Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = parasitic protozoa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2391 KiB  
Article
A Major Facilitator Superfamily Transporter Is Critical for the Metabolism and Biogenesis of the Apicoplast
by Yumeng Liang, Wei Qi, Jiawen Fu and Honglin Jia
Pathogens 2025, 14(8), 763; https://doi.org/10.3390/pathogens14080763 (registering DOI) - 1 Aug 2025
Viewed by 142
Abstract
The apicoplast is a highly specialized organelle in the biosynthesis of essential metabolites in most of the apicomplexan protozoa. This organelle is surrounded by four layers of membranes. However, the molecular mechanisms mediating transmembrane transport are not yet fully understood. In this study, [...] Read more.
The apicoplast is a highly specialized organelle in the biosynthesis of essential metabolites in most of the apicomplexan protozoa. This organelle is surrounded by four layers of membranes. However, the molecular mechanisms mediating transmembrane transport are not yet fully understood. In this study, we conducted a phenotypic analysis to investigate the role of a major facilitator superfamily transporter (TgApMFS1) in the survival of the parasite. The results indicated that TgApMFS1 is critical for the survival of Toxoplasma gondii in cell culture conditions. Further analysis indicated that these transporters are crucial for the biogenesis of organelles and the metabolic processes of parasite. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

14 pages, 2808 KiB  
Article
Polyparasitic Infections: Associated Factors and Effect on the Haemoglobin Level of Children Living in Lambaréné Remote and Surrounding Rural Areas from Gabon—A Cross-Sectional Study
by Paul Alvyn Nguema-Moure, Bayode Romeo Adegbite, Moustapha Nzamba Maloum, Jean-Claude Dejon-Agobé, Roméo-Aimé Laclong Lontchi, Yabo Josiane Honkpehedji, Danny-Carrel Manfoumbi Mabicka, Christian Chassem-Lapue, Pavel Warry Sole, Stephane Ogoula, Fabrice Beral M’Baidigium, Jenny Mouloungui-Mavoungou, Michael Ramharter, Peter Gottfried Kremsner and Ayôla Akim Adegnika
Trop. Med. Infect. Dis. 2025, 10(8), 218; https://doi.org/10.3390/tropicalmed10080218 - 31 Jul 2025
Viewed by 110
Abstract
Background: Polyparasitic infections remain widespread in endemic regions, yet its contributing factors and health impact are not well understood. This study aims to estimate the prevalence and associated factors and examines the effect of polyparasitic infection on haemoglobin levels among children. Methods: A [...] Read more.
Background: Polyparasitic infections remain widespread in endemic regions, yet its contributing factors and health impact are not well understood. This study aims to estimate the prevalence and associated factors and examines the effect of polyparasitic infection on haemoglobin levels among children. Methods: A cross-sectional study was conducted in Lambaréné, Gabon, among children aged 2–17 years from November 2019 to December 2020. Haemoglobin levels, environmental conditions, and sociodemographic data were collected. Stool, urine, and blood samples were analysed using light microscopy for parasite detection. Factors associated with polyparasitism were explored. Results: Out of 656 participants, 65.4% had at least one infection, with intestinal protozoa species (21.3%), Trichuris trichiura (33%), Ascaris lumbricoides (22%), Schistosoma haematobium (20%), and Plasmodium falciparum (10%) being the most common. Polyparasitic infection was identified in 26% of children, mostly as bi-infections (69.2%), and was negatively associated with haemoglobin levels (β = −0.06). Conclusions: These findings emphasise the burden of polyparasitic infections and adverse health effects in Lambaréné, Gabon. Full article
Show Figures

Figure 1

18 pages, 1549 KiB  
Article
Vector-Borne Agents in Species of Silky Anteater (Cyclopes Gray, 1821) from South America
by Pedro Henrique Cotrin Rodrigues, João Paulo Soares Alves, Flávia Regina Miranda, Cesar Rojano and Júlia Angélica Gonçalves Silveira
Pathogens 2025, 14(7), 718; https://doi.org/10.3390/pathogens14070718 - 19 Jul 2025
Viewed by 505
Abstract
Cyclopes, the smallest of all known anteaters, has an insectivorous diet and is arboreal, rarely descending to the ground. There are scarce reports on diseases and pathogenic agents affecting this taxon. Hemopathogens are pathogenic agents that inhabit the blood of various vertebrate [...] Read more.
Cyclopes, the smallest of all known anteaters, has an insectivorous diet and is arboreal, rarely descending to the ground. There are scarce reports on diseases and pathogenic agents affecting this taxon. Hemopathogens are pathogenic agents that inhabit the blood of various vertebrate species. Protozoa such as Trypanosoma spp., Leishmania spp., Hepatozoon spp., and members of the order Piroplasmida, as well as hemoplasmas and Rickettsial bacteria of the genera Anaplasma and Ehrlichia, are among the most important in this group. The transmission of these pathogens generally occurs through arthropod vectors, which act as intermediate hosts. In addition, infections caused by hemopathogens can have adverse effects on host health, contributing to population declines in susceptible species. This study investigated infection by protozoa and hemotropic bacteria in blood samples from free-ranging silky anteaters from Brazil, Peru, and Colombia using molecular detection methods. Sixteen samples were obtained during expeditions conducted in these countries. DNA was extracted from blood samples, and PCR assays were performed to detect parasites from the order Piroplasmida, Hepatozoon spp., trypanosomatid agents including Leishmania spp., Trypanosoma evansi, T. cruzi, and T. vivax, as well as hemotropic bacteria of the genera Ehrlichia, Anaplasma, and Mycoplasma sp. Nucleotide sequencing was performed on positive samples. Of the total samples analyzed, 62.5% (10/16) tested positive for hemotropic Mycoplasma, 50% (8/16) for T. evansi, and 6.2% (1/16) for T. cruzi. There is a significant gap in knowledge regarding the diversity of hemopathogens affecting the genus Cyclopes, and future studies are needed to understand how these infections may impact the health of individuals. Full article
Show Figures

Figure 1

14 pages, 4862 KiB  
Article
Gastrointestinal Parasitic Infections in Macaca fascicularis in Northeast Thailand: A One Health Perspective on Zoonotic Risks
by Teputid Kuasit, Manachai Yingklang, Penchom Janwan, Wanchai Maleewong, Weerachai Saijuntha, Siriporn Kuanamon and Tongjit Thanchomnang
Animals 2025, 15(14), 2112; https://doi.org/10.3390/ani15142112 - 17 Jul 2025
Viewed by 872
Abstract
Gastrointestinal (GI) parasitic infections in non-human primates are of growing concern due to their implications for both veterinary and public health. Long-tailed macaques (Macaca fascicularis), commonly found in peri-urban and temple environments in Southeast Asia, may act as reservoirs for zoonotic [...] Read more.
Gastrointestinal (GI) parasitic infections in non-human primates are of growing concern due to their implications for both veterinary and public health. Long-tailed macaques (Macaca fascicularis), commonly found in peri-urban and temple environments in Southeast Asia, may act as reservoirs for zoonotic parasites, posing risks to humans and domestic animals. This study investigated the prevalence and species diversity of GI parasites in free-ranging macaques from four provinces in Northeast Thailand (Loei, Khon Kaen, Bueng Kan, and Sisaket). A cross-sectional study was conducted between April and May 2025. A total of 445 fecal samples were examined using two parasitological techniques: agar plate culture (APC) and the formalin–ethyl acetate concentration technique (FECT). The overall prevalence of parasitic infection was 86.5%, with Strongyloides sp. (65.2%) as the most prevalent helminth and Balantioides coli-like (29.5%) and Entamoeba histolytica-like (28.8%) as the predominant protozoa. Other parasites identified included helminths (Trichuris sp., Ascaris sp.) and protozoa (Blastocystis sp., Iodamoeba bütschlii, Entamoeba coli, and Chilomastix mesnili). Mixed infections were frequently observed, with both helminths and protozoa co-occurring in 37.3% of cases. The high infection rates and parasite diversity reflect substantial environmental contamination and sustained transmission cycles. These findings underscore the importance of integrated surveillance in wildlife populations and the need for One Health-based approaches to minimize zoonotic transmission risks at the human–animal–environment interface. Full article
(This article belongs to the Section Wildlife)
Show Figures

Graphical abstract

25 pages, 1452 KiB  
Review
Essential Oils and Extracts from Epazote (Dysphania ambrosioides): A Phytochemical Treasure with Multiple Applications
by Arsenio Heredia Severino, Juana Fernández-López, Fernando Borrás-Rocher and Manuel Viuda-Martos
Plants 2025, 14(13), 1903; https://doi.org/10.3390/plants14131903 - 20 Jun 2025
Viewed by 568
Abstract
Dysphania ambrosioides, commonly known as epazote, is a medicinal plant of great relevance in traditional Latin American medicine. Its cultural roots and pharmacological properties have made it an object of study for phytochemical research. An artificial intelligence (AI) tool was utilized to [...] Read more.
Dysphania ambrosioides, commonly known as epazote, is a medicinal plant of great relevance in traditional Latin American medicine. Its cultural roots and pharmacological properties have made it an object of study for phytochemical research. An artificial intelligence (AI) tool was utilized to assist in reviewing scientific information regarding D. ambrosioides. An initial search was conducted in the Scopus database using the keywords epazote, D. ambrosioides, anti-helminthic, antioxidant, and antimicrobial, which yielded a total of 814 publications. To select the most relevant articles, this AI tool based on natural language processing (available online and free of charge) was applied, which analyzed the keywords that appeared in the titles and abstracts of the works and clustered them, leading to a reduction of 86.73% in the number of studies. D. ambrosioides stands out for its rich composition of bioactive compounds, which give the plant a wide range of therapeutic properties, including antiparasitic activity, through which it is effective against several parasites, such as helminths and protozoa, due to its schistosomicidal, nematocidal and antimalarial action. Additionally, it has shown antimicrobial, antioxidant, and anticancer properties as it contains compounds that help fight cell damage caused by free radicals. Epazote represents a rich source of compounds with a wide therapeutic range. However, much research is required to understand the mechanisms of action of these compounds and to evaluate their safety and efficacy in clinical trials. Full article
(This article belongs to the Special Issue Phytochemistry and Pharmacological Properties of Medicinal Plants)
Show Figures

Figure 1

19 pages, 9515 KiB  
Article
Survey of Piroplasmids in Wild Mammals, Unconventional Pets, and Ticks from Goiás State, Midwestern Brazil
by Raphaela Bueno Mendes Bittencourt, Ana Cláudia Calchi, Lucianne Cardoso Neves, Nicolas Jalowitzki de Lima, Gabriel Cândido dos Santos, Ennya Rafaella Neves Cardoso, Warley Vieira de Freitas Paula, Luciana Batalha de Miranda Araújo, Jessica Rocha Gonçalves, Elisângela de Albuquerque Sobreira, Luiz Alfredo Martins Lopes Baptista, Hermes Ribeiro Luz, Marcos Rogério André, Filipe Dantas-Torres and Felipe da Silva Krawczak
Pathogens 2025, 14(6), 585; https://doi.org/10.3390/pathogens14060585 - 12 Jun 2025
Viewed by 1077
Abstract
Tick-borne piroplasmids are apicomplexan protozoa that infect a wide range of vertebrate hosts, with significant implications for animal and human health. This study investigated the occurrence and genetic diversity of piroplasmids in wild mammals, unconventional pets, and associated ticks in Goiás state, midwestern [...] Read more.
Tick-borne piroplasmids are apicomplexan protozoa that infect a wide range of vertebrate hosts, with significant implications for animal and human health. This study investigated the occurrence and genetic diversity of piroplasmids in wild mammals, unconventional pets, and associated ticks in Goiás state, midwestern Brazil. Between April 2023 and January 2024, 105 blood samples, 22 tissue samples, and 300 ticks were collected from 21 mammalian species housed in wildlife screening centers, zoos, and veterinary clinics. Molecular screening targeting the 18S rRNA gene of piroplasmids detected a 25.7% (27/105) overall positivity, with gray brockets (Subulo gouazoubira) and South American tapirs (Tapirus terrestris) showing the highest infection rates. Three tick samples tested positive, including two Amblyomma sculptum nymphs and a male of Amblyomma dubitatum collected from a tapir and capybara (Hydrochoerus hydrochaeris). Cytauxzoon brasiliensis was reported, for the first time, in cougars (Puma concolor) from Goiás state, midwestern Brazil, indicating the role of this feline as a host of this parasite. Babesia goianiaensis was confirmed in a capybara, and Theileria terrestris in tapirs. Phylogenetic analyses clustered gray brockets-associated Theileria sequences with Theileria sp. previously detected in Neotropical deer from Brazil and Theileria cervi. While the phylogenetic analysis of amino acid sequences of the cytochrome c oxidase subunit III separated Theileria genotypes detected in S. gouazoubira from T. cervi, hsp70-based phylogenetic inferences clustered the genotypes detected in Tapirus terrestris with Theileria terrestris, suggesting host-specific evolutionary lineages. These findings contribute to the understanding of Piroplasmida diversity and circulation in South American wild mammals, emphasizing the need for enhanced molecular surveillance to elucidate transmission dynamics, assess potential health risks, and contribute to the establishment of wildlife conservation and One Health strategies. Full article
Show Figures

Figure 1

5 pages, 183 KiB  
Editorial
Parasitic Infection and Host Immunity, 2nd Edition
by Celio Geraldo Freire-de-Lima
Microorganisms 2025, 13(6), 1258; https://doi.org/10.3390/microorganisms13061258 - 29 May 2025
Viewed by 516
Abstract
Parasitic infections arise when organisms such as protozoa, bacteria, fungi, or helminths invade a host to exploit its biological resources for survival and replication [...] Full article
(This article belongs to the Special Issue Parasitic Infection and Host Immunity, 2nd Edition)
33 pages, 1014 KiB  
Systematic Review
The Global Prevalence of and Factors Associated with Parasitic Coinfection in People Living with Viruses: A Systematic Review and Meta-Analysis
by Yan Ge, Huaman Liu, Ningjun Ren, Abdul Qadeer, Ian Kim B. Tabios, Ian Kendrich C. Fontanilla, Lydia R. Leonardo, Banchob Sripa and Guofeng Cheng
Pathogens 2025, 14(6), 534; https://doi.org/10.3390/pathogens14060534 - 27 May 2025
Viewed by 1789
Abstract
Coinfection with parasites and viruses can exacerbate disease transmission, outcomes and therapy. This study searched the Web of Science, PubMed, Scopus and JSTOR databases for publications on the prevalence of parasitic coinfection in people living with viruses from 1 January 2005 to 30 [...] Read more.
Coinfection with parasites and viruses can exacerbate disease transmission, outcomes and therapy. This study searched the Web of Science, PubMed, Scopus and JSTOR databases for publications on the prevalence of parasitic coinfection in people living with viruses from 1 January 2005 to 30 April 2022, and 356 studies were included and systematically reviewed. A meta-analysis was performed to assess the global prevalence of and factors potentially associated with parasitic infection (helminths and protozoa) in virus-infected people, and the infection burden was estimated. A variety of parasites (29 families, 39 genera, and 63 species) and viruses (8 kinds) were identified. The prevalence of parasitic coinfection in (all) virus-infected people was estimated to be 21.34% (95% CI 17.58–25.10, 5593 of 29,190 participants) and 34.13% (95% CI 31.32–36.94, 21,243/76,072 participants) for helminths and protozoa, respectively. Specially, in human immunodeficiency virus (HIV)-infected people, the global prevalence was 19.96% (95% CI 16.18–23.74) for helminths and 34.18% (95% CI 31.33–37.03) for protozoa, respectively. The global prevalence of protozoa was 41.79% (95% CI 15.88–67.69) in hepatitis B virus (HBV)-infected people and 17.75% (95% CI 3.54–31.95) in DENV-infected people, respectively. The global burden of parasitic infections in HIV-infected people was 7,664,640 for helminths and 13,125,120 for protozoa, respectively, and that in HBV- and dengue virus (DENV)-infected people was 137,019,428 and 629,952, respectively. The prevalence of parasitic coinfection at the family, genus, and species levels in virus- or HIV-infected people were comprehensively estimated and further analyzed by subgroups. Among the most commonly identified parasites, the five helminth genera with the highest prevalence in HIV-infected people were Schistosoma (12.46%, 95% CI 5.82–19.10), Ascaris (7.82%, 95% CI 6.15–9.49), Strongyloides (5.43%, 95% CI 4.11–6.74), Trichuris (4·82%, 95% CI 2.48–7.17) and Ancylostoma (2.79%, 95% CI 1.32–4.27), whereas the top five protozoan genera were Toxoplasma (48.85%, 95% CI 42.01–55.69), Plasmodium (34.96%, 95% CI 28.11–41.82), Cryptosporidium (14.27%, 95% CI 11.49–17.06), Entamoeba (12.33%, 95% CI 10.09–14.57) and Blastocystis (10.61%, 95% CI 6.26–14.97). The prevalence of parasitic coinfection in virus-infected people was associated with income level. The findings provide valuable global epidemiological information for informing normative guidance, improving surveillance, and developing public healthcare strategies. Full article
Show Figures

Figure 1

24 pages, 19416 KiB  
Article
Metagenomic Analysis Reveals the Characteristics of Cecal Microbiota in Chickens with Different Levels of Resistance During Recovery from Eimeria tenella Infection
by Jianqiang Tang, Liyue Dong, Meihui Tang, Areej Arif, Honghong Zhang, Genxi Zhang, Tao Zhang, Kaizhou Xie, Shijie Su, Zhenhua Zhao and Guojun Dai
Animals 2025, 15(10), 1500; https://doi.org/10.3390/ani15101500 - 21 May 2025
Viewed by 570
Abstract
Coccidiosis, caused by Eimeria protozoa, is a severe intestinal parasitic disease that results in substantial economic losses to the global poultry industry annually. The gut microbiota plays a crucial role in host health, metabolism, immune function, and nutrient absorption in chickens. Recent studies [...] Read more.
Coccidiosis, caused by Eimeria protozoa, is a severe intestinal parasitic disease that results in substantial economic losses to the global poultry industry annually. The gut microbiota plays a crucial role in host health, metabolism, immune function, and nutrient absorption in chickens. Recent studies have focused on the effects of Eimeria tenella’s (E. tenella) acute infection period on host health. However, recovery conditions, cecal microbiota composition, and functional differences in the ceca of chickens with varying resistance to E. tenella remain poorly understood during the recovery period after infection. This study aimed to compare growth performance, cecal histopathology, and the cecal microbiota characteristics in control (R_JC), resistant (R_JR), and susceptible (R_JS) chickens during recovery, using metagenomic sequencing. The results revealed significant differences in both cecal tissue structure and growth performance between the different groups during recovery. Although no significant differences were observed in microbial alpha diversity among the groups, sequencing analysis highlighted notable changes in microbial composition and abundance. Bacteroidetes, Firmicutes, and Proteobacteria were the predominant phyla in chicken cecal contents; however, Firmicutes abundance was lower in the R_JS group than in the R_JC and R_JR groups. Further analysis, combining linear discriminant analysis effect size (LEfSe) and differential heatmap analysis, identified Bacteroides_fluxus, Ruminococcus_flavefaciens, and Bacteroides_sp_CACC_737 as dominant microorganisms in the R_JR group (p < 0.05) compared to both the R_JC and R_JS groups. In contrast, Sutterella_sp_AM11-39, Bacteroides_sp_43_108, Mycobacterium, Mycoplasma_arginini, and Chlamydia dominated in the R_JS group, while Butyricimonas, Butyricimonas_sp_Marseille-P3923, and Flavonifractor_plautii were significantly reduced in the R_JS group (p < 0.05). Additionally, beneficial cecal microorganisms such as Flavonifractor_sp__An10, Pseudoflavonifractor, and Faecalicoccus were significantly decreased in both the R_JR and R_JS groups (p < 0.05) compared to the R_JC group. Predictive functional analysis using the KEGG and CAZy databases further indicated that the cecal microbiota in the R_JR group exhibited enhanced metabolism-related pathways, whereas these pathways were significantly diminished in the R_JS group, potentially influencing the recovery process from coccidial infection. These findings provide valuable insights into the cecal microbiota’s role during recovery from E. tenella infection and deepen our understanding of the impact of coccidial infections on host health. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

22 pages, 2214 KiB  
Review
Extracellular Vesicles Derived from Trypanosomatids: The Key to Decoding Host–Parasite Communication
by Armanda Rodrigues, Juliana Inês Weber, João Durães-Oliveira, Cláudia Moreno, Micheli Ferla, Maria de Aires Pereira, Ana Valério-Bolas, Bruna Eugênia de Freitas, Telmo Nunes, Wilson T. Antunes, Graça Alexandre-Pires, Isabel Pereira da Fonseca and Gabriela M. Santos-Gomes
Int. J. Mol. Sci. 2025, 26(9), 4302; https://doi.org/10.3390/ijms26094302 - 1 May 2025
Viewed by 809
Abstract
Trypanosomatids constitute a family of parasitic protozoa that cause significant human and veterinary diseases that are classified as neglected zoonotic diseases (NZDs). In a rapidly evolving world, these diseases have the potential to become a world health problem no longer solely associated with [...] Read more.
Trypanosomatids constitute a family of parasitic protozoa that cause significant human and veterinary diseases that are classified as neglected zoonotic diseases (NZDs). In a rapidly evolving world, these diseases have the potential to become a world health problem no longer solely associated with low-income countries. Therefore, the development of new strategies to control and restrain the dissemination of trypanosomatids is imperative. Extracellular vesicles (EVs) are a heterogeneous group of membrane-enclosed vesicles released by prokaryotic and eukaryotic cells. They can be found in diverse body fluids that carry biologically active molecules, including proteins, nucleic acids, lipids, and carbohydrates. EVs participate in cell-to-cell communication by delivering their cargo content to recipient cells. Thus, EVs play a role in regulating normal physiological processes, including immune surveillance and tissue repair, as well as being involved in pathological conditions, like cancer. In recent years, EVs have attracted significant attention from the scientific community, mainly due to their immune regulatory properties. Therefore, this review examines the role played by trypanosomatid-derived EVs in leishmaniases and trypanosomiasis, highlighting their biological role in host–parasite communication and exploring their potential future applications in controlling NZDs, especially those caused by trypanosomatids. Full article
Show Figures

Graphical abstract

18 pages, 5245 KiB  
Article
Detectability and Persistence of Cyclospora cayetanensis Oocysts in Artificially Contaminated Soil and Fresh Herbs Grown Under Controlled Climatic Conditions
by Ellie L. Rogers, Joseph Arida, John Grocholl, Joyce Njoroge and Sonia Almeria
Pathogens 2025, 14(5), 430; https://doi.org/10.3390/pathogens14050430 - 28 Apr 2025
Viewed by 569
Abstract
Cyclospora oocysts are thought to be highly resistant in the environment but the climatic factors which determine the presence/persistence of Cyclospora oocysts are currently unknown. The main objective of this study was to determine the effects of temperature, water content, and soil texture [...] Read more.
Cyclospora oocysts are thought to be highly resistant in the environment but the climatic factors which determine the presence/persistence of Cyclospora oocysts are currently unknown. The main objective of this study was to determine the effects of temperature, water content, and soil texture on C. cayetanensis detection/persistence in artificially contaminated soil and herbs grown under controlled environmental conditions. Soil and leaves of three potted herbs (cilantro, parsley, and basil) grown in growth chambers and inoculated with C. cayetanensis oocysts were collected at 7, 14, 21, 28–31, 35–38, 42–45, 49–52, and 56 days post inoculation (dpi). Under wet watering conditions, independent of temperature, positive C. cayetanensis detection was observed at each sampling collection in both soil and herb leaves. Additionally, all three herbs were found to be positive for the parasite throughout the study duration in arid watering conditions. Conversely, short-lived persistence in soil was observed under arid conditions independent of temperature in Sandy Clay Loam soil (up to 14 dpi) and in Silt Loam soil (up to 21 dpi). Our results on the effect of desiccation on the presence and persistence of oocysts may provide useful insights for the proper cleaning and sanitizing of utensils or food contact surfaces to help control the persistence of the parasite. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

6 pages, 244 KiB  
Article
Prevalence of Potentially Zoonotic Endoparasites in Domestic Dog Puppies
by Gisele Moraes dos Santos Reginaldo, Giovanni Widmer, Sandra Valéria Inácio, Jancarlo Ferreira Gomes, Walter Bertequini Nagata, Gabriela Pinheiro Tirado Moreno, João Alfredo Biagi Camargo Neto, Wagner Luis Ferreira, Felipe Augusto Soares and Katia Denise Saraiva Bresciani
Vet. Sci. 2025, 12(4), 332; https://doi.org/10.3390/vetsci12040332 - 3 Apr 2025
Viewed by 648
Abstract
Despite the existence of therapeutic and prophylactic measures, gastrointestinal parasites are common in pets. Due to the zoonotic potential of some species, parasitic protozoa and helminths are of great importance to public health. In this study, we investigated the occurrence of the main [...] Read more.
Despite the existence of therapeutic and prophylactic measures, gastrointestinal parasites are common in pets. Due to the zoonotic potential of some species, parasitic protozoa and helminths are of great importance to public health. In this study, we investigated the occurrence of the main gastrointestinal parasites in domestic dog puppies in the city of Araçatuba, São Paulo, Brazil. One hundred fecal samples were collected from dogs up to six months of age. Parasites were diagnosed using Willis’, Faust’s and malachite green coproparasitological techniques. Parasite prevalence as determined by Willis and/or Faust diagnostic techniques was as follows: Toxocara spp. 34%, Cystoisospora spp. 28%, Ancylostomatidae 22% and Giardia spp. 8%. These prevalence rates were calculated by considering an animal to be positive if Willis’ or Faust’s or both tests returned a positive result. Cryptosporidium diagnosis with malachite green was negative for all samples. Infection with Toxocara spp., the most prevalent pathogen in this survey, was not limited to dogs with abnormal fecal consistency. The occurrence of asymptomatic parasitized dogs increases the risk of zoonotic transmission. Full article
15 pages, 969 KiB  
Article
Vector-Borne Bacteria Detected in Ticks, Mites and Flies Parasitizing Bats in the State of Rondônia, Brazilian Amazon
by Leormando Fortunato Dornelas Júnior, Irineu Norberto Cunha, Felipe Rodrigues Jorge, Gustavo Graciolli, Ricardo Bassini-Silva, Fernando de Castro Jacinavicius, Maria Carolina A. Serpa, Marcelo Bahia Labruna, Felipe Arley Costa Pessoa and Luís Marcelo Aranha Camargo
Pathogens 2025, 14(4), 338; https://doi.org/10.3390/pathogens14040338 - 31 Mar 2025
Viewed by 763
Abstract
Bats (Chiroptera) are among the most diverse and geographically dispersed mammals. They are of great importance to the ecosystem, as pollinators, seed dispersers and pest controllers, in addition to being hosts to several parasitic arthropods, including ticks, mites, lice, fleas and flies. Their [...] Read more.
Bats (Chiroptera) are among the most diverse and geographically dispersed mammals. They are of great importance to the ecosystem, as pollinators, seed dispersers and pest controllers, in addition to being hosts to several parasitic arthropods, including ticks, mites, lice, fleas and flies. Their diet includes the tissue and blood or other body fluids of bats. Bats are reservoirs of several disease-causing agents, many of them pathogenic to humans, such as bacteria, as well as protozoa, viruses and fungi. This study was conducted in Monte Negro, Rondônia, Brazil and the occurrence of parasitic arthropods in bats was evaluated, as well as a screening of bacteria that these ectoparasites can carry. Through a total of 69 nocturnal captures, 217 chiropterans were sampled, representing 23 species and six families. A total of 592 specimens of parasitic arthropods (ticks, mites and flies) were collected from these bats (9% dipterans, 59% ticks and 32% mites). Bartonella spp. were found in two species of bat flies (Trichobius joblingi and Strebla mirabilis) in peri-urban and forest areas with an infection rate of 62% and 38%, respectively. We report for the first time in Rondônia the argasid tick Ornithodoros hasei and its infection by a spotted fever group bacterium ‘Candidatus Rickettsia wissemanii’ in a peri-urban area. Full article
(This article belongs to the Special Issue Zoonotic Pathogens in the Tropics: From the Forest to the Cities)
Show Figures

Figure 1

13 pages, 3458 KiB  
Article
Antiprotozoal Activity and Selectivity Index of Organic Salts of Albendazole and Mebendazole
by Miriam Guadalupe Barón-Pichardo, Janeth Gómez-García, David Durán-Martínez, Oscar Torres-Angeles, Jesús Rivera-Islas and Blanca Estela Duque-Montaño
Microbiol. Res. 2025, 16(4), 77; https://doi.org/10.3390/microbiolres16040077 - 27 Mar 2025
Viewed by 688
Abstract
Infections from the protozoa Entamoeba histolytica (E. histolytica), Giardia lamblia (G. lamblia), and Trichomonas vaginalis (T. vaginalis) pose a public health issue, with albendazole and mebendazole serving as the second-line medications for treating these parasitic infections. However, [...] Read more.
Infections from the protozoa Entamoeba histolytica (E. histolytica), Giardia lamblia (G. lamblia), and Trichomonas vaginalis (T. vaginalis) pose a public health issue, with albendazole and mebendazole serving as the second-line medications for treating these parasitic infections. However, the low aqueous solubility of these compounds has led to the exploration of new strategies to enhance their solubility, with the formation of salts being a commonly employed strategy. The sulfonates A1, A2, and A3 of albendazole, along with M1, M2, and M3 of mebendazole, were synthesized. The antiparasitic activity in vitro was assessed against the trophozoites of E. histolytica, G. lamblia, and T. vaginalis. The salts A2, A3, M2, and M3 demonstrated a greater antiparasitic effect (IC50 37.95–125.53 µM) compared to the positive controls albendazole and mebendazole. The salts A1, A3, M2, and M3 do not exhibit cytotoxic effects at concentrations of 500 µM on the Vero cell line. Taken together, these findings indicate that the formation of these new solid saline phases enhances the antiparasitic effects in vitro, which is crucial in the current search for improved, safe, and effective antiparasitic agents. Full article
Show Figures

Figure 1

12 pages, 2196 KiB  
Article
Lankesterella and Isospora Coccidians: Differences in Host Specificity of Blood Parasites in Passerines
by Ashwin Kumar Saravana Bhavan Venkatachalam, Jana Brzoňová and Milena Svobodová
Microorganisms 2025, 13(4), 743; https://doi.org/10.3390/microorganisms13040743 - 26 Mar 2025
Viewed by 434
Abstract
Parasitic protozoa such as Lankesterella and Isospora are common in avian hosts, particularly in passerines. Despite their high prevalence, the diversity of these parasites within avian populations remains poorly understood. This study aimed to assess the diversity of Lankesterella and Isospora in passerine [...] Read more.
Parasitic protozoa such as Lankesterella and Isospora are common in avian hosts, particularly in passerines. Despite their high prevalence, the diversity of these parasites within avian populations remains poorly understood. This study aimed to assess the diversity of Lankesterella and Isospora in passerine birds, using the SSU rRNA gene to characterize and compare the genetic variation in both parasites across multiple avian host species. For Isospora, the extraintestinal blood stages and oocysts from feces were compared. Minimum spanning networks were constructed to visualize haplogroups in relation to host specificity and to reveal the identity of various developmental stages. A total of 122 sequences from eight passerine species were used to generate a haplotype network for Lankesterella, and a total of 103 sequences (64 from blood and 39 from feces) was used for Isospora. We detected a total of 36 haplotypes for Lankesterella and 33 haplotypes for Isospora. In Lankesterella, we confirmed that the sedge warbler has its own specific lineages, whereas other warbler species share lineages belonging to three haplogroups; blue, great, marsh and willow tits have their own unique groups of lineages. Isospora is less host-specific than Lankesterella in avian hosts; nevertheless, Isospora sequences from blood and feces were identical in their respective hosts. Our findings provide insights into the diversity and host specificity of blood coccidians; moreover, we molecularly characterized the developmental stages of Isospora. Full article
(This article belongs to the Collection Feature Papers in Public Health Microbiology)
Show Figures

Figure 1

Back to TopTop