Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (294)

Search Parameters:
Keywords = particle beam measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1130 KiB  
Article
DNA Damage Induced by Fast Neutron and Gamma Rays Evaluated Using qPCR
by Youichirou Matuo, Miyabi Yanami, Shingo Tamaki, Yoko Akiyama, Yoshinobu Izumi, Fuminobu Sato, Isao Murata and Kikuo Shimizu
Quantum Beam Sci. 2025, 9(3), 23; https://doi.org/10.3390/qubs9030023 - 7 Jul 2025
Viewed by 216
Abstract
We developed a novel dosimetric method using DNA molecules as a radiation sensor. The amount of neutron or gamma rays irradiated DNA damage was determined by evaluating the amount of DNA serving as a template for qPCR. The absorbed doses in the samples [...] Read more.
We developed a novel dosimetric method using DNA molecules as a radiation sensor. The amount of neutron or gamma rays irradiated DNA damage was determined by evaluating the amount of DNA serving as a template for qPCR. The absorbed doses in the samples were estimated using the tally of the “t-product” in the data from the PHITS Monte Carlo particle transport simulation code. The neutron fluence for each sample was measured using the niobium activation reaction 93Nb (n, 2n) 92mNb, and the absorbed dose per neutron fluence was estimated to be 7.1 × 10−11 Gy/(n/cm2). Based on the PHITS modeling, the effects of neutron beams are attributed to the combination of proton and alpha particle beams. The results from qPCR showed that neutrons caused more DNA damage than gamma rays. The qPCR method demonstrated that neutron irradiation caused 1.13-fold more DNA damage compared to gamma ray irradiation; however, this result did not show a statistically significant difference. This method we developed, using DNA molecules as a radiation sensor, may be useful for biodosimetry. Full article
(This article belongs to the Section Medical and Biological Applications)
Show Figures

Figure 1

10 pages, 3595 KiB  
Article
EM Characterization of a Compact RFQ Cold Model Prototype Employing a New Power Injection Scheme
by Marco A. López, Joaquín Portilla, Victor Etxebarria, Iñigo Arredondo and Jorge Feuchtwanger
Particles 2025, 8(3), 67; https://doi.org/10.3390/particles8030067 - 1 Jul 2025
Viewed by 314
Abstract
The experimental and computational characterization of a cold model prototype designed to test the electromagnetic properties of a new RFQ (Radio-Frequency Quadrupole) cavity is reported. This cavity is intended to be an essential part of a compact, high-gradient proton accelerator for medical purposes. [...] Read more.
The experimental and computational characterization of a cold model prototype designed to test the electromagnetic properties of a new RFQ (Radio-Frequency Quadrupole) cavity is reported. This cavity is intended to be an essential part of a compact, high-gradient proton accelerator for medical purposes. The RFQ’s design employs a novel RF power-coupler injection solution. One common way to couple the RF power in proton RFQs has been the use of loop-couplers inserted into the mid-section of the RFQ’s lobe sections. This technique has been demonstrated to be reliable and effective but introduces a significant perturbation into the lobe that can be more noticeable when dealing with compact structures. We propose a RF injection scheme that uses direct transition from a coaxial cable to the RFQ by connecting the inner coaxial conductor to the RFQ vane body. As a consequence, the lobe geometry is not perturbed, and the transversal electrical fields are directly excited through the vanes. Moreover, by using a pair of such couplers connected to opposite vanes at a given transversal plane of the RFQ, it is also possible to excite the desired quadrupolar TE210 modes while avoiding the excitation of dipolar TE110 modes. The resonances corresponding to different RFQ modes have been characterized, and the dependence of the amplitude of the modes on the relative phase of the field injected through the RF power ports has been demonstrated both by measurements and simulations. Full article
(This article belongs to the Section Experimental Physics and Instrumentation)
Show Figures

Figure 1

12 pages, 2714 KiB  
Article
Pollen Vertical Transportation Above Paris, France, up to 150 m Using the Beenose Instrument on the Tourist Attraction “Ballon de Paris” in 2024
by Jean-Baptiste Renard, Johann Lauthier and Jérôme Giacomoni
Atmosphere 2025, 16(7), 795; https://doi.org/10.3390/atmos16070795 - 30 Jun 2025
Viewed by 299
Abstract
Pollen allergies represent a growing public health concern that necessitates enhancements to the network of instruments and modeling calculations in order to facilitate a more profound comprehension of pollen transportation. The Beenose instrument quantifies the light scattered by particles that traverse a laser [...] Read more.
Pollen allergies represent a growing public health concern that necessitates enhancements to the network of instruments and modeling calculations in order to facilitate a more profound comprehension of pollen transportation. The Beenose instrument quantifies the light scattered by particles that traverse a laser beam at four angles. This methodology enables the differentiation of pollen particles from other particulate matter, predominantly mineral and carbonaceous in nature, thereby facilitating the retrieval of pollen concentrations. The Beenose instrument has been installed on the tourist balloon known as “Ballon de Paris” in a large park situated in the southwest of Paris, France. The measurement period is from April to November 2024, coinciding with the pollen seasons of trees and grasses. The balloon conducts numerous flights per day, reaching an altitude of 150 m when weather conditions are conducive, which occurs approximately 58% of the time during this period. The data are averaged to produce vertical profiles with a resolution of 30 m. Concentrations of the substance decrease with altitude, although a secondary layer is observed in spring. This phenomenon may be attributed to the presence of emissions from a proximate forest situated at a higher altitude. The average decrease in concentration of 11 ± 8% per 10 m is consistent with the findings of previous studies. The long-term implementation of Beenose measurements on this tourist balloon is intended to enhance the precision of the results and facilitate the differentiation of the various parameters that can influence the vertical transportation of pollen. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

13 pages, 3040 KiB  
Article
Design and Development of Dipole Magnet for MIR/THz Free Electron Laser Beam Dumps and Spectrometers
by Ekkachai Kongmon, Kantaphon Damminsek, Nopadon Khangrang, Sakhorn Rimjaem and Chitrlada Thongbai
Particles 2025, 8(3), 66; https://doi.org/10.3390/particles8030066 - 25 Jun 2025
Viewed by 782
Abstract
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending [...] Read more.
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending angle for electron beams with energies up to 30 MeV, without requiring water cooling. Using CST EM Studio for 3D magnetic field simulations and ASTRA for particle tracking, the THz dipole (with 414 turns) and MIR dipole (with 600 turns) generated magnetic fields of 0.1739 T and 0.2588 T, respectively, while both operating at currents below 10 A. Performance analysis confirmed effective beam deflection, with the THz dipole showing that it was capable of handling beam energies up to 20 MeV and the MIR dipole could handle up to 30 MeV. The energy measurement at the spectrometer screen position was simulated, taking into account transverse beam size, fringe fields, and space charge effects, using ASTRA. The energy resolution, defined as the ratio of energy uncertainty to the mean energy, was evaluated for selected cases. For beam energies of 16 MeV and 25 MeV, resolutions of 0.2% and 0.5% were achieved with transverse beam sizes of 1 mm and 4 mm, respectively. All evaluated cases maintained energy resolutions below 1%, confirming the spectrometer’s suitability for high-precision beam diagnostics. Furthermore, the relationship between the initial and measured energy spread errors, taking into account a camera resolution of 0.1 mm/pixel, was evaluated. Simulations across various beam energies (10–16 MeV for the THz dipole and 20–25 MeV for the MIR dipole) confirmed that the measurement error in energy spread decreases with smaller RMS transverse beam sizes. This trend was consistent across all tested energies and magnet configurations. To ensure accurate energy spread measurements, a small initial beam size is recommended. Specifically, for beams with a narrow initial energy spread, a transverse beam size below 1 mm is essential. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

23 pages, 7379 KiB  
Article
Interference Suppression Algorithm for Microthrust Measurement System Based on Particle Swarm Optimization Fuzzy PID
by Liye Zhao, Xiaolu Xiong and Mingming Han
Actuators 2025, 14(7), 313; https://doi.org/10.3390/act14070313 - 24 Jun 2025
Viewed by 185
Abstract
Micronewton thrusters have a wide range of applications in the aerospace field, and the accuracy of micronewton thrust measurement is directly affected by environmental vibration. The cantilever beam is the core part of the microthrust measurement system, and its stability directly affects the [...] Read more.
Micronewton thrusters have a wide range of applications in the aerospace field, and the accuracy of micronewton thrust measurement is directly affected by environmental vibration. The cantilever beam is the core part of the microthrust measurement system, and its stability directly affects the accuracy of thrust calibration. Aiming at the problems of the cantilever beam oscillating during the change in thrust and being susceptible to the impulse vibration of the ground, the interference suppression scheme of the microthrust measurement system based on the fuzzy PID of particle swarm optimization is investigated. And an interference suppression algorithm of the microthrust system based on the adaptive Kalman displacement expectancy estimation algorithm and the fuzzy PID of particle swarm optimization is designed. An adaptive Kalman displacement expectation estimation algorithm and a particle swarm optimization fuzzy PID microthrust system interference suppression algorithm are designed. The results show that the proposed algorithm can effectively track the thrust signal and suppress the influence of external vibration interference for the mN-level thrust change, control the overshooting amount within 10%, shorten the stabilization time to within 0.2 s, reduce the impulse oscillation to 22% of the original, reduce the steady-state error, and have a strong suppression effect on the oscillation phenomenon of the system, with better control accuracy and stability, and provide a good condition for the thrust calibration. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

10 pages, 1554 KiB  
Article
Investigating the Secondary Thermal Neutron Intensity of Neutron Capture-Enhanced Proton Therapy
by Takahiro Shimo, Shintaro Shiba, Hiroyuki Watanabe, Masashi Yamanaka, Kazuki Matsumoto, Akihiro Yamano, Hisato Nagano and Kohichi Tokuuye
Appl. Sci. 2025, 15(12), 6833; https://doi.org/10.3390/app15126833 - 17 Jun 2025
Viewed by 336
Abstract
This study aimed to investigate the distribution of thermal neutron fluence generated during proton-beam therapy (PBT) scanning, focusing on neutrons produced within the body using Monte Carlo simulations (MCSs). MCSs used the Particle and Heavy Ion Treatment Code System to define a 35 [...] Read more.
This study aimed to investigate the distribution of thermal neutron fluence generated during proton-beam therapy (PBT) scanning, focusing on neutrons produced within the body using Monte Carlo simulations (MCSs). MCSs used the Particle and Heavy Ion Treatment Code System to define a 35 × 35 × 35 cm3 water phantom, and proton-beam energies ranging from 70.2 to 228.7 MeV were investigated. The MCS results were compared with neutron fluence measurements obtained from gold activation analysis, showing good agreement with a difference of 3.54%. The internal thermal neutron distribution generated by PBT was isotropic around the proton-beam axis, with the Bragg peak depth varying between 3.45 and 31.9 cm, while the thermal neutron peak depth ranged from 5.41 to 15.9 cm. Thermal neutron generation depended on proton-beam energy, irradiated particle count, and depth. Particularly, the peak of the thermal neutron fluence did not occur within the treatment target volume but in a location outside the target, closer to the source. This discrepancy between the Bragg peak and the thermal neutron fluence peak is a key finding of this study. These data are crucial for optimizing beam angles to maximize dose enhancement within the target during clinical applications of neutron capture-enhanced particle therapy. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

9 pages, 4016 KiB  
Communication
Longitudinal Polarization Vortices Generated via Terahertz Ring Resonator
by Mingyu Ji, Tengjiao Wang and Jingya Xie
Photonics 2025, 12(5), 505; https://doi.org/10.3390/photonics12050505 - 18 May 2025
Viewed by 436
Abstract
Vortex beams characterized by helical phase wavefronts enable innovative explorations of optical and physical interactions. This work experimentally realizes longitudinally polarized vortices with arbitrary topological charges in terahertz (THz) frequencies using a silicon ring resonator integrated with a second-order diffraction grating. The implemented [...] Read more.
Vortex beams characterized by helical phase wavefronts enable innovative explorations of optical and physical interactions. This work experimentally realizes longitudinally polarized vortices with arbitrary topological charges in terahertz (THz) frequencies using a silicon ring resonator integrated with a second-order diffraction grating. The implemented configuration enables flexible topological charge manipulation in longitudinally polarized electric fields through the excitation of quasi-transverse-magnetic (TM) waveguide modes with different frequencies. By employing a terahertz near-field measurement system, the spatial intensity patterns and phase characteristics of emitted waves are quantitatively analyzed via a precision probe. This strategy shows promising potential for applications in particle manipulation techniques and advanced imaging technologies. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

10 pages, 4218 KiB  
Article
Front-End Prototype ASIC with Low-Gain Avalanche Detector Sensors for the ATLAS High Granularity Timing Detector
by Salah El Dine Hammoud
Particles 2025, 8(2), 50; https://doi.org/10.3390/particles8020050 - 1 May 2025
Cited by 1 | Viewed by 578
Abstract
Timing measurements are critical for the detectors at the future HL-LHC, to resolve reconstruction ambiguity when the number of simultaneous interactions reaches up to 200 per bunch crossing. The ATLAS collaboration therefore builds a new High-Granularity Timing detector for the forward region. A [...] Read more.
Timing measurements are critical for the detectors at the future HL-LHC, to resolve reconstruction ambiguity when the number of simultaneous interactions reaches up to 200 per bunch crossing. The ATLAS collaboration therefore builds a new High-Granularity Timing detector for the forward region. A customized ASIC, called ALTIROC, has been developed, to read out fast signals from low-gain avalanche detectors (LGADs), which has 50 ps time-resolution for signals from minimum-ionizing particles. To meet these requirements, a custom-designed pre-amplifier, a discriminator, and TDC circuits with minimal jitter have been implemented in a series of prototype ASICs. The latest version, ALTIROC3, is designed to contain full functionality. Hybrid assemblies with ALTIROC3 ASICs and LGAD sensors have been characterized with charged-particle beams at CERN-SPS and with laser-light injection. The time-jitter contributions of the sensor, pre-amplifier, discriminator, TDC, and digital readout are evaluated. Full article
Show Figures

Figure 1

21 pages, 8847 KiB  
Article
The Importance of Laser Beam Power on the Microstructure and Wear Behavior of Al-WC Composite Layers Produced by Laser Surface Alloying
by Natalia Makuch and Piotr Dziarski
Materials 2025, 18(9), 1899; https://doi.org/10.3390/ma18091899 - 22 Apr 2025
Viewed by 382
Abstract
Laser alloying was used to form metal matrix composite layers strengthened by WC particles. The process parameters were selected in such a way that there was no complete melting of the WC particles. Four different laser beam powers (from 0.65 kW to 1.3 [...] Read more.
Laser alloying was used to form metal matrix composite layers strengthened by WC particles. The process parameters were selected in such a way that there was no complete melting of the WC particles. Four different laser beam powers (from 0.65 kW to 1.3 kW) were used, generating different temperature distributions during processing. The temperature across the laser track axis was determined according to the mathematical model proposed by Ashby and Esterling. All layers produced contained unmelted WC particles in an aluminum-based matrix. The depth of the WC-Al composite layers strongly depended on the applied laser beam power. The lowest thickness of 198 ± 36 µm was measured for the layer produced at a laser beam power of 0.65 kW. A twofold increase in power P was the reason for obtaining a thickness thAZ = 387 ± 21 µm. The power of the laser beam also affected the percentage of the substrate material (7075 alloy) in the molten pool during the laser processing. As a result, the highest amount of substrate material was obtained for the WC-Al composite layer produced using the highest laser beam power P = 1.3 kW. Simultaneously, this layer was characterized by the lowest percentage of tungsten carbide particles in this layer. The temperature profile along the axis of the laser track and also the maximum temperature reached confirmed the difference in the bonding between the reinforcing WC particles and the metal matrix. For P = 0.65 kW, too low a temperature was reached for the tungsten carbide particles to overmelt, resulting in poor bonding to the metallic matrix in the layer. Moreover, the layer showed serious defects such as discontinuity, porosity, and cracks. As a result, the WC-Al composite layer produced at the lowest laser beam power was characterized by a wear resistance lower (Imw = 6.094 mg/cm2/h) than the 7075 alloy without surface layer (Imw = 5.288 mg/cm2). The highest wear resistance was characteristic of the 7075 alloy laser alloyed with a laser beam power equal to 1.17 kW (Imw = 2.475 mg/cm2/h). This layer showed satisfactory quality and adhesion to the substrate material. Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))
Show Figures

Figure 1

15 pages, 2346 KiB  
Article
Structure–Performance Relationship of Anionic Polyacrylamide in Pyrite-Containing Tailings: Insights into Flocculation Efficiency
by Steven Nieto, Eder Piceros, Gonzalo R. Quezada, Pedro Robles and Ricardo I. Jeldres
Polymers 2025, 17(8), 1055; https://doi.org/10.3390/polym17081055 - 14 Apr 2025
Viewed by 487
Abstract
Functional polymeric materials play a critical role in optimizing flocculation and sedimentation processes in mining tailings, where complex interactions with mineral surfaces govern polymer performance. This study examines the structure–performance relationship, which describes how the internal structure of aggregates (e.g., compactness, porosity and [...] Read more.
Functional polymeric materials play a critical role in optimizing flocculation and sedimentation processes in mining tailings, where complex interactions with mineral surfaces govern polymer performance. This study examines the structure–performance relationship, which describes how the internal structure of aggregates (e.g., compactness, porosity and fractal dimension) influences sedimentation behavior, specifically for anionic polyacrylamide (SNF 704) in kaolin-quartz-pyrite suspensions at a pH of 10.5. Using focused beam reflectance measurement (FBRM) and static sedimentation tests, we demonstrate that pyrite exhibits the highest flocculant adsorption capacity, inducing a train-like polymer conformation on its surface. This reduces the formation of effective polymeric bridges, resulting in less compact and more porous aggregates that negatively impact sedimentation rates. Increasing the flocculant dosage improves the capture of fine particles; however, at high pyrite concentrations, rapid saturation of adsorption sites limits flocculation efficiency. Additionally, the fractal dimension of the aggregates decreases with increasing pyrite content, revealing more open structures that hinder consolidation. These findings underscore the importance of optimizing polymer dosage and tailoring flocculant design to the mineralogical composition, thereby enhancing water recovery and sustainability in mining operations. This study highlights the role of structure–property relationships in polymeric flocculants and their potential for next-generation tailings management solutions. Full article
Show Figures

Figure 1

14 pages, 4600 KiB  
Communication
Low-Jitter Clock Receivers for Fast Timing Applications
by Carl Grace, Maurice Garcia-Sciveres, Timon Heim and Amanda Krieger
Sensors 2025, 25(7), 2284; https://doi.org/10.3390/s25072284 - 3 Apr 2025
Viewed by 440
Abstract
Precision timing is a key requirement for emerging 4D particle tracking, Positron Emission Tomography (PET), beam and fusion plasma diagnostics, and other systems. Time-to-Digital Converters (TDCs) are commonly used to provide digital estimates of the relative timing between events, but the jitter performance [...] Read more.
Precision timing is a key requirement for emerging 4D particle tracking, Positron Emission Tomography (PET), beam and fusion plasma diagnostics, and other systems. Time-to-Digital Converters (TDCs) are commonly used to provide digital estimates of the relative timing between events, but the jitter performance of a TDC can be no better than the performance of the circuits that acquire the pulses and deliver them to the TDC. Several clock receiver and distribution circuits were evaluated, and a differential amplifier with resistive loads driving a pseudo-differential clock distribution network, developed using design guidelines for radiation tolerance and cryogenic compatibility, was fabricated as part of three prototypes: an analog front-end testbed chip for high-precision timing pixel readout, a dedicated TDC evaluation chip, and a Low-Gain Avalanche Detector (LGAD) readout circuit. Based on TDC measurements of the prototypes, we infer that the jitter added by the clock receiver and distribution circuits is less than 2.25 ps-rms. This performance meets the requirements of many future precision timing systems. The clock receiver and on-chip pseudo-differential driver were fabricated in commercial 28-nm CMOS technology and occupy 2288 µm2. Full article
(This article belongs to the Special Issue Advanced CMOS Integrated Circuit Design and Application III)
Show Figures

Figure 1

22 pages, 6040 KiB  
Article
Situation Awareness and Tracking Algorithm for Countering Low-Altitude Swarm Target Threats
by Nannan Zhu, Fuli Zhong, Xueyue Lei, Guo Niu, Hongtu Xie and Yue Zhang
Remote Sens. 2025, 17(7), 1172; https://doi.org/10.3390/rs17071172 - 26 Mar 2025
Viewed by 537
Abstract
The escalating threat posed by low-altitude swarm targets underscores the critical need for precise tracking and situation awareness to secure key areas. While existing tracking methods based on random matrix theory offer promising opportunities, they face significant challenges. The high similarity among swarm [...] Read more.
The escalating threat posed by low-altitude swarm targets underscores the critical need for precise tracking and situation awareness to secure key areas. While existing tracking methods based on random matrix theory offer promising opportunities, they face significant challenges. The high similarity among swarm targets, combined with radar resolution limitations, often leads to instabilities in target counts and measurements due to occlusion, environmental factors, and other disturbances, significantly increasing tracking complexity. To address these challenges, we design a digital staring radar system integrated with an adaptive random matrix method for efficient tracking of low-altitude swarm targets. The system achieves full spatiotemporal coverage without beam scanning or complex resource scheduling, enabling simultaneous detection and tracking of multiple targets. Algorithmically, the random matrix model is enhanced by introducing extension parameters to accurately capture the dynamic changes in swarm shape. Leveraging an adaptive Rao-Blackwellized Particle Filter (RBPF), the presented method jointly estimates the motion and extension states of swarm targets. Extensive simulation experiments and real-data validation demonstrate that the proposed method significantly improves the estimation accuracy for swarm extension states under complex shape variations while maintaining high precision in motion state estimation. This work provides a practical and effective solution for countering low-altitude swarm threats, with strong potential for real-world security applications. Full article
Show Figures

Figure 1

16 pages, 8331 KiB  
Article
Effect of Gun Geometry on MCrAlX Coating Microstructure and In-Flight Oxidation Deposited by Low-Temperature High-Velocity Air Fuel
by Murilo Sergio Lamana, Aravind Kumar Thoutam, Bruno C. N. M. de Castilho, Fadhel Ben Ettouil, Ritvij Chandrakar, Stephanie Bessette, Nicolas Brodusch, Raynald Gauvin, Ali Dolatabadi and Christian Moreau
Coatings 2025, 15(3), 357; https://doi.org/10.3390/coatings15030357 - 19 Mar 2025
Viewed by 425
Abstract
Aircraft gas turbine blades operate in aggressive, generally oxidizing, atmospheres. A solution to mitigate the degradation and improve the performance of such components is the deposition of thermal barrier coatings systems (TBCs). High-velocity air fuel (HVAF) is a very efficient process for coating [...] Read more.
Aircraft gas turbine blades operate in aggressive, generally oxidizing, atmospheres. A solution to mitigate the degradation and improve the performance of such components is the deposition of thermal barrier coatings systems (TBCs). High-velocity air fuel (HVAF) is a very efficient process for coating deposition in TBC systems, particularly for bond coats in aerospace applications. However, its low-temperature variant has received little attention in the literature and could be a promising alternative to limit oxidation during spraying when compared to conventional methods. This study has the main objective of analyzing how the geometry of the low-temperature HVAF gun influences the microstructure and the in-flight oxidation of MCrAlX coatings. To that end, a low-temperature HVAF torch is used to deposit MCrAlX coatings on a steel substrate with different nozzle lengths. In-flight particle diagnosis is used to measure the MCrAlX particle velocity, and to correlate to the nozzle geometry and to analyze its influence on the final coating. The microstructure of the coatings is assessed by scanning electron microscopy (SEM) and the material oxidation is analyzed and measured on a field emission scanning transmission electron microscope (FE-STEM) equipped with focused ion beam (FIB) and by Energy Dispersive Spectroscopy (EDS). Full article
Show Figures

Figure 1

19 pages, 5362 KiB  
Article
Compact Design and Impact Ionization: Utilizing Small-Sized Thyristors in a 4-Stage Marx Generator
by Alicia del Barrio Montañés, Viliam Senaj, Thomas Kramer, Georg Müller and Martin Sack
Appl. Sci. 2025, 15(6), 3289; https://doi.org/10.3390/app15063289 - 17 Mar 2025
Viewed by 668
Abstract
In CERN’s beam transfer lines, high-voltage generators have traditionally relied on thyratron switches; however, thyratrons present operational challenges and are also becoming increasingly hard to source. To address this issue, there is a growing interest in adopting compact pulse generators made from commercially [...] Read more.
In CERN’s beam transfer lines, high-voltage generators have traditionally relied on thyratron switches; however, thyratrons present operational challenges and are also becoming increasingly hard to source. To address this issue, there is a growing interest in adopting compact pulse generators made from commercially available off-the-shelf (COTS) components. Recent research has demonstrated that thyristors designed for rectifier applications, which are not specifically designed for fast rise times, can be activated in overvoltage mode—also referred to as impact-ionization mode. These devices achieve substantial improvements in their dU/dt and dI/dt characteristics. This activation method involves applying a substantial overvoltage between the thyristor’s anode and cathode, along with a fast slew rate exceeding 1 kV/ns. The adoption of compact pulse generators built from COTS components opens up new opportunities for deploying this technology across multiple domains, including high-speed kicker generators in particle accelerators. In our methodology, we incorporated commercially available high-voltage components—SiC MOSFETs—that were triggered using a fast gate driver, which was custom-designed. The generated output pulse was then amplified and sharpened in a four-stage Marx generator composed of small, 1.2 kV rated D2PAK thyristors. This configuration yielded an output pulse with an amplitude of 11 kV and a 10–90% dU/dt of 13.3 kV/ns. The present study details the design of the Marx generator and the resulting pulses, along with the challenges faced in high-voltage measurements. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

14 pages, 2851 KiB  
Article
Characterization of Different Types of Micro-Fission and Micro-Ionization Chambers Under X-Ray Beams
by Juan Antonio Moreno-Pérez, Álvaro Marchena, Pablo Araya, Jesús J. López-Peñalver, Juan Alejandro de la Torre, Antonio M. Lallena, Santiago Becerril, Marta Anguiano, Alberto J. Palma and Miguel A. Carvajal
Sensors 2025, 25(6), 1862; https://doi.org/10.3390/s25061862 - 17 Mar 2025
Viewed by 536
Abstract
Various models of ionization and fission chambers for ionizing radiation detection, designed to operate under harsh conditions such as those found in fusion reactors or particle accelerators, have been experimentally characterized and numerically simulated. These models were calibrated using a photon beam in [...] Read more.
Various models of ionization and fission chambers for ionizing radiation detection, designed to operate under harsh conditions such as those found in fusion reactors or particle accelerators, have been experimentally characterized and numerically simulated. These models were calibrated using a photon beam in the X-ray spectrum. Irradiations were performed at the Biomedical Research Center of the University of Granada (CIBM) with a bipolar metal-ceramic X-ray tube operating at a voltage of 150 kV and a dose rate ranging from 0.05 to 2.28 Gy/min. All detectors under study featured identical external structures but varied in detection volume, anode configuration, and filling gas composition. To assess inter- and intra-model response variations, the tested models included 12 micro-ionization chambers (CRGR10/C5B/UG2), 3 micro-fission chambers (CFUR43/C5B-U5/UG2), 8 micro-fission chambers (CFUR43/C5B-U8/UG2), and 3 micro-fission chambers (CFUR44/C5B-U8/UG2), all manufactured by Photonis (Merignac, France). The experimental setup was considered suitable for the tests, as the leakage current was below 20 pA. The optimal operating voltage range was determined to be 130–150 V, and the photon sensitivities for the chambers were measured as 29.8 ± 0.3 pA/(Gy/h), 43.0 ± 0.8 pA/(Gy/h), 39.2 ± 0.3 pA/(Gy/h), and 96.0 ± 0.9 pA/(Gy/h), respectively. Monte Carlo numerical simulations revealed that the U layer in the fission chambers was primarily responsible for their higher sensitivities due to photoelectric photon absorption. Additionally, the simulations explained the observed differences in sensitivity based on the filling gas pressure. The detectors demonstrated linear responses to dose rates and high reproducibility, making them reliable tools for accurate determination of ionizing photon beams across a range of applications. Full article
(This article belongs to the Special Issue Detectors & Sensors in Nuclear Physics and Nuclear Astrophysics)
Show Figures

Figure 1

Back to TopTop