Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (206)

Search Parameters:
Keywords = passive/active microwaves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3361 KiB  
Technical Note
Noise Mitigation of the SMOS L1C Multi-Angle Brightness Temperature Based on the Lookup Table
by Ke Chen, Ruile Wang, Qian Yang, Jiaming Chen and Jun Gong
Remote Sens. 2025, 17(15), 2585; https://doi.org/10.3390/rs17152585 - 24 Jul 2025
Viewed by 153
Abstract
Owing to the inherently lower sensitivity of microwave aperture synthesis radiometers (ASRs), Soil Moisture and Ocean Salinity (SMOS) satellite brightness temperature (TB) measurements exhibit significantly greater system noise than real-aperture microwave radiometers do. This paper introduces a novel noise mitigation method for the [...] Read more.
Owing to the inherently lower sensitivity of microwave aperture synthesis radiometers (ASRs), Soil Moisture and Ocean Salinity (SMOS) satellite brightness temperature (TB) measurements exhibit significantly greater system noise than real-aperture microwave radiometers do. This paper introduces a novel noise mitigation method for the SMOS L1C multi-angle TB product. The proposed method develops a multi-angle sea surface TB relationship lookup table, enabling the mapping of SMOS L1C multi-angle TB data to any single-angle TB, thereby averaging to the measurements to reduce noise. Validation experiments demonstrate that the processed SMOS TB data achieve noise levels comparable to those of the Soil Moisture Active Passive (SMAP) satellite. Additionally, the salinity retrieval experiments indicate that the noise mitigation technique has a clear positive effect on SMOS salinity retrieval. Full article
(This article belongs to the Special Issue Recent Advances in Microwave and Millimeter-Wave Imaging Sensing)
Show Figures

Figure 1

17 pages, 493 KiB  
Article
Microstrip Line Modeling Taking into Account Dispersion Using a General-Purpose SPICE Simulator
by Vadim Kuznetsov
J. Low Power Electron. Appl. 2025, 15(3), 42; https://doi.org/10.3390/jlpea15030042 - 22 Jul 2025
Viewed by 263
Abstract
XSPICE models for a generic transmission line, a microstrip line, and coupled microstrips are presented. The developed models extend general-purpose circuit simulation tools using RF circuits design features. The models could be used for circuit simulation in frequency, DC, and time domains for [...] Read more.
XSPICE models for a generic transmission line, a microstrip line, and coupled microstrips are presented. The developed models extend general-purpose circuit simulation tools using RF circuits design features. The models could be used for circuit simulation in frequency, DC, and time domains for any active or passive RF or microwave schematic (including microwave monolithic integrated circuits—MMICs) involving transmission lines. The presented models could be used with any circuit simulation backend supporting XSPICE extensions and could be integrated without patching the core simulator code. The presented XSPICE models for microstrip lines take into account the frequency dependency of characteristic impedance and dispersion. The models were designed using open-source circuit simulation software. This study provides a practical example of the low-noise RF amplifier (LNA) design with Ngspice simulation backend using the proposed models. Full article
Show Figures

Figure 1

17 pages, 2146 KiB  
Article
Synthesis and Antiviral Activity of Nanowire Polymers Activated with Ag, Zn, and Cu Nanoclusters
by Thomas Thomberg, Hanna Bulgarin, Andres Lust, Jaak Nerut, Tavo Romann and Enn Lust
Pharmaceutics 2025, 17(7), 887; https://doi.org/10.3390/pharmaceutics17070887 - 6 Jul 2025
Viewed by 469
Abstract
Background/Objectives: Airborne viral diseases pose a health risk, due to which there is a growing interest in developing filter materials capable of capturing fine particles containing virions from the air and that also have a virucidal effect. Nanofiber membranes made of poly(vinylidene fluoride) [...] Read more.
Background/Objectives: Airborne viral diseases pose a health risk, due to which there is a growing interest in developing filter materials capable of capturing fine particles containing virions from the air and that also have a virucidal effect. Nanofiber membranes made of poly(vinylidene fluoride) dissolved in N,N-dimethylacetamide and functionalized with copper, silver, and zinc nanoclusters were fabricated via electrospinning. This study aims to evaluate and compare the virucidal effects of nanofibers functionalized with metal nanoclusters against the human influenza A virus A/WSN/1933 (H1N1) and SARS-CoV-2. Methods: A comprehensive characterization of materials, including X-ray diffraction, scanning electron microscopy, microwave plasma atomic emission spectroscopy, thermogravimetric analysis, contact angle measurements, nitrogen sorption analysis, mercury intrusion porosimetry, filtration efficiency, and virucidal tests, was used to understand the interdependence of the materials’ physical characteristics and biological effects, as well as to determine their suitability for application as antiviral materials in air filtration systems. Results: All the filter materials tested demonstrated very high particle filtration efficiency (≥98.0%). The material embedded with copper nanoclusters showed strong virucidal efficacy against the SARS-CoV-2 alpha variant, achieving an approximately 1000-fold reduction in infectious virions within 12 h. The fibrous nanowire polymer functionalized with zinc nanoclusters was the most effective material against the human influenza A virus strain A/WSN/1933 (H1N1). Conclusions: The materials with Cu nanoclusters can be used with high efficiency to passivate and kill the SARS-CoV-2 alpha variant virions, and Zn nanoclusters modified activated porous membranes for killing human influenza A virus A7WSN/1933 (H1N1) virions. Full article
Show Figures

Figure 1

21 pages, 12628 KiB  
Article
Convection Parameters from Remote Sensing Observations over the Southern Great Plains
by Kylie Hoffman and Belay Demoz
Sensors 2025, 25(13), 4163; https://doi.org/10.3390/s25134163 - 4 Jul 2025
Viewed by 314
Abstract
Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), commonly used measures of the instability and inhibition within a vertical column of the atmosphere, serve as a proxy for estimating convection potential and updraft strength for an air parcel. In operational forecasting, CAPE [...] Read more.
Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), commonly used measures of the instability and inhibition within a vertical column of the atmosphere, serve as a proxy for estimating convection potential and updraft strength for an air parcel. In operational forecasting, CAPE and CIN are typically derived from radiosonde thermodynamic profiles, launched only twice daily, and supplemented by model-simulated equivalent values. This study uses remote sensing observations to derive CAPE and CIN from continuous data, expanding upon previous research by evaluating the performance of both passive and active profiling systems’ CAPE/CIN against in situ radiosonde CAPE/CIN. CAPE and CIN values are calculated from Atmospheric Emitted Radiance Interferometer (AERI), Microwave Radiometer (MWR), Raman LiDAR, and Differential Absorption LiDAR (DIAL) systems. Among passive sensors, results show significantly greater accuracy in CAPE and CIN from AERI than MWR. Incorporating water vapor profiles from active LiDAR systems further improves CAPE values when compared to radiosonde data, although the impact on CIN is less significant. Beyond the direct capability of calculating CAPE, this approach enables evaluation of the various relationships between the water vapor mixing ratio, CAPE, cloud development, and moisture transport. Full article
(This article belongs to the Special Issue Remote Sensing in Atmospheric Measurements)
Show Figures

Figure 1

19 pages, 4762 KiB  
Article
Parametric Representation of Tropical Cyclone Outer Radical Wind Profile Using Microwave Radiometer Data
by Yuan Gao, Weili Wang, Jian Sun and Yunhua Wang
Remote Sens. 2025, 17(9), 1564; https://doi.org/10.3390/rs17091564 - 28 Apr 2025
Viewed by 377
Abstract
The Soil Moisture Active Passive (SMAP) satellite can measure sea surface winds under tropical cyclone (TC) conditions with its L-band microwave radiometer, without being affected by rainfall or signal saturation. Through the statistical analysis of SMAP data, this study aims to develop radial [...] Read more.
The Soil Moisture Active Passive (SMAP) satellite can measure sea surface winds under tropical cyclone (TC) conditions with its L-band microwave radiometer, without being affected by rainfall or signal saturation. Through the statistical analysis of SMAP data, this study aims to develop radial wind profile models for the TC outer area whose distance from TC center is larger than the radius of maximum wind (Rm). A total of 196 TC cases observed by SMAP were collected between 2015 and 2020, and their intensities range from tropical storm to category 5. Based on the wind and radius data, the key model parameters α and β were fitted through the Rankine vortex model and the tangential wind profile (TWP) Gaussian model, respectively. α and β control the rate of change of the tangential wind speed with radius. Subsequently, for the parametric representation of α and β, we extracted some TC wind filed parameters, such as maximum wind speed (Um), Rm, the average wind speed at Rm (Uma), and the average radius of 17 m/s (R17) and examined the relationship between Uma and Um, the relationship between Rm and R17, the relationship between α, Um and Rm, and the relationship between β, Um and Rm. According to the results, the new radial wind profile models were proposed, i.e., SMAP Rankine Model-4 (SRM-4), SMAP Rankine Model-5 (SRM-5), and SMAP Gaussian Model-1 (SGM-1). A significant advantage of these models is that they can simulate average wind distribution through the conversion from Um to Uma. Finally, comparisons were made between the new models and existing SRM-1, SRM-2, and SRM-3, according to the Advanced Microwave Scanning Radiometer 2 (AMSR-2) measurements of 126 TC cases. The results demonstrate that the SRM-4 simulated the radial wind profile best overall, with the lowest root mean-square error (RMSE) of 5.57 m/s, due to replacing the parameter Um with Uma, using Rankine vortex for α parameterization and modeling with adequate data. Moreover, the models outperform in the Atlantic Ocean, with a RMSE of 5.37 m/s. The new models have the potential to make a contribution to the study of ocean surface dynamics and be used for forcing numerical models under TC conditions. Full article
(This article belongs to the Special Issue Observations of Atmospheric and Oceanic Processes by Remote Sensing)
Show Figures

Figure 1

23 pages, 10230 KiB  
Article
Revisiting the Role of SMAP Soil Moisture Retrievals in WRF-Chem Dust Emission Simulations over the Western U.S.
by Pedro A. Jiménez y Muñoz, Rajesh Kumar, Cenlin He and Jared A. Lee
Remote Sens. 2025, 17(8), 1345; https://doi.org/10.3390/rs17081345 - 10 Apr 2025
Viewed by 505
Abstract
Having good replication of the soil moisture evolution is desirable to properly simulate the dust emissions and atmospheric dust load because soil moisture increases the cohesive forces of soil particles, modulating the wind erosion threshold above which emissions occur. To reduce errors, one [...] Read more.
Having good replication of the soil moisture evolution is desirable to properly simulate the dust emissions and atmospheric dust load because soil moisture increases the cohesive forces of soil particles, modulating the wind erosion threshold above which emissions occur. To reduce errors, one can use soil moisture retrievals from space-borne microwave radiometers. Here, we explore the potential of inserting soil moisture retrievals from the Soil Moisture Active Passive (SMAP) satellite into the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to improve dust simulations. We focus our analysis on the contiguous U.S. due to the presence of important dust sources and good observational networks. Our analysis extends over the first year of SMAP retrievals (1 April 2015–31 March 2016) to cover the annual soil moisture variability and go beyond extreme events, such as dust storms, in order to provide a statistically robust characterization of the potential added value of the soil moisture retrievals. We focus on the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model from the Air Force Weather Agency (GOCART-AFWA) dust emission parameterization that represents soil moisture modulations of the wind erosion threshold with a parameterization developed by fitting observations. The dust emissions are overestimated by the GOCART-AFWA parameterization and result in an overestimation of the aerosol optical depth (AOD). Sensitivity experiments show that emissions reduced to 25% in the GOCART-AFWA simulations largely reduced the AOD bias over the Southwest and lead to better agreement with the standard WRF-Chem parameterization of dust emissions (GOCART) and with observations. Comparisons of GOCART-AFWA simulations with emissions reduced to 25% with and without SMAP soil moisture insertion show added value of the retrievals, albeit small, over the dust sources. These results highlight the importance of accurate dust emission parameterizations when evaluating the impact of remotely sensed soil moisture data on numerical weather prediction models. Full article
Show Figures

Figure 1

15 pages, 4670 KiB  
Article
Microwave-Assisted Carbonization Processing for Carbon Dot-like Nanomaterials with Antimicrobial Properties
by Buta Singh, Audrey F. Adcock, Simran Dumra, Jordan Collins, Liju Yang, Christopher E. Bunker, Haijun Qian, Mohammed J. Meziani and Ya-Ping Sun
Micro 2025, 5(1), 14; https://doi.org/10.3390/micro5010014 - 17 Mar 2025
Cited by 2 | Viewed by 1261
Abstract
Carbon dots (CDots) are classically defined as small carbon nanoparticles with effective surface passivation, which, in the classical synthesis, has been accomplished by surface organic functionalization. CDot-like nanostructures could also be produced by the thermal carbonization processing of selected organic precursors, in which [...] Read more.
Carbon dots (CDots) are classically defined as small carbon nanoparticles with effective surface passivation, which, in the classical synthesis, has been accomplished by surface organic functionalization. CDot-like nanostructures could also be produced by the thermal carbonization processing of selected organic precursors, in which the non-molecular nanocarbons resulting from the carbonization are embedded in the remaining organic species, which may provide the passivation function for the nanocarbons. In this work, a mixture of oligomeric polyethylenimine and citric acid in the solid state was used for efficient thermal carbonization processing with microwave irradiation under various conditions to produce dot samples with different nanocarbon content. The samples were characterized in terms of their structural and morphological features regarding their similarity or equivalency to those of the classical CDots, along with their significant divergences. Also evaluated were their optical spectroscopic properties and their photoinduced antimicrobial activity against selected bacterial species. The advantages and disadvantages of the thermal carbonization processing method and the resulting dot samples with various features and properties mimicking those of classically synthesized CDots are discussed. Full article
(This article belongs to the Special Issue Advances in Micro- and Nanomaterials: Synthesis and Applications)
Show Figures

Figure 1

21 pages, 6227 KiB  
Article
Evaluation of Satellite-Based Global Navigation Satellite System Reflectometry (GNSS-R) Soil Moisture Products in Complex Terrain: A Case Study of the Yunnan–Guizhou Plateau
by Yixiao Liu, Yong Wang, Jingcheng Lai, Yunjie Lin and Leyan Shi
Remote Sens. 2025, 17(5), 887; https://doi.org/10.3390/rs17050887 - 2 Mar 2025
Cited by 1 | Viewed by 1039
Abstract
Complex terrain is one of the main factors affecting the process of retrieving surface soil moisture using GNSS-R technology. This study evaluates the impact of complex terrain on surface soil moisture inversion using Cyclone Global Navigation Satellite System (CYGNSS) L3 SSM products, with [...] Read more.
Complex terrain is one of the main factors affecting the process of retrieving surface soil moisture using GNSS-R technology. This study evaluates the impact of complex terrain on surface soil moisture inversion using Cyclone Global Navigation Satellite System (CYGNSS) L3 SSM products, with Soil Moisture Active Passive (SMAP) SSM products as the true value. The errors in CYGNSS SSM are primarily attributed to med–high elevation and large relief. Compared with the Soil Moisture and Ocean Salinity (SMOS) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSM products, CYGNSS exhibits superior performance in terms of AD and RMSE (median AD = −0.10 m3/m3, RMSE = 0.14 m3/m3). The ubRMSE of CYGNSS (median ubRMSE = 0.094 m3/m3) outperforms SMOS, but is slightly worse than AMSR2, with the differences mainly observed in med–high elevation and large-relief regions. The three satellites complement each other in detecting complex terrain. CYGNSS errors (AD, RMSE) are higher in the rainy season than in the dry season, with greater discrepancies observed in large-relief, high-elevation regions compared to flatter, lower-elevation areas. This study provides the first comprehensive analysis of CYGNSS in such a complex region, offering valuable insights for improving the application of GNSS-R inversion technology. Full article
(This article belongs to the Special Issue Earth Observation Satellites for Soil Moisture Monitoring)
Show Figures

Figure 1

18 pages, 12913 KiB  
Article
Soil Organic Carbon Estimation and Transfer Framework in Agricultural Areas Based on Spatiotemporal Constraint Strategy Combined with Active and Passive Remote Sensing
by Jiaxin Qian, Jie Yang, Weidong Sun, Lingli Zhao, Lei Shi, Hongtao Shi, Lu Liao, Chaoya Dang and Qi Dou
Remote Sens. 2025, 17(2), 333; https://doi.org/10.3390/rs17020333 - 19 Jan 2025
Viewed by 1153
Abstract
Mapping soil organic carbon (SOC) plays a crucial role in agricultural productivity and water management. This study discusses the potential of active and passive remote sensing for SOC estimation modeling in agricultural areas, incorporating synthetic aperture radar (SAR) data (L-band quad-polarization and C-band [...] Read more.
Mapping soil organic carbon (SOC) plays a crucial role in agricultural productivity and water management. This study discusses the potential of active and passive remote sensing for SOC estimation modeling in agricultural areas, incorporating synthetic aperture radar (SAR) data (L-band quad-polarization and C-band dual-polarization), multi-spectrum (MS) data, and brightness temperature (TB) data. The performance of five advanced machine learning regression (MLR) models for SOC modeling was assessed, focusing on spatial interpolation accuracy and cross-spatial transfer accuracy, using two field observation datasets for modeling and validation. Results indicate that the SOC estimation accuracy when using MS data alone is comparable to that of using TB data alone, and both perform slightly better than SAR data. Radar cross-polarization ratio index, microwave polarization difference index, shortwave infrared reflectance, and soil parameters (elevation and soil moisture) demonstrate high correlation with the measured SOC. Incorporating temporal features, as opposed to single-phase features, allows each regression model to reach its upper limit of SOC estimation accuracy. The spatial interpolation accuracy of each MLR algorithm is satisfactory, with the Gaussian process regression (GPR) model demonstrating optimal modeling performance. When SAR, MS, or TB data are used individually in modeling, the estimation errors (RMSE) for SOC are 0.637 g/kg, 0.492 g/kg, and 0.229 g/kg for the SMAPVEX12 sampling campaign, and 0.706 g/kg, 0.454 g/kg, and 0.474 g/kg for the SMAPVEX16-MB sampling campaign, respectively. After incorporating soil moisture and topographic factors, the above RMSEs for SOC are further reduced by 57.8%, 35.6%, and 3.5% for the SMAPVEX12, and by 18.4%, 8.8%, and 3.4% for the SMAPVEX16-MB, respectively. However, cross-spatial transfer accuracy of the regression models remains limited (RMSE = 0.866–1.043 g/kg and 0.995–1.679 g/kg for different data sources). To address this, this study reduces uncertainties in SOC cross-spatial transfer by introducing terrain factors sensitive to SOC (RMSE = 0.457–0.516 g/kg and 0.799–1.198 g/kg for different data sources). The proposed SOC estimation and transfer framework, based on active and passive remote sensing data, provides guidance for high-resolution regional-scale SOC mapping and applications. Full article
(This article belongs to the Special Issue Proximal and Remote Sensing for Low-Cost Soil Carbon Stock Estimation)
Show Figures

Figure 1

23 pages, 2062 KiB  
Article
The Diurnal Variation of L-Band Polarization Index in the U.S. Corn Belt Is Related to Plant Water Stress
by Richard Cirone and Brian K. Hornbuckle
Remote Sens. 2025, 17(2), 180; https://doi.org/10.3390/rs17020180 - 7 Jan 2025
Viewed by 973
Abstract
The microwave polarization index (PI), defined as the difference between vertically polarized (V-pol) and horizontally polarized (H-pol) brightness temperature divided by their average, is independent of land surface temperature. Since soil emission is stronger at V-pol than H-pol and vegetation attenuates this polarized [...] Read more.
The microwave polarization index (PI), defined as the difference between vertically polarized (V-pol) and horizontally polarized (H-pol) brightness temperature divided by their average, is independent of land surface temperature. Since soil emission is stronger at V-pol than H-pol and vegetation attenuates this polarized soil signal primarily because of liquid water stored in vegetation tissue, a lower PI will be indicative of more water in vegetation if vegetation emits a mostly unpolarized signal and changes in soil moisture within the emitting depth are small (like during periods of drought) or accommodated by averaging over long periods. We hypothesize that the L-band PI will reveal diurnal changes in vegetation water related to whether plants have adequate soil water. We compare 6 a.m. and 6 p.m. L-band PI from NASA’s Soil Moisture Active Passive (SMAP) satellite to the evaporative stress index (ESI) in the U.S. Corn Belt during the growing season. When ESI<0 (there is not adequate plant-available water, also called plant water stress), the L-band PI is not significantly different at 6 a.m. vs. 6 p.m. On the other hand, when ESI0 (no plant water stress), the L-band PI is greater in the evening than in the morning. This diurnal behavior can be explained by transpiration outpacing root water uptake during daylight hours (resulting in a decrease in vegetation water from 6 a.m. to 6 p.m.) and continued root water uptake overnight (that recharges vegetation water) only when plants have adequate soil water. Consequently, it may be possible to use L-band PI to identify plant water stress in the Corn Belt. Full article
(This article belongs to the Special Issue Monitoring Ecohydrology with Remote Sensing)
Show Figures

Figure 1

23 pages, 7028 KiB  
Article
An Assessment of the Seasonal Uncertainty of Microwave L-Band Satellite Soil Moisture Products in Jiangsu Province, China
by Chuanxiang Yi, Xiaojun Li, Zanpin Xing, Xiaozhou Xin, Yifang Ren, Hongwei Zhou, Wenjun Zhou, Pei Zhang, Tong Wu and Jean-Pierre Wigneron
Remote Sens. 2024, 16(22), 4235; https://doi.org/10.3390/rs16224235 - 14 Nov 2024
Cited by 1 | Viewed by 1022
Abstract
Accurate surface soil moisture (SM) data are crucial for agricultural management in Jiangsu Province, one of the major agricultural regions in China. However, the seasonal performance of different SM products in Jiangsu is still unknown. To address this, this study aims to evaluate [...] Read more.
Accurate surface soil moisture (SM) data are crucial for agricultural management in Jiangsu Province, one of the major agricultural regions in China. However, the seasonal performance of different SM products in Jiangsu is still unknown. To address this, this study aims to evaluate the applicability of four L-band microwave remotely sensed SM products, namely, the Soil Moisture Active Passive Single-Channel Algorithm at Vertical Polarization Level 3 (SMAP SCA-V L3, hereafter SMAP-L3), SMOS-SMAP-INRAE-BORDEAUX (SMOSMAP-IB), Soil Moisture and Ocean Salinity in version IC (SMOS-IC), and SMAP-INRAE-BORDEAUX (SMAP-IB) in Jiangsu at the seasonal scale. In addition, the effects of dynamic environmental variables such as the leaf vegetation index (LAI), mean surface soil temperature (MSST), and mean surface soil wetness (MSSM) on the performance of the above products are investigated. The results indicate that all four SM products exhibit significant seasonal differences when evaluated against in situ observations between 2016 and 2022, with most products achieving their highest correlation (R) and unbiased root-mean-square difference (ubRMSD) scores during the autumn. Conversely, their performance significantly deteriorates in the summer, with ubRMSD values exceeding 0.06 m3/m3. SMOS-IC generally achieves better R values across all seasons but has limited temporal availability, while SMAP-IB typically has the lowest ubRMSD values, even reaching 0.03 m3/m3 during morning observation in the winter. Additionally, the sensitivity of different products’ skill metrics to environmental factors varies across seasons. For ubRMSD, SMAP-L3 shows a general increase with LAI across all four seasons, while SMAP-IB exhibits a notable increase as the soil becomes wetter in the summer. Conversely, wet conditions notably reduce the R values during autumn for most products. These findings are expected to offer valuable insights for the appropriate selection of products and the enhancement of SM retrieval algorithms. Full article
Show Figures

Figure 1

27 pages, 7418 KiB  
Article
Assessment of CCMP in Capturing High Winds with Respect to Individual Satellite Datasets
by Pingping Rong and Hui Su
Remote Sens. 2024, 16(22), 4215; https://doi.org/10.3390/rs16224215 - 12 Nov 2024
Viewed by 1110
Abstract
High-wind structures were identified in the Cross-Calibrated Multi-Platform (CCMP) ocean wind vector reanalysis for comparison with winds measured by satellite radiometers, scatterometers, and synthetic aperture radar (SAR) instruments from February to October 2023. The comparison aims to evaluate bias, uncertainty, and spatial correlations [...] Read more.
High-wind structures were identified in the Cross-Calibrated Multi-Platform (CCMP) ocean wind vector reanalysis for comparison with winds measured by satellite radiometers, scatterometers, and synthetic aperture radar (SAR) instruments from February to October 2023. The comparison aims to evaluate bias, uncertainty, and spatial correlations with the goal of enhancing the accuracy of ocean wind datasets during tropical cyclones (TCs). In 10° longitude × 10° latitude blocks, each containing a TC, Soil Moisture Active Passive (SMAP) and Advanced Microwave Scanning Radiometer 2 (AMSR2) winds are 6.5 and 4.8% higher than CCMP, while Advanced Scatterometer (ASCATB) is 0.8% lower. For extratropical cyclones, AMSR2 and SMAP also show stronger winds with a 5% difference, and ASCATB is about 0.3% weaker compared to CCMP. The comparison between SAR and CCMP for TC winds, sampled at the locations and time frames of SAR tiles, indicates that SAR winds around TCs are about 9% higher than CCMP winds. Using empirically defined TC structural indices, we find that the TCs observed by CCMP are shifted in locations and lack a compact core region. A Random Forest (RF) regressor was applied to TCs in CCMP with corresponding SAR observations, nearly correcting the full magnitude of low bias in CCMP statistically, with a 15 m/s correction in the core region. The hierarchy of importance among the predictors is as follows: CCMP wind speed (62%), distance of SAR pixels to the eye region (21%) and eye center (7%), and distance of CCMP pixels to the eye region (5%) and eye center (5%). Full article
Show Figures

Figure 1

15 pages, 2158 KiB  
Article
How Can Seasonality Influence the Performance of Recent Microwave Satellite Soil Moisture Products?
by Raffaele Albano, Teodosio Lacava, Arianna Mazzariello, Salvatore Manfreda, Jan Adamowski and Aurelia Sole
Remote Sens. 2024, 16(16), 3044; https://doi.org/10.3390/rs16163044 - 19 Aug 2024
Cited by 4 | Viewed by 1166
Abstract
In addition to technical issues related to the instruments used, differences between soil moisture (SM) measured using ground-based methods and microwave remote sensing (RS) can be related to the main features of the study areas, which are intricately connected to hydraulic–hydrological conditions and [...] Read more.
In addition to technical issues related to the instruments used, differences between soil moisture (SM) measured using ground-based methods and microwave remote sensing (RS) can be related to the main features of the study areas, which are intricately connected to hydraulic–hydrological conditions and soil properties. When long-term analysis is performed, these discrepancies are mitigated by the contribution of SM seasonality and are only evident when high-frequency variations (i.e., signal anomalies) are investigated. This study sought to examine the responsiveness of SM to seasonal variations in terrestrial ecoregions located in areas covered by the in situ Romanian Soil Moisture Network (RSMN). To achieve this aim, several remote sensing-derived retrievals were considered: (i) NASA’s Soil Moisture Active and Passive (SMAP) L4 V5 model assimilated product data; (ii) the European Space Agency’s Soil Moisture and Ocean Salinity INRA–CESBIO (SMOS-IC) V2.0 data; (iii) time-series data extracted from the H115 and H116 SM products, which are derived from the analysis of Advanced Scatterometer (ASCAT) data acquired via MetOp satellites; (iv) Copernicus Global Land Service SSM 1 km data; and (v) the “combined” European Space Agency’s Climate Change Initiative for Soil Moisture (ESA CCI SM) product v06.1. An initial assessment of the performance of these products was conducted by checking the anomaly of long-term fluctuations, quantified using the Absolute Variation of Local Change of Environment (ALICE) index, within a time frame spanning 2015 to 2020. These correlations were then compared with those based on raw data and anomalies computed using a moving window of 35 days. Prominent correlations were observed with the SMAP L4 dataset and across all ecoregions, and the Balkan mixed forests (646) exhibited strong concordance regardless of the satellite source (with a correlation coefficient RALICE > 0.5). In contrast, neither the Central European mixed forests (No. 654) nor the Pontic steppe (No. 735) were adequately characterized by any satellite dataset (RALICE < 0.5). Subsequently, the phenological seasonality and dynamic behavior of SM were computed to investigate the effects of the wetting and drying processes. Notably, the Central European mixed forests (654) underwent an extended dry phase (with an extremely low p-value of 2.20 × 10−16) during both the growth and dormancy phases. This finding explains why the RSMN showcases divergent behavior and underscores why no satellite dataset can effectively capture the complexities of the ecoregions covered by this in situ SM network. Full article
(This article belongs to the Special Issue Remote Sensing of Climate-Related Hazards)
Show Figures

Graphical abstract

37 pages, 4497 KiB  
Review
Satellite Oceanography in NOAA: Research, Development, Applications, and Services Enabling Societal Benefits from Operational and Experimental Missions
by Eric Bayler, Paul S. Chang, Jacqueline L. De La Cour, Sean R. Helfrich, Alexander Ignatov, Jeff Key, Veronica Lance, Eric W. Leuliette, Deirdre A. Byrne, Yinghui Liu, Xiaoming Liu, Menghua Wang, Jianwei Wei and Paul M. DiGiacomo
Remote Sens. 2024, 16(14), 2656; https://doi.org/10.3390/rs16142656 - 20 Jul 2024
Cited by 1 | Viewed by 3378
Abstract
The National Oceanic and Atmospheric Administration’s (NOAA) Center for Satellite Applications and Research (STAR) facilitates and enables societal benefits from satellite oceanography, supporting operational and experimental satellite missions, developing new and improved ocean observing capabilities, engaging users by developing and distributing fit-for-purpose data, [...] Read more.
The National Oceanic and Atmospheric Administration’s (NOAA) Center for Satellite Applications and Research (STAR) facilitates and enables societal benefits from satellite oceanography, supporting operational and experimental satellite missions, developing new and improved ocean observing capabilities, engaging users by developing and distributing fit-for-purpose data, applications, tools, and services, and curating, translating, and integrating diverse data products into information that supports informed decision making. STAR research, development, and application efforts span from passive visible, infrared, and microwave observations to active altimetry, scatterometry, and synthetic aperture radar (SAR) observations. These efforts directly support NOAA’s operational geostationary (GEO) and low Earth orbit (LEO) missions with calibration/validation and retrieval algorithm development, implementation, maintenance, and anomaly resolution, as well as leverage the broader international constellation of environmental satellites for NOAA’s benefit. STAR’s satellite data products and services enable research, assessments, applications, and, ultimately, decision making for understanding, predicting, managing, and protecting ocean and coastal resources, as well as assessing impacts of change on the environment, ecosystems, and climate. STAR leads the NOAA Coral Reef Watch and CoastWatch/OceanWatch/PolarWatch Programs, helping people access and utilize global and regional satellite data for ocean, coastal, and ecosystem applications. Full article
(This article belongs to the Special Issue Oceans from Space V)
Show Figures

Figure 1

24 pages, 15151 KiB  
Article
Polar Sea Ice Monitoring Using HY-2B Satellite Scatterometer and Scanning Microwave Radiometer Measurements
by Tao Zeng, Lijian Shi, Yingni Shi, Dunwang Lu and Qimao Wang
Remote Sens. 2024, 16(13), 2486; https://doi.org/10.3390/rs16132486 - 6 Jul 2024
Viewed by 1617
Abstract
The Ku band microwave scatterometer (SCA) and scanning microwave radiometer (SMR) onboard HaiYang-2B (HY-2B) can simultaneously supply active and passive microwave observations over the polar region. In this paper, a polar ice water discrimination model and Arctic sea-ice-type classification model based on the [...] Read more.
The Ku band microwave scatterometer (SCA) and scanning microwave radiometer (SMR) onboard HaiYang-2B (HY-2B) can simultaneously supply active and passive microwave observations over the polar region. In this paper, a polar ice water discrimination model and Arctic sea-ice-type classification model based on the support vector machine (SVM) method were established and used to produce a daily sea ice extent dataset from 2019 to 2021 with data from SCA and SMR. First, suitable scattering and radiation parameters are chosen as input data for the discriminant model. Then, the sea ice extent was obtained based on the monthly ice water discrimination model, and finally, the ice over the Arctic was classified into multiyear ice (MYI) and first-year ice (FYI). The 3-year ice extent and MYI extent products were consistent with the similar results of the National Snow and Ice Data Center (NSIDC) and Ocean and Sea Ice Satellite Application Facility (OSISAF). Using the OSISAF similar product as validation data, the overall accuracies (OAs) of ice/water discrimination and FYI/MYI discrimination are 99% and 97%, respectively. Compared with the high spatial resolution classification results of the Moderate Resolution Imaging Spectroradiometer (MODIS) and SAR, the OAs of ice/water discrimination and FYI/MYI discrimination are 96% and 86%, respectively. In conclusion, the SAC and SMR of HY-2B have been verified for monitoring polar sea ice, and the sea ice extent and sea-ice-type products are promising for integration into long-term sea ice records. Full article
(This article belongs to the Special Issue Recent Advances in Sea Ice Research Using Satellite Data)
Show Figures

Figure 1

Back to TopTop