | 0.044 | 0.019 | 0.157 | |||||
9 | B | 0.002 | 0.085 | 0.097 | 0.017 | −0.023 | −0.044 | −0.051 | 0.352 *** | |||
G | −0.037 | 0.111 | 0.021 | −0.232 * | 0.036 | 0.027 | 0.088 | 0.480 *** | ||||
10 | B | 0.218 * | 0.146 | −0.010 | 0.092 | 0.075 | −0.089 | 0.088 | −0.201 * | −0.182 | ||
G | 0.042 | 0.046 | −0.167 | −0.057 | −0.059 | 0.027 | −0.142 | −0.016 | −0.127 | |||
11 | B | −0.027 | −0.071 | 0.050 | 0.188 | 0.060 | 0.095 | −0.079 | −0.006 | −0.038 | 0.140 | |
G | −0.024 | −0.017 | 0.103 | 0.123 | −0.209 | 0.054 | −0.014 | −0.057 | −0.005 | −0.081 | ||
12 | B | 0.047 | 0.133 | −0.216 * | 0.172 | 0.061 | 0.274 ** | 0.042 | 0.045 | 0.120 | −0.246 * | −0.004 |
G | 0.085 | 0.097 | −0.216 * | 0.166 | 0.234 * | 0.123 | −0.155 | 0.126 | 0.114 | 0.193 | 0.020 |
B (SE) | ||||||
---|---|---|---|---|---|---|
Control Variables | Predictor Variables | Moderator Variable | ||||
Verbal Working Memory | Visual Working Memory | Cognitive Inhibition | Motor Inhibition | Cognitive Flexibility | Motor Competence | |
Boys | ||||||
Passive screen time | −0.001 (0.001) | 0.004 (0.003) | 0.000 (0.001) | 0.001 (0.001) | −0.000 (0.000) | 0.000 (0.003) |
Active screen time | −0.001 (0.001) | −0.004 (0.004) | −0.001 (0.001) | −0.002 (0.001) * | −0.001 (0.001) | 0.001 (0.005) |
Maternal education | 0.226 (0.107) * | 1.803 (0.578) ** | 0.189 (0.095) | 0.178 (0.123) | 0.105 (0.079) | −0.031 (0.843) |
Family income | −0.405 (0.429) | −1.188 (2.354) | 0.439 (0.398) | 0.083 (0.473) | 0.441 (0.340) | 3.159 (2.038) |
Child’s age | 0.081 (0.042) | 1.063 (0.217) ** | −0.082 (0.038) * | 0.137 (0.046) ** | 0.063 (0.030) * | 0.533 (0.164) ** |
R2 | 0.053 | 0.076 | 0.039 | 0.052 | 0.028 | 0.048 |
Girls | ||||||
Passive screen time | 0.000 (0.001) | −0.005 (0.003) | 0.000 (0.000) | 0.000 (0.001) | 0.000 (0.000) | −0.001 (0.003) |
Active screen time | −0.002 (0.001) * | 0.002 (0.004) | 0.000 (0.001) | 0.000 (0.001) | −0.001 (0.001) | 0.004 (0.003) |
Maternal education | −0.064 (0.127) | 1.159 (0.697) | 0.076 (0.098) | 0.019 (0.097) | 0.106 (0.082) | 0.424 (0.977) |
Family income | −0.360 (0.446) | 2.360 (2.489) | 0.672 (0.356) | 0.218 (0.387) | 0.257 (0.298) | 4.238 (1.509) ** |
Child’s age | 0.110 (0.039) * | 0.937 (0.210) ** | −0.050 (0.033) | 0.056 (0.032) | 0.067 (0.028) * | 0.506 (0.146) ** |
R2 | 0.038 | 0.065 | 0.115 | 0.010 | 0.031 | 0.071 |
Boys | Girls | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Model with verbal working memory as a predictor | ||||||||||
Model info | F = 1.799, p = 0.089, R2 = 0.149 | F = 1.879, p = 0.077, R2 = 0.176 | ||||||||
B (SE) | t | p | η2p | 95% CI | B (SE) | t | p | η2p | 95% CI | |
Verbal working memory | 0.108 (0.050) | 2.393 | 0.019 * | 0.065 | 0.018; 0.197 | 0.120 (0.041) | 2.940 | 0.004 ** | 0.110 | 0.039; 0.202 |
Motor competence | <0.001 (0.011) | 0.079 | 0.938 | 0.000 | −0.021; 0.023 | −0.006 (0.012) | −0.524 | 0.602 | 0.004 | −0.031; 0.018 |
Verbal working memory * Motor competence | 0.003 (0.003) | 1.081 | 0.283 | 0.014 | −0.003; 0.010 | −0.004 (0.004) | −1.069 | 0.289 | 0.016 | −0.012; 0.003 |
Passive screen time | <0.001 (<0.001) | −1.695 | 0.094 | 0.034 | −0.002; <0.001 | <0.001 (<0.001) | 1.484 | 0.142 | 0.030 | <0.001; 0.002 |
Active screen time | <0.001 (<0.001) | 0.427 | 0.671 | 0.002 | −0.001; 0.002 | <0.001 (<0.001) | −0.466 | 0.643 | 0.003 | −0.002; <0.001 |
Maternal education | 0.100 (0.119) | 0.842 | 0.402 | 0.009 | −0.137; 0.337 | −0.117 (0.100) | −1.173 | 0.245 | 0.019 | −0.315; 0.082 |
Family income | −0.454 (0.345) | −1.315 | 0.192 | 0.021 | −1.141; 0.233 | 0.199 (0.350) | 0.568 | 0.572 | 0.007 | −0.499; 0.897 |
Child’s age, Time 1 | 0.003 (0.003) | 1.080 | 0.283 | 0.014 | −0.003; 0.010 | −0.052 (0.047) | −1.113 | 0.270 | 0.017 | −0.146; 0.041 |
Model with visual working memory as a predictor | ||||||||||
Model info | F = 1.453, p = 0.187, R2 = 0.123 | F = 1.778, p = 0.096, R2 = 0.169 | ||||||||
B (SE) | t | p | η2p | 95% CI | B (SE) | t | p | η2p | 95% CI | |
Visual working memory | 0.017 (0.007) | 2.328 | 0.022 * | 0.061 | 0.002; 0.032 | 0.022 (0.008) | 2.921 | 0.005 ** | 0.109 | 0.007; 0.037 |
Motor competence | <0.001 (0.011) | −0.037 | 0.970 | 0.000 | −0.023 0.022 | −0.016 (0.013) | −1.294 | 0.200 | 0.023 | −0.042; 0.009 |
Visual working memory * Motor competence | <0.001 (<0.001) | 0.158 | 0.875 | 0.000 | <−0.001; 0.001 | <0.001 (<0.001) | 0.692 | 0.491 | 0.007 | <0.001; 0.002 |
Passive screen time | <0.001 (<0.001) | −1.967 | 0.053 | 0.045 | −0.002; 0.000 | <0.001 (<0.001) | 1.543 | 0.127 | 0.033 | <0.001; 0.002 |
Active screen time | <0.001 (<0.001) | 0.288 | 0.774 | 0.001 | −0.002; 0.002 | <0.001 (<0.001) | −0.841 | 0.403 | 0.010 | −0.002; <0.001 |
Maternal education | 0.017 (0.019) | 0.142 | 0.888 | 0.000 | −0.220; 0.254 | −0.128 (0.099) | −1.288 | 0.202 | 0.023 | −0.326; 0.070 |
Family income | −0.294 (0.350) | −0.841 | 0.403 | 0.008 | −0.990; 0.401 | 0.173 (0.352) | 0.492 | 0.625 | 0.003 | −0.529; 0.875 |
Child’s age, Time 1 | −0.004 (0.041) | −0.086 | 0.931 | 0.000 | −0.086; 0.079 | <0.001 (<0.001) | −1.180 | 0.242 | 0.020 | −0.149; 0.038 |
Model with cognitive inhibition as a predictor | ||||||||||
Model info | F = 1.591, p = 0.138, R2 = 0.129 | F = 1.106, p = 0.369, R2 = 0.108 | ||||||||
B (SE) | t | p | η2p | 95% CI | B (SE) | t | p | η2p | 95% CI | |
Cognitive inhibition | 0.135 (0.050) | 2.691 | 0.009 ** | 0.078 | 0.035; 0.235 | 0.086 (0.052) | 1.637 | 0.106 | 0.035 | −0.019; 0.190 |
Motor competence | −0.002 (0.011) | −0.208 | 0.835 | 0.001 | −0.025; 0.020 | −0.004 (0.013) | −0.291 | 0.772 | 0.001 | −0.028; 0.021 |
Cognitive inhibition * Motor competence | 0.000 (0.004) | 0.278 | 0.782 | 0.001 | −0.006; 0.008 | 0.001 (0.005) | 0.238 | 0.813 | 0.001 | −0.008; 0.012 |
Passive screen time | <0.001 (<0.001) | −1.628 | 0.107 | 0.030 | −0.002; 0.000 | <0.001 (<0.001) | 1.104 | 0.273 | 0.016 | −0.000; 0.002 |
Active screen time | <0.001 (<0.001) | 0.134 | 0.894 | 0.000 | −0.001; 0.002 | <0.001 (<0.001) | −0.012 | 0.990 | 0.000 | −0.001; 0.001 |
Maternal education | 0.101 (0.117) | 0.861 | 0.391 | 0.009 | −0.132; 0.334 | −0.083 (0.107) | −0.777 | 0.440 | 0.008 | −0.296; 0.130 |
Family income | −0.438 (0.348) | −1.260 | 0.211 | 0.018 | −1.130; 0.253 | −0.132 (0.370) | −0.358 | 0.722 | 0.002 | −0.869; 0.605 |
Child’s age, Time 1 | 0.040 (0.041) | 0.949 | 0.345 | 0.010 | −0.043; 0.123 | −0.061 (0.050) | −1.216 | 0.228 | 0.020 | −0.161; 0.039 |
Model with motor inhibition as a predictor | ||||||||||
Model info | F = 0.921, p = 0.504, R2 = 0.081 | F = 1.422, p = 0.203, R2 = 0.138 | ||||||||
B (SE) | t | p | η2p | 95% CI | B (SE) | t | p | η2p | 95% CI | |
Motor inhibition | −0.049 (0.043) | −1.124 | 0.264 | 0.015 | −0.135; 0.037 | 0.144 (0.061) | 2.364 | 0.021 * | 0.073 | 0.023; 0.266 |
Motor competence | 0.006 (0.013) | 0.422 | 0.674 | 0.002 | −0.021; 0.032 | −0.012 (0.014) | −0.770 | 0.444 | 0.008 | −0.039; 0.017 |
Motor inhibition * Motor competence | <0.001 (0.003) | −0.064 | 0.949 | 0.000 | −0.005; 0.004 | 0.003 (0.004) | 0.825 | 0.412 | 0.010 | −0.005; 0.011 |
Passive screen time | <0.001 (<0.001) | −1.903 | 0.060 | 0.041 | −0.002; <0.001 | <0.001 (<0.001) | 1.020 | 0.311 | 0.014 | <0.001; 0.002 |
Active screen time | <0.001 (<0.001) | 0.620 | 0.537 | 0.005 | −0.001; <0.001 | <0.001 (<0.001) | 0.562 | 0.576 | 0.004 | 0.000; 0.002 |
Maternal education | 0.132 (0.129) | 1.025 | 0.309 | 0.012 | −0.124; 0.389 | −0.069 (0.106) | −0.651 | 0.517 | 0.006 | −0.280; 0.142 |
Family income | −0.378 (0.368) | 1.027 | 0.307 | 0.012 | −1.111; 0.354 | −0.069 (0.373) | −0.185 | 0.854 | 0.000 | −0.812; 0.674 |
Child’s age, Time 1 | −0.004 (0.043) | −0.103 | 0.918 | 0.000 | 0.089; 0.080 | −0.089 (0.049) | −1.828 | 0.072 | 0.045 | −0.186; 0.008 |
Model with cognitive flexibility as a predictor | ||||||||||
Model info | F = 1.023, p = 0.426, R2 = 0.090 | F = 2.117, p = 0.045, R2 = 0.188 | ||||||||
B (SE) | t | p | η2p | 95% CI | B (SE) | t | p | η2p | 95% CI | |
Cognitive flexibility | 0.039 (0.059) | 0.665 | 0.508 | 0.005 | −0.078; 0.157 | 0.015 (0.055) | 0.264 | 0.792 | 0.001 | −0.096; 0.124 |
Motor competence | 0.003 (0.012) | 0.260 | 0.795 | 0.001 | −0.021; 0.027 | 0.005 (0.012) | 0.418 | 0.677 | 0.002 | −0.020; 0.030 |
Cognitive flexibility * Motor competence | 0.004 (0.004) | 1.009 | 0.316 | 0.012 | −0.004; 0.012 | 0.013 (0.004) | 3.017 | 0.004 ** | 0.111 | 0.004; 0.021 |
Passive screen time | <0.001 (<0.001) | −1.914 | 0.059 | 0.042 | −0.002; <0.001 | <0.001 (<0.001) | 1.469 | 0.146 | 0.029 | −<0.001; 0.002 |
Active screen time | <0.001 (<0.001) | 0.658 | 0.512 | 0.005 | −0.001; 0.002 | <0.001 (<0.001) | −0.425 | 0.672 | 0.002 | −0.002; <0.001 |
Maternal education | 0.102 (0.123) | 0.827 | 0.411 | 0.008 | −0.143; 0.347 | −0.084 (0.102) | −0.824 | 0.413 | 0.009 | −0.287; 0.119 |
Family income | −0.325 (0.360) | −0.903 | 0.369 | 0.010 | −1.042; 0.391 | −0.205 (0.366) | −0.560 | 0.577 | 0.004 | −0.934; 0.524 |
Child’s age, Time 1 | 0.009 (0.041) | 0.226 | 0.822 | 0.001 | −0.073; 0.091 | −0.071 (0.047) | −1.510 | 0.135 | 0.030 | −0.166; 0.023 |
Moderator Variable Level | B (SE) | t | p | η2p | 95% CI |
---|---|---|---|---|---|
Low Motor Competence (Mean − 1 SD) | −0.142 (0.084) | −1.683 | 0.097 | 0.037 | −0.311; 0.026 |
Average Motor Competence (Mean) | 0.015 (0.055) | 0.264 | 0.792 | 0.001 | −0.095; 0.124 |
High Motor Competence (Mean + 1 SD) | 0.171 (0.066) | 2.609 | 0.011 * | 0.085 | 0.041; 0.302 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chichinina, E.A.; Veraksa, A.N.; Almazova, O.V.; Pagani, L.S. Thinking, Feeling, and Moving in Kindergarten Children: How Motor Competence Shapes Executive Function Skills and Emotion Comprehension in Girls. Children 2025, 12, 1381. https://doi.org/10.3390/children12101381
Chichinina EA, Veraksa AN, Almazova OV, Pagani LS. Thinking, Feeling, and Moving in Kindergarten Children: How Motor Competence Shapes Executive Function Skills and Emotion Comprehension in Girls. Children. 2025; 12(10):1381. https://doi.org/10.3390/children12101381
Chicago/Turabian StyleChichinina, Elena A., Aleksander N. Veraksa, Olga V. Almazova, and Linda S. Pagani. 2025. "Thinking, Feeling, and Moving in Kindergarten Children: How Motor Competence Shapes Executive Function Skills and Emotion Comprehension in Girls" Children 12, no. 10: 1381. https://doi.org/10.3390/children12101381
APA StyleChichinina, E. A., Veraksa, A. N., Almazova, O. V., & Pagani, L. S. (2025). Thinking, Feeling, and Moving in Kindergarten Children: How Motor Competence Shapes Executive Function Skills and Emotion Comprehension in Girls. Children, 12(10), 1381. https://doi.org/10.3390/children12101381