Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,887)

Search Parameters:
Keywords = particle losses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4765 KiB  
Article
Dehydration-Driven Changes in Solid Polymer Electrolytes: Implications for Titanium Anodizing Efficiency
by Andrea Valencia-Cadena, Maria Belén García-Blanco, Pablo Santamaría and Joan Josep Roa
Materials 2025, 18(15), 3645; https://doi.org/10.3390/ma18153645 (registering DOI) - 3 Aug 2025
Abstract
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and [...] Read more.
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and SEM analyses revealed shape deformation and microcrack formation at temperatures above 40 °C, potentially reducing particle packing efficiency and electrolyte performance. Particle size distribution shifted from bimodal to trimodal upon aging, with an overall size reduction of up to 39.5% due to dehydration effects, impacting ionic transport properties. Weight-loss measurements indicated a diffusion-limited dehydration mechanism, stabilizing at 15–16% mass loss. Fourier transform infrared analysis confirmed water removal while maintaining the essential sulfonic acid groups responsible for ionic conductivity. In dry anodizing tests on titanium, aged electrolytes enhanced process efficiency, producing TiO2 films with improved optical properties—color and brightness—while preserving thickness and uniformity (~70 nm). The results highlight the need to carefully control thermal exposure to maintain electrolyte integrity and ensure consistent process performance. Full article
(This article belongs to the Special Issue Novel Materials and Techniques for Dental Implants)
Show Figures

Figure 1

15 pages, 997 KiB  
Article
Reactive Power Optimization Control Method for Distribution Network with Hydropower Based on Improved Discrete Particle Swarm Optimization Algorithm
by Tao Liu, Bin Jia, Shuangxiang Luo, Xiangcong Kong, Yong Zhou and Hongbo Zou
Processes 2025, 13(8), 2455; https://doi.org/10.3390/pr13082455 - 3 Aug 2025
Abstract
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems [...] Read more.
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems of increasing network loss and reactive voltage exceeding the limit have become increasingly prominent. Aiming at the above problems, this paper proposes a reactive power optimization control method for DN with hydropower based on an improved discrete particle swarm optimization (PSO) algorithm. Firstly, this paper analyzes the specific characteristics of small hydropower and establishes its mathematical model. Secondly, considering the constraints of bus voltage and generator RP output, an extended minimum objective function for system power loss is established, with bus voltage violation serving as the penalty function. Then, in order to solve the following problems: that the traditional discrete PSO algorithm is easy to fall into local optimization and slow convergence, this paper proposes an improved discrete PSO algorithm, which improves the global search ability and convergence speed by introducing adaptive inertia weight. Finally, based on the IEEE-33 buses distribution system as an example, the simulation analysis shows that compared with GA optimization, the line loss can be reduced by 3.4% in the wet season and 13.6% in the dry season. Therefore, the proposed method can effectively reduce the network loss and improve the voltage quality, which verifies the effectiveness and superiority of the proposed method. Full article
Show Figures

Figure 1

21 pages, 1800 KiB  
Article
GAPSO: Cloud-Edge-End Collaborative Task Offloading Based on Genetic Particle Swarm Optimization
by Wu Wen, Yibin Huang, Zhong Xiao, Lizhuang Tan and Peiying Zhang
Symmetry 2025, 17(8), 1225; https://doi.org/10.3390/sym17081225 - 3 Aug 2025
Abstract
In the 6G era, the proliferation of smart devices has led to explosive growth in data volume. The traditional cloud computing can no longer meet the demand for efficient processing of large amounts of data. Edge computing can solve the energy loss problems [...] Read more.
In the 6G era, the proliferation of smart devices has led to explosive growth in data volume. The traditional cloud computing can no longer meet the demand for efficient processing of large amounts of data. Edge computing can solve the energy loss problems caused by transmission delay and multi-level forwarding in cloud computing by processing data close to the data source. In this paper, we propose a cloud–edge–end collaborative task offloading strategy with task response time and execution energy consumption as the optimization targets under a limited resource environment. The tasks generated by smart devices can be processed using three kinds of computing nodes, including user devices, edge servers, and cloud servers. The computing nodes are constrained by bandwidth and computing resources. For the target optimization problem, a genetic particle swarm optimization algorithm considering three layers of computing nodes is designed. The task offloading optimization is performed by introducing (1) opposition-based learning algorithm, (2) adaptive inertia weights, and (3) adjustive acceleration coefficients. All metaheuristic algorithms adopt a symmetric training method to ensure fairness and consistency in evaluation. Through experimental simulation, compared with the classic evolutionary algorithm, our algorithm reduces the objective function value by about 6–12% and has higher algorithm convergence speed, accuracy, and stability. Full article
Show Figures

Figure 1

18 pages, 8702 KiB  
Article
Oxidation Process and Morphological Degradation of Drilling Chips from Carbon Fiber-Reinforced Polymers
by Dora Kroisová, Stepanka Dvorackova, Martin Bilek, Josef Skrivanek, Anita Białkowska and Mohamed Bakar
J. Compos. Sci. 2025, 9(8), 410; https://doi.org/10.3390/jcs9080410 (registering DOI) - 2 Aug 2025
Viewed by 46
Abstract
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods [...] Read more.
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods like landfilling and incineration are unsustainable. CFRP machining processes, such as drilling and milling, produce fine chips and dust that are difficult to recycle due to their heterogeneity and contamination. This study investigates the oxidation behavior of CFRP drilling waste from two types of materials (tube and plate) under oxidative (non-inert) conditions. Thermogravimetric analysis (TGA) was performed from 200 °C to 800 °C to assess weight loss related to polymer degradation and carbon fiber integrity. Scanning electron microscopy (SEM) was used to analyze morphological changes and fiber damage. The optimal range for removing the polymer matrix without significant fiber degradation has been identified as 500–600 °C. At temperatures above 700 °C, notable surface and internal fiber damage occurred, along with nanostructure formation, which may pose health and environmental risks. The results show that partial fiber recovery is possible under ambient conditions, and this must be considered regarding the harmful risks to the human body if submicron particles are inhaled. This research supports sustainable CFRP recycling and fire hazard mitigation. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

34 pages, 1156 KiB  
Systematic Review
Mathematical Modelling and Optimization Methods in Geomechanically Informed Blast Design: A Systematic Literature Review
by Fabian Leon, Luis Rojas, Alvaro Peña, Paola Moraga, Pedro Robles, Blanca Gana and Jose García
Mathematics 2025, 13(15), 2456; https://doi.org/10.3390/math13152456 - 30 Jul 2025
Viewed by 229
Abstract
Background: Rock–blast design is a canonical inverse problem that joins elastodynamic partial differential equations (PDEs), fracture mechanics, and stochastic heterogeneity. Objective: Guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, a systematic review of mathematical methods for geomechanically informed [...] Read more.
Background: Rock–blast design is a canonical inverse problem that joins elastodynamic partial differential equations (PDEs), fracture mechanics, and stochastic heterogeneity. Objective: Guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, a systematic review of mathematical methods for geomechanically informed blast modelling and optimisation is provided. Methods: A Scopus–Web of Science search (2000–2025) retrieved 2415 records; semantic filtering and expert screening reduced the corpus to 97 studies. Topic modelling with Bidirectional Encoder Representations from Transformers Topic (BERTOPIC) and bibliometrics organised them into (i) finite-element and finite–discrete element simulations, including arbitrary Lagrangian–Eulerian (ALE) formulations; (ii) geomechanics-enhanced empirical laws; and (iii) machine-learning surrogates and multi-objective optimisers. Results: High-fidelity simulations delimit blast-induced damage with ≤0.2 m mean absolute error; extensions of the Kuznetsov–Ram equation cut median-size mean absolute percentage error (MAPE) from 27% to 15%; Gaussian-process and ensemble learners reach a coefficient of determination (R2>0.95) while providing closed-form uncertainty; Pareto optimisers lower peak particle velocity (PPV) by up to 48% without productivity loss. Synthesis: Four themes emerge—surrogate-assisted PDE-constrained optimisation, probabilistic domain adaptation, Bayesian model fusion for digital-twin updating, and entropy-based energy metrics. Conclusions: Persisting challenges in scalable uncertainty quantification, coupled discrete–continuous fracture solvers, and rigorous fusion of physics-informed and data-driven models position blast design as a fertile test bed for advances in applied mathematics, numerical analysis, and machine-learning theory. Full article
Show Figures

Figure 1

26 pages, 4775 KiB  
Article
Effects of Partial Replacement of Cement with Fly Ash on the Mechanical Properties of Fiber-Reinforced Rubberized Concrete Containing Waste Tyre Rubber and Macro-Synthetic Fibers
by Mizan Ahmed, Nusrat Jahan Mim, Wahidul Biswas, Faiz Shaikh, Xihong Zhang and Vipulkumar Ishvarbhai Patel
Buildings 2025, 15(15), 2685; https://doi.org/10.3390/buildings15152685 - 30 Jul 2025
Viewed by 190
Abstract
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, [...] Read more.
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, and 50%), rubber aggregate contents (0%, 10%, and 20% by volume of fine aggregate), and macro-synthetic fiber dosages (0% to 1% by total volume). The fresh properties were evaluated through slump tests, while hardened properties including compressive strength, splitting tensile strength, and flexural strength were systematically assessed. Results demonstrated that fly ash substitution up to 25% improved the interfacial bonding between rubber particles, fibers, and the cementitious matrix, leading to enhanced tensile and flexural performance without significantly compromising compressive strength. However, at 50% replacement, strength reductions were more pronounced due to slower pozzolanic reactions and reduced cement content. The inclusion of MSF effectively mitigated strength loss induced by rubber aggregates, improving post-cracking behavior and toughness. Overall, an optimal balance was achieved at 25% fly ash replacement combined with 10% rubber and 0.5% fiber content, producing a more sustainable composite with favorable mechanical properties while reducing carbon and ecological footprints. These findings highlight the potential of integrating industrial by-products and waste materials to develop eco-friendly, high-performance FRRC for structural applications, supporting circular economy principles and reducing the carbon footprint of concrete infrastructure. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

16 pages, 2491 KiB  
Article
High-Yield Production of PCV2 Cap Protein: Baculovirus Vector Construction and Cultivation Process Optimization
by Long Cheng, Denglong Xie, Wei Ji, Xiaohong Ye, Fangheng Yu, Xiaohui Yang, Nan Gao, Yan Zhang, Shu Zhu and Yongqi Zhou
Vaccines 2025, 13(8), 801; https://doi.org/10.3390/vaccines13080801 - 28 Jul 2025
Viewed by 295
Abstract
Background/Objectives: Porcine circovirus type 2 (PCV2) infection causes porcine circovirus disease (PCVD), a global immunosuppressive disease in pigs. Its clinical manifestations include post-weaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS), which cause significant economic losses to the swine industry. [...] Read more.
Background/Objectives: Porcine circovirus type 2 (PCV2) infection causes porcine circovirus disease (PCVD), a global immunosuppressive disease in pigs. Its clinical manifestations include post-weaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS), which cause significant economic losses to the swine industry. The Cap protein, which is the major protective antigen of PCV2, can self-assemble to form virus-like particles (VLPs) in the insect baculovirus expression system. Few studies have compared the expression of Cap proteins in different baculovirus expression systems. Methods: In this study, we compared two commonly commercialized baculovirus construction systems with the Cap protein expression in various insect cells. Results: The results demonstrate that the flashBAC system expressed the Cap protein at higher levels than the Bac-to-Bac system. Notably, when expressing four copies of the Cap protein, the flashBAC system achieved the highest protein yield in High Five cells, where it reached 432 μg/mL at 5 days post-infection (dpi) with 27 °C cultivation. Animal experiments confirmed that the purified Cap protein effectively induced specific antibody production in mice and swine. Conclusions: This study provides critical data for optimizing the production of the PCV2 Cap protein, which is of great significance for reducing the production cost of PCV2 vaccines and improving the industrial production efficiency. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

28 pages, 14491 KiB  
Article
Catalytically Active Oxidized PtOx Species on SnO2 Supports Synthesized via Anion Exchange Reaction for 4-Nitrophenol Reduction
by Izabela Ðurasović, Robert Peter, Goran Dražić, Fabio Faraguna, Rafael Anelić, Marijan Marciuš, Tanja Jurkin, Vlasta Mohaček Grošev, Maria Gracheva, Zoltán Klencsár, Mile Ivanda, Goran Štefanić and Marijan Gotić
Nanomaterials 2025, 15(15), 1159; https://doi.org/10.3390/nano15151159 - 28 Jul 2025
Viewed by 282
Abstract
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room [...] Read more.
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room temperature), SnB (hydrothermally treated at 180 °C), and SnC (annealed at 600 °C), are systematically investigated, all loaded with 1 mol% Pt from H2PtCl6 under identical mild conditions. The chloride ions from the SnCl4 precursors were efficiently removed via a strong-base anion exchange reaction, resulting in highly dispersed, crystalline ~5 nm cassiterite SnO2 particles. All Pt/SnO2 composites displayed mesoporous structures with type IVa isotherms and H2-type hysteresis, with SP1a (Pt on SnA) exhibiting the largest surface area (122.6 m2/g) and the smallest pores (~3.5 nm). STEM-HAADF imaging revealed well-dispersed PtOx domains (~0.85 nm), while XPS confirmed the dominant Pt4+ and Pt2+ species, with ~25% Pt0 likely resulting from photoreduction and/or interactions with Sn–OH surface groups. Raman spectroscopy revealed three new bands (260–360 cm−1) that were clearly visible in the sample with 10 mol% Pt and were due to the vibrational modes of the PtOx species and Pt-Cl bonds introduced due the addition and hydrolysis of H2PtCl6 precursor. TGA/DSC analysis revealed the highest mass loss for SP1a (~7.3%), confirming the strong hydration of the PtOx domains. Despite the predominance of oxidized PtOx species, SP1a exhibited the highest catalytic activity (kapp = 1.27 × 10−2 s−1) and retained 84.5% activity for the reduction of 4-NP to 4-AP after 10 cycles. This chloride-free low-temperature synthesis route offers a promising and generalizable strategy for the preparation of noble metal-based nanocatalysts on oxide supports with high catalytic activity and reusability. Full article
Show Figures

Figure 1

18 pages, 4456 KiB  
Article
Study on the Filling and Plugging Mechanism of Oil-Soluble Resin Particles on Channeling Cracks Based on Rapid Filtration Mechanism
by Bangyan Xiao, Jianxin Liu, Feng Xu, Liqin Fu, Xuehao Li, Xianhao Yi, Chunyu Gao and Kefan Qian
Processes 2025, 13(8), 2383; https://doi.org/10.3390/pr13082383 - 27 Jul 2025
Viewed by 376
Abstract
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their [...] Read more.
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their excellent oil solubility, temperature/salt resistance, and high strength. However, their application is limited by the efficient filling and retention in deep fractures. This study innovatively combines the OSR particle plugging system with the mature rapid filtration loss plugging mechanism in drilling, systematically exploring the influence of particle size and sorting on their filtration, packing behavior, and plugging performance in channeling fractures. Through API filtration tests, visual fracture models, and high-temperature/high-pressure (100 °C, salinity 3.0 × 105 mg/L) core flow experiments, it was found that well-sorted large particles preferentially bridge in fractures to form a high-porosity filter cake, enabling rapid water filtration from the resin plugging agent. This promotes efficient accumulation of OSR particles to form a long filter cake slug with a water content <20% while minimizing the invasion of fine particles into matrix pores. The slug thermally coalesces and solidifies into an integral body at reservoir temperature, achieving a plugging strength of 5–6 MPa for fractures. In contrast, poorly sorted particles or undersized particles form filter cakes with low porosity, resulting in slow water filtration, high water content (>50%) in the filter cake, insufficient fracture filling, and significantly reduced plugging strength (<1 MPa). Finally, a double-slug strategy is adopted: small-sized OSR for temporary plugging of the oil layer injection face combined with well-sorted large-sized OSR for main plugging of channeling fractures. This strategy achieves fluid diversion under low injection pressure (0.9 MPa), effectively protects reservoir permeability (recovery rate > 95% after backflow), and establishes high-strength selective plugging. This study clarifies the core role of particle size and sorting in regulating the OSR plugging effect based on rapid filtration loss, providing key insights for developing low-damage, high-performance channeling plugging agents and scientific gradation of particle-based plugging agents. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 2342 KiB  
Article
Accelerated Hydrolytic Degradation of PLA/Magnesium Composite Films: Material Properties and Stem Cell Interaction
by Valentina Fabi, Maria Luisa Valicenti, Franco Dominici, Francesco Morena, Luigi Torre, Sabata Martino and Ilaria Armentano
Polymers 2025, 17(15), 2052; https://doi.org/10.3390/polym17152052 - 27 Jul 2025
Viewed by 336
Abstract
The accelerated hydrolytic degradation of poly(L-lactide) (PLA)/magnesium (Mg) composite films was investigated to elucidate the influence of surface modification of Mg particles on the degradation behavior and characteristics of PLA composites. Accelerated degradation studies were conducted at 60 °C in a pH 7.4 [...] Read more.
The accelerated hydrolytic degradation of poly(L-lactide) (PLA)/magnesium (Mg) composite films was investigated to elucidate the influence of surface modification of Mg particles on the degradation behavior and characteristics of PLA composites. Accelerated degradation studies were conducted at 60 °C in a pH 7.4 phosphate-buffered solution over 7 weeks, with degradation monitored using several techniques: mass loss, water absorption, thermal analysis, and Raman spectroscopy. The results indicated that all composite films experienced more than 90% mass loss at the end of experiment; however, PLA/5MgTT and PLA/5MgPEI exhibited the highest resistance to degradation, likely due to the protective effect of the surface modification induced by thermal treatment and polyethylenimine (PEI). Notably, these characteristics did not compromise the biocompatibility or osteogenic potential of the films, which remained comparable to the control samples when tested on human bone marrow multipotent mesenchymal/stromal cells. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

22 pages, 3781 KiB  
Article
Enhancing Parenteral Nutrition via Supplementation with Antioxidant Lutein in Human Serum Albumin-Based Nanosuspension
by Izabela Żółnowska, Aleksandra Gostyńska-Stawna, Katarzyna Dominiak, Barbara Jadach and Maciej Stawny
Pharmaceutics 2025, 17(8), 971; https://doi.org/10.3390/pharmaceutics17080971 - 26 Jul 2025
Viewed by 448
Abstract
Background/Objectives: Parenteral nutrition (PN) supports patients unable to receive nutrients via the gastrointestinal tract, but it lacks the health-promoting natural bioactive compounds found in a typical oral diet. This study aimed to develop a human serum albumin-based intravenous delivery system for lutein [...] Read more.
Background/Objectives: Parenteral nutrition (PN) supports patients unable to receive nutrients via the gastrointestinal tract, but it lacks the health-promoting natural bioactive compounds found in a typical oral diet. This study aimed to develop a human serum albumin-based intravenous delivery system for lutein (an antioxidant carotenoid with vision-supportive and hepatoprotective properties) as a PN additive. Methods: An albumin–lutein nanosuspension (AlbLuteN) was synthesized using a modified nanoparticle albumin-bound (nabTM) technology and characterized physicochemically. The nanoformulation was added to four commercial PN admixtures to assess the supplementation safety throughout the maximum infusion period. Visual inspection and measurements of fat globules larger than 5 µm (PFAT5) and the mean hydrodynamic diameter (Z-average), zeta potential, pH, osmolality, and lutein content were performed to detect potential interactions and evaluate the physicochemical stability. Results: AlbLuteN consisted of uniform particles (Z-average of 133.5 ± 2.8 nm) with a zeta potential of −28.1 ± 1.8 mV, lutein content of 4.76 ± 0.39%, and entrapment efficiency of 84.4 ± 6.3%. Differential scanning calorimetry confirmed the amorphous state of lutein in the nanosuspension. AlbLuteN was successfully incorporated into PN admixtures, without visible phase separation or significant changes in physicochemical parameters. The PFAT5 and Z-average values remained within pharmacopeial limits over 24 h. No substantial shifts in zeta potential, pH, or osmolality were observed. The lutein content remained stable, with losses below 3%. Conclusions: AlbLuteN can be safely added to representative PN admixtures without compromising their stability. This approach offers a novel strategy for intravenous lutein delivery and may contribute to improving the nutritional profile of PN. Full article
Show Figures

Figure 1

17 pages, 1314 KiB  
Article
Enhancing Biodegradation of Poly(lactic acid) in Compost at Room Temperature by Compounding Jade Particles
by Lilian Lin, Matthew Joe, Quang A. Dang and Heon E. Park
Polymers 2025, 17(15), 2037; https://doi.org/10.3390/polym17152037 - 26 Jul 2025
Viewed by 397
Abstract
Although PLA is an attractive biodegradable polymer, its degradation under natural conditions is often slow. This study investigates whether incorporating pounamu (New Zealand jade) particles into PLA can enhance its biodegradation rate under composting conditions at room temperature. PLA composites containing 0 to [...] Read more.
Although PLA is an attractive biodegradable polymer, its degradation under natural conditions is often slow. This study investigates whether incorporating pounamu (New Zealand jade) particles into PLA can enhance its biodegradation rate under composting conditions at room temperature. PLA composites containing 0 to 15 wt% pounamu were fabricated using both compression molding and 3D printing. A simple, reproducible protocol based on residual mass measurement was developed to monitor the biodegradation process over a 12-month period. The results showed that increasing pounamu content consistently accelerated mass loss of the composite in the compost, indicating enhanced biodegradation. The 3D-printed samples degraded more rapidly than compression-molded ones. This was attributed to the layered structure, internal microcavities, and lower crystallinity of the 3D-printed samples, which provided greater surface area and accessibility for microbial activity. These findings highlight the dual role of pounamu as both a crystallization promoter and a facilitator of biodegradation and underscore the importance of the processing method when designing biodegradable polymer composites for real-world applications. Full article
(This article belongs to the Special Issue Advances in Polymer Composites with Upcycling Waste)
Show Figures

Figure 1

26 pages, 2065 KiB  
Article
A Model Embedded with Development Patterns for Oilfield Production Forecasting
by Jianpeng Zang, Junting Bai, El-Sayed M. El-Alfy, Kai Zhang, Jian Wang and Sergey V. Ablameyko
Eng 2025, 6(8), 172; https://doi.org/10.3390/eng6080172 - 25 Jul 2025
Viewed by 247
Abstract
Machine learning models that only use data for training and forecasting oilfield production have a sense of disconnection from the physical background, while embedding development patterns in them can enhance interpretability and even improve accuracy. In this paper, a novel multi-well production forecasting [...] Read more.
Machine learning models that only use data for training and forecasting oilfield production have a sense of disconnection from the physical background, while embedding development patterns in them can enhance interpretability and even improve accuracy. In this paper, a novel multi-well production forecasting model embedded with decline curve analysis (DCA) is proposed, enabling the machine learning model to incorporate physical information. Moreover, an improved particle swarm optimization algorithm is proposed to optimize the hyperparameters in the loss function of the model. These hyperparameters determine the importance of the overall DCA and each module in training, which traditionally requires expert knowledge to determine. Simulation results based on the benchmark reservoir model show that the model has better forecasting ability and generalization performance compared to typical machine learning methods. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

18 pages, 8171 KiB  
Article
Improving the Treatment of Brain Gliomas Through Small-Particle-Size Paclitaxel-Loaded Micelles with a High Safety Profile
by Bohan Chen, Liming Gong, Jing Feng, MongHsiu Song, Mingji Jin, Liqing Chen, Zhonggao Gao and Wei Huang
Pharmaceutics 2025, 17(8), 965; https://doi.org/10.3390/pharmaceutics17080965 - 25 Jul 2025
Viewed by 264
Abstract
Background/Objectives: Paclitaxel (PTX) is widely used in the treatment of a variety of solid tumours due to its broad-spectrum anti-tumour activity, but its use in brain gliomas is limited by insufficient blood–brain tumour barrier (BBTB) penetration and systemic toxicity. The aim of [...] Read more.
Background/Objectives: Paclitaxel (PTX) is widely used in the treatment of a variety of solid tumours due to its broad-spectrum anti-tumour activity, but its use in brain gliomas is limited by insufficient blood–brain tumour barrier (BBTB) penetration and systemic toxicity. The aim of this study was to develop a Solutol HS-15-based micellar nanoparticle (PSM) to enhance the brain glioma targeting of PTX and reduce toxicity. Methods: PSMs were prepared by solvent injection and characterised for particle size, encapsulation rate, haemolysis rate and in vitro release properties. A C6 in situ glioma mouse model was used to assess the brain targeting and anti-tumour effects of the PSM by in vivo imaging, tissue homogenate fluorescence analysis and bioluminescence monitoring. Meanwhile, its safety was evaluated by weight monitoring, serum biochemical indexes and histopathological analysis. Results: The particle size of PSMs was 13.45 ± 0.70 nm, with an encapsulation rate of 96.39%, and it demonstrated excellent cellular uptake. In tumour-bearing mice, PSMs significantly enhanced brain tumour targeting with a brain drug concentration 5.94 times higher than that of free PTX. Compared with Taxol, PSMs significantly inhibited tumour growth (terminal luminescence intensity <1 × 106 p/s/cm2/Sr) and did not cause significant liver or kidney toxicity or body weight loss. Conclusions: PSMs achieve an efficient accumulation of brain gliomas through passive targeting and EPR effects while significantly reducing the systemic toxicity of PTX. Its simple preparation process and excellent therapeutic efficacy support its use as a potential clinically translational candidate for glioma treatment. Full article
Show Figures

Figure 1

12 pages, 6326 KiB  
Article
Two Cases of Feather Dystrophy in Free-Living Griffon Vultures (Gyps fulvus fulvus) Associated with Viral-like Inclusion Bodies
by Stefano Pesaro, Donatella Volpatti, Alice Baggio, Ranieri Verin, Fulvio Genero, Luca Sicuro, Livio Galosi, Lucia Biagini, Isabella Perlin, Patrizia Robino, Barbara Colitti, Daniele Avanzato and Giacomo Rossi
Animals 2025, 15(15), 2190; https://doi.org/10.3390/ani15152190 - 25 Jul 2025
Viewed by 221
Abstract
The griffon vulture (Gyps fulvus fulvus) is a scavenger species that plays a vital ecological role in carrion removal. Successful survival and reproduction in captive and wildlife conditions require optimal physical status and plumage integrity. Nutritional and environmental factors, systemic diseases, [...] Read more.
The griffon vulture (Gyps fulvus fulvus) is a scavenger species that plays a vital ecological role in carrion removal. Successful survival and reproduction in captive and wildlife conditions require optimal physical status and plumage integrity. Nutritional and environmental factors, systemic diseases, and various etiological agents can influence feather alterations. Although frequently documented in captive psittacine species, feather abnormalities are extremely rare in wild birds. Since 2020, two free-living griffon vultures in northeastern Italy have been found in poor physical condition, unable to fly due to partial feather loss and malformation of remiges and rectrices. Histopathologic examination of follicles and peri-follicular tissue revealed atrophy, keratin replacement, vasculitis, and calamus dystrophy with lymphohistiocytic perivasculitis. Immunohistochemical and ultrastructural analysis identified the presence of virus-like particles in epithelial and inflammatory cells. Although virome analysis did not confirm the presence of this virus in pooled affected samples, this study provides the first report of an emerging plumage disorder in free-ranging griffon vultures, which requires further characterization. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

Back to TopTop