Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = parabolic pulses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4575 KB  
Article
Analysis of Echo Characteristics of Pulsed Laser Short-Range Detection Based on Light Cone Beam Expansion Mechanism
by Changkun Ke, Lin Gan, He Zhang and Miaomiao Chen
Appl. Sci. 2026, 16(1), 309; https://doi.org/10.3390/app16010309 - 28 Dec 2025
Viewed by 219
Abstract
This study aims to fill the existing gap in laser detection research, particularly regarding how the waveform of outgoing laser pulses affects detection performance. Based on the mechanism of light cone beam expansion, this study emits three different laser pulse signals to detect [...] Read more.
This study aims to fill the existing gap in laser detection research, particularly regarding how the waveform of outgoing laser pulses affects detection performance. Based on the mechanism of light cone beam expansion, this study emits three different laser pulse signals to detect short-range targets. A theoretical model for short-range ranging of these lasers is established, and the effects of emission power, divergence angle, and equivalent root mean square noise voltage on circumferential detection accuracy are simulated and experimentally measured. As emission power decreases, both echo amplitude and detection accuracy decline for all three pulsed lasers. Additionally, except for the inverted parabolic function, both echo amplitude and detection accuracy decrease with reduced divergence angle. An increase in equivalent root mean square noise voltage broadens the half-width of the probability density distribution for pulsed laser detection. The mean central position deviation between the ideal and measured detection probability density distributions of the heavy-tailed function laser pulses shows the best performance and the highest fidelity, which are +0.01 m, +0.05 m, and +0.02 m, respectively, which is of great significance for the development of laser detection technology. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

20 pages, 8356 KB  
Article
A Fundamental Study on a Porous Carbon Nanotubes Macroelectrode in Weakly Supported Electrolyte: A Novel Criterion for Distinguishing Diffusion Domains
by Josipa Dugeč, Ivana Škugor Rončević, Nives Vladislavić and Marijo Buzuk
Int. J. Mol. Sci. 2025, 26(17), 8262; https://doi.org/10.3390/ijms26178262 - 26 Aug 2025
Viewed by 806
Abstract
A new approach is presented to elucidate the phenomena that occur within a porous single-walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE) and that influence the electrochemical behavior of the modified electrode. By employing cyclic voltammetry, reverse pulse voltammetry, and double potential [...] Read more.
A new approach is presented to elucidate the phenomena that occur within a porous single-walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE) and that influence the electrochemical behavior of the modified electrode. By employing cyclic voltammetry, reverse pulse voltammetry, and double potential step chronoamperometry, insights into the structural changes in the electrochemical double layer and the mass transport regimes are gained. An analysis of the reduction of the electrochemically generated [Fe(CN)6]3− shows that the SWCNTs layer can be considered inactive. However, their pronounced influence on the electrochemical signal arises from their capacitive behavior. Furthermore, a novel criterion for distinguishing the mass transport domains is proposed, which allows the estimation of the points at which a change in the mass transport regime occurs. The results also show the role of the porous SWCNTs layer in preventing the expansion of the double layer as well as in the process of ion condensation in the Gouy-Chapman layer. Finally, the counterintuitive and unexpected voltametric behavior, such as the independence of the current peak heights from the ionic strength of the support, the parabolic dependence of the peak potential on the scan rates, and the occurrence of steady-state currents, are discussed. Full article
(This article belongs to the Special Issue Recent Advances in Electrochemical-Related Materials)
Show Figures

Figure 1

10 pages, 875 KB  
Article
Optimising (Al,Ga) (As,Bi) Quantum Well Laser Structures for Reflectance Mode Pulse Oximetry
by Aivaras Špokas, Andrea Zelioli, Andrius Bičiūnas, Bronislovas Čechavičius, Justinas Glemža, Sandra Pralgauskaitė, Mindaugas Kamarauskas, Virginijus Bukauskas, Janis Spigulis, Yi-Jen Chiu, Jonas Matukas and Renata Butkutė
Micromachines 2025, 16(5), 506; https://doi.org/10.3390/mi16050506 - 26 Apr 2025
Viewed by 1016
Abstract
We explore quantum well laser diodes for applications in pulse oximetry based on two material systems, namely, classical AlGaAs and a rather exotic GaAsBi, with lasing at around 800 nm and 1100 nm, respectively. These spectral regions and material families were selected due [...] Read more.
We explore quantum well laser diodes for applications in pulse oximetry based on two material systems, namely, classical AlGaAs and a rather exotic GaAsBi, with lasing at around 800 nm and 1100 nm, respectively. These spectral regions and material families were selected due to their closely matched effective penetration depths into soft tissue. An improved design of the band structure of device active areas was tested on both material systems, yielding enhancement of the two main parameters, namely, output power and threshold current. A maximum emission power of the AlGaAs laser diode was registered at 4.9 mW (I = 60 mA, λ = 801 nm). For the GaAsBi-based devices, the target emission of 1106 nm was measured in pulsed mode with a peak output power of 9.4 mW (I = 3 A). The most optimized structure was based on three GaAsBi quantum wells surrounded by parabolically graded AlGaAs barriers. This structure was capable of 130 mW peak power (I = 2 A, λ = 1025 nm) along with a more than tenfold decrease in threshold current to 250 mA compared to a classical rectangular quantum well active region. Full article
Show Figures

Figure 1

46 pages, 56644 KB  
Article
A 1.8 m Class Pathfinder Raman LIDAR for the Northern Site of the Cherenkov Telescope Array Observatory—Technical Design
by Otger Ballester, Oscar Blanch, Joan Boix, Paolo G. Calisse, Anna Campoy-Ordaz, Sidika Merve Çolak, Vania Da Deppo, Michele Doro, Lluís Font, Eudald Font-Pladevall, Rafael Garcia, Markus Gaug, Roger Grau, Darko Kolar, Alicia López-Oramas, Camilla Maggio, Manel Martinez, Òscar Martínez, Victor Riu-Molinero, David Roman, Samo Stanič, Júlia Tartera-Barberà, Santiago Ubach, Marko Zavrtanik and Miha Živecadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(6), 1074; https://doi.org/10.3390/rs17061074 - 18 Mar 2025
Cited by 1 | Viewed by 2253
Abstract
This paper presents the technical design of the pathfinder Barcelona Raman LIDAR (pBRL) for the northern site of the Cherenkov Telescope Array Observatory (CTAO-N) located at the Roque de los Muchachos Observatory (ORM). The pBRL is developed for continuous atmospheric characterization, essential for [...] Read more.
This paper presents the technical design of the pathfinder Barcelona Raman LIDAR (pBRL) for the northern site of the Cherenkov Telescope Array Observatory (CTAO-N) located at the Roque de los Muchachos Observatory (ORM). The pBRL is developed for continuous atmospheric characterization, essential for correcting high-energy gamma-ray observations captured by Imaging Atmospheric Cherenkov Telescopes (IACTs). The LIDAR consists of a steerable telescope with a 1.8 m parabolic mirror and a pulsed Nd:YAG laser with frequency doubling and tripling. It emits at wavelengths of 355 nm and 532 nm to measure aerosol scattering and extinction through two elastic and Raman channels. Built upon a former Cherenkov Light Ultraviolet Experiment (CLUE) telescope, the pBRL’s design includes a Newtonian mirror configuration, a coaxial laser beam, a near-range system, a liquid light guide and a custom-made polychromator. During a one-year test at the ORM, the stability of the LIDAR and semi-remote-controlled operations were tested. This pathfinder leads the way to designing a final version of a CTAO Raman LIDAR which will provide real-time atmospheric monitoring and, as such, ensure the necessary accuracy of scientific data collected by the CTAO-N telescope array. Full article
(This article belongs to the Special Issue Remote Sensing: 15th Anniversary)
Show Figures

Figure 1

22 pages, 4284 KB  
Article
Dynamics of Photoinduced Charge Carrier and Photothermal Effect in Pulse-Illuminated Narrow Gap and Moderate Doped Semiconductors
by Slobodanka Galovic, Katarina Djordjevic, Milica Dragas, Dejan Milicevic and Edin Suljovrujic
Mathematics 2025, 13(2), 258; https://doi.org/10.3390/math13020258 - 14 Jan 2025
Cited by 3 | Viewed by 1598
Abstract
When a sample of semiconducting material is illuminated by monochromatic light, in which the photon energy is higher than the energy gap of the semiconductor, part of the absorbed electromagnetic energy is spent on the generation of pairs of quasi-free charge carriers that [...] Read more.
When a sample of semiconducting material is illuminated by monochromatic light, in which the photon energy is higher than the energy gap of the semiconductor, part of the absorbed electromagnetic energy is spent on the generation of pairs of quasi-free charge carriers that are bound by Coulomb attraction. Photo-generated pairs diffuse through the material as a whole according to the density gradients established, carrying part of the excitation energy and charge through the semiconducting sample. This energy is indirectly transformed into heat, where the excess negatively charged electron recombines with a positively charged hole and causes additional local heating of the lattice. The dynamic of the photoexcited charge carrier is described by a non-linear partial differential equation of ambipolar diffusion. In moderate doped semiconductors with a low-level injection of charge carriers, ambipolar transport can be reduced to the linear parabolic partial differential equation for the transport of minority carriers. In this paper, we calculated the spectral function of the photoinduced charge carrier distribution based on an approximation of low-level injection. Using the calculated distribution and inverse Laplace transform, the dynamics of recombination photoinduced heat sources at the surfaces of semiconducting samples were studied for pulse optical excitations of very short and very long durations. It was shown that the photoexcited charge carriers affect semiconductor heating depending on the pulse duration, velocity of surface recombination, lifetime of charge carriers, and their diffusion coefficient. Full article
(This article belongs to the Special Issue Transport Phenomena Equations: Modelling and Applications)
Show Figures

Figure 1

15 pages, 4245 KB  
Article
Towards Implementation of 3D Amplitude Shaping at 515 nm and First Pulseshaping Experiments at PITZ
by Andreas Hoffmann, James Good, Matthias Gross, Mikhail Krasilnikov and Frank Stephan
Photonics 2024, 11(1), 6; https://doi.org/10.3390/photonics11010006 - 21 Dec 2023
Cited by 4 | Viewed by 1884
Abstract
A key issue of X-ray free-electron lasers is the quality of the photoelectron beams generated from a photocathode by laser pulses in the high-gradient RF gun. Controlling the shape of these laser pulses can strongly reduce the transverse emittance of the generated electron [...] Read more.
A key issue of X-ray free-electron lasers is the quality of the photoelectron beams generated from a photocathode by laser pulses in the high-gradient RF gun. Controlling the shape of these laser pulses can strongly reduce the transverse emittance of the generated electron bunch. For this purpose, a laser pulseshaper at 515 nm is presented that can be used directly with alkali antimonide photocathodes for photoemission. The first results regarding generation and measurement of flattop and parabolic pulses as well as introduction of modulations for THz generation are presented and show the potential for emittance optimization with 3D ellipsoidal pulses with the proposed pulseshaper. The experiments are carried out for Cs2Te photocathodes, which require second harmonic generation of the shaped pulses and thus allow investigation of pulseshape preservation in nonlinear frequency conversion processes. Full article
(This article belongs to the Special Issue Ultrashort Laser Pulses)
Show Figures

Figure 1

10 pages, 863 KB  
Communication
A Parabolic Waveform Generator Based on the Chirp Characteristics of a Directly Modulated Laser
by Na Chen, Yang Jiang, Xiaohong Lan, Yuejiao Zi, Jing Xu, Jiahui Li, Qiong Zhang and Jinjian Feng
Photonics 2024, 11(1), 4; https://doi.org/10.3390/photonics11010004 - 21 Dec 2023
Cited by 1 | Viewed by 2280
Abstract
Due to carrier dynamics, the modulated light field from a directly modulated laser (DML) has an intensity envelope with a certain frequency chirp. When the chirp is linearly mapped into intensity by a frequency discriminator such as an optical filter with a linear [...] Read more.
Due to carrier dynamics, the modulated light field from a directly modulated laser (DML) has an intensity envelope with a certain frequency chirp. When the chirp is linearly mapped into intensity by a frequency discriminator such as an optical filter with a linear edge, the optical field presents a new signal determined by the multiplication operation between the envelope function and the chirp function. Under a triangular drive signal, this process can contribute dark, bright and frequency-doubled bright parabolic waveforms by properly adjusting the filter window. This method is verified by both a theoretical analysis and experimental demonstrations. It not only provides a low-cost and simple scheme to generate parabola signals, but also a new method for arbitrary waveform generation. Full article
Show Figures

Figure 1

25 pages, 6253 KB  
Article
Using Schlieren Imaging and a Radar Acoustic Sounding System for the Detection of Close-in Air Turbulence
by Samantha Gordon and Graham Brooker
Sensors 2023, 23(19), 8255; https://doi.org/10.3390/s23198255 - 5 Oct 2023
Cited by 2 | Viewed by 3585
Abstract
This paper presents a novel sensor for the detection and characterization of regions of air turbulence. As part of the ground truth process, it consists of a combined Schlieren imager and a Radar Acoustic Sounding System (RASS) to produce dual-modality “images” of air [...] Read more.
This paper presents a novel sensor for the detection and characterization of regions of air turbulence. As part of the ground truth process, it consists of a combined Schlieren imager and a Radar Acoustic Sounding System (RASS) to produce dual-modality “images” of air movement within the measurement volume. The ultrasound-modulated Schlieren imager consists of a strobed point light source, parabolic mirror, light block, and camera, which are controlled by two laptops. It provides a fine-scale projection of the acoustic pulse-modulated air turbulence through the measurement volume. The narrow beam 40 kHz/17 GHz RASS produces spectra based on Bragg-enhanced Doppler radar reflections from the acoustic pulse as it travels. Tests using artificially generated air vortices showed some disruption of the Schlieren image and of the RASS spectrogram. This should allow the higher-resolution Schlieren images to identify the turbulence mechanisms that are disrupting the RASS spectra. The objective of this combined sensor is to have the Schlieren component inform the interpretation of RASS spectra to allow the latter to be used as a stand-alone sensor on a UAV. Full article
Show Figures

Figure 1

29 pages, 15150 KB  
Article
Real-Time Embedded System-Based Approach for Sensing Power Consumption on Motion Profiles
by Luis F. Olmedo-García, José R. García-Martínez, Edson E. Cruz-Miguel, Omar A. Barra-Vázquez, Mario Gónzalez-Lee and Trinidad Martínez-Sánchez
Electronics 2023, 12(18), 3853; https://doi.org/10.3390/electronics12183853 - 12 Sep 2023
Cited by 5 | Viewed by 2435
Abstract
This paper discusses the energy consumption of three parabolic, trapezoidal, and S-curve profiles when implemented using an embedded system. In addition, it presents an alternative methodology for implementing motion controllers using an Advanced RISC Machine (ARM) microcontroller, which computes the trajectory and performs [...] Read more.
This paper discusses the energy consumption of three parabolic, trapezoidal, and S-curve profiles when implemented using an embedded system. In addition, it presents an alternative methodology for implementing motion controllers using an Advanced RISC Machine (ARM) microcontroller, which computes the trajectory and performs the control action in hard real-time. We experimented using a linear plant composed of a direct current (DC) motor coupled to an endless screw where a carriage was mounted. It can move mechanically along a rail at a distance of 1.16 m. A 4096 pulses per revolution (PPR) encoder was connected to the motor to calculate position and angular velocity. A Hall-effect-based current sensor was used to assess energy consumption. We conducted 40 tests for each profile to compare the energy consumption for the three motion profiles, considering cases with and without load on the carriage. We determined that the parabolic profile provides 22.19% lower energy consumption than the other profiles considered in this study, whereas the S-curve profile exhibited the highest energy consumption. Full article
(This article belongs to the Special Issue Real-Time Control of Embedded Systems)
Show Figures

Graphical abstract

15 pages, 11531 KB  
Article
Laser Output Performance and Temporal Quality Enhancement at the J-KAREN-P Petawatt Laser Facility
by Hiromitsu Kiriyama, Yasuhiro Miyasaka, Akira Kon, Mamiko Nishiuchi, Akito Sagisaka, Hajime Sasao, Alexander S. Pirozhkov, Yuji Fukuda, Koichi Ogura, Kotaro Kondo, Nobuhiko Nakanii, Yuji Mashiba, Nicholas P. Dover, Liu Chang, Masaki Kando, Stefan Bock, Tim Ziegler, Thomas Püschel, Hans-Peter Schlenvoigt, Karl Zeil and Ulrich Schrammadd Show full author list remove Hide full author list
Photonics 2023, 10(9), 997; https://doi.org/10.3390/photonics10090997 - 31 Aug 2023
Cited by 26 | Viewed by 3714
Abstract
We described the output performance and temporal quality enhancement of the J-KAREN-P petawatt laser facility. After wavefront correction using a deformable mirror, focusing with an f/1.3 off-axis parabolic mirror delivered a peak intensity of 1022 W/cm2 at 0.3 PW power levels. [...] Read more.
We described the output performance and temporal quality enhancement of the J-KAREN-P petawatt laser facility. After wavefront correction using a deformable mirror, focusing with an f/1.3 off-axis parabolic mirror delivered a peak intensity of 1022 W/cm2 at 0.3 PW power levels. Technologies to improve the temporal contrast were investigated and tested. The origins of pre-pulses generated by post-pulses were identified and the elimination of most pre-pulses by removal of the post-pulses with wedged optics was achieved. A cascaded femtosecond optical parametric amplifier based on the utilization of the idler pulse rather than the signal pulse was developed for the complete elimination of the remaining pre-pulses. The orders of magnitude enhancement of the pedestal before the main pulse were obtained by using a higher surface quality of the convex mirror in the Öffner stretcher. A single plasma mirror was installed in the J-KAREN-P laser beam line for further contrast improvement of three orders of magnitude. The above developments indicate, although it has not been directly measured, the contrast can be as high as approximately 1015 up to 40 ps before the main pulse. We also showed an overview of the digital transformation (DX) of the system, enabling remote and automated operation of the J-KAREN-P laser facility. Full article
(This article belongs to the Special Issue Ultrashort Ultra-Intense (Petawatt) Laser)
Show Figures

Figure 1

16 pages, 3738 KB  
Article
Assessment of the Severity of Left Anterior Descending Coronary Artery Stenoses by Enhanced Transthoracic Doppler Echocardiography: Validation of a Method Based on the Continuity Equation
by Carlo Caiati, Alessandro Stanca and Mario Erminio Lepera
Diagnostics 2023, 13(15), 2526; https://doi.org/10.3390/diagnostics13152526 - 29 Jul 2023
Cited by 1 | Viewed by 3172
Abstract
Background: To verify whether the severity of coronary stenosis could be non-invasively assessed by enhanced transthoracic coronary echo Doppler in convergent color Doppler mode (E-Doppler TTE) over a wide range of values (from mild to severe). Methods: Color-guided pulsed wave Doppler sampling in [...] Read more.
Background: To verify whether the severity of coronary stenosis could be non-invasively assessed by enhanced transthoracic coronary echo Doppler in convergent color Doppler mode (E-Doppler TTE) over a wide range of values (from mild to severe). Methods: Color-guided pulsed wave Doppler sampling in the left anterior descending coronary artery (LAD) was performed in 103 diseased LAD segments (corresponding to 94 patients examined) as assessed by quantitative coronary angiography (QCA) or intracoronary ultrasound (IVUS). The E-Doppler TTE examinations consisted of measuring the velocity (vel) at the stenosis site and a reference adjacent segment. Then the continuity equation (C-Eq) was applied to calculate the percent cross-sectional area reduction (%CSA) at the stenosis site. The applied formula was: %CSA = 100 × (1 − [TVIref × 0.5]/TVIs). TVI = the time velocity integral at the stenosis [s] and the reference site [ref], respectively); 0.5 = the correcting factor for a parabolic profile was used only when the % accelerated stenotic flow was >122% (AsF = diastolic peak vel at first site − diastolic peak vel at second site/diastolic peak vel at second site × 100). Results: E-Doppler TTE feasibility was 100%. Doppler and QCA/IVUS-derived %CSA stenosis showed very good agreement over a large range of values (from mild to severe), with no significant bias; the maximum difference between QCA/IVUS and transthoracic Doppler %CSA was mostly around 20% with a few patients exceeding this limit (limits of agreement = −27.53 to 23.5%). The scattering was slightly larger for the non-significant stenoses. The correlation was strong (r = 0.89, p < 0.001). Conclusion: E-Doppler TTE is a feasible and reliable method for assessing the severity of LAD stenosis by applying the C-Eq. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: Diagnosis and Management)
Show Figures

Figure 1

12 pages, 3177 KB  
Communication
Focusing of Radially Polarized Electromagnetic Waves by a Parabolic Mirror
by Zerihun Tadele Godana, János Hebling and László Pálfalvi
Photonics 2023, 10(7), 848; https://doi.org/10.3390/photonics10070848 - 21 Jul 2023
Cited by 4 | Viewed by 2737
Abstract
It is well-known that a strong longitudinal electric field and a small spot size are observed when radially polarized beams are tightly focused using a high numerical aperture parabolic mirror. The longitudinal electric field component can accelerate electrons along the propagation axis at [...] Read more.
It is well-known that a strong longitudinal electric field and a small spot size are observed when radially polarized beams are tightly focused using a high numerical aperture parabolic mirror. The longitudinal electric field component can accelerate electrons along the propagation axis at high intensities in the focal region, which opens an application in particle acceleration. In this paper, we present a rigorous derivation of the electric field obtained when a radially polarized, monochromatic, flat-top beam is focused by a parabolic mirror. The formulae were deduced from the Stratton–Chu integral known from vector diffraction theory. We examined the influence of the focusing parameters on the distribution of both the longitudinal and radial electric field components. In the small numerical aperture and short wavelength regimes, excellent agreement was found with the results obtained from the Rayleigh–Sommerfeld formula. The calculation method can be adapted for various beam types and for electromagnetic pulses as well. Full article
(This article belongs to the Special Issue Photonics: Theory, Technologies and Applications)
Show Figures

Figure 1

20 pages, 3240 KB  
Article
Optical Solitons and Modulation Instability Analysis with Lakshmanan–Porsezian–Daniel Model Having Parabolic Law of Self-Phase Modulation
by Kaltham K. Al-Kalbani, Khalil S. Al-Ghafri, Edamana V. Krishnan and Anjan Biswas
Mathematics 2023, 11(11), 2471; https://doi.org/10.3390/math11112471 - 27 May 2023
Cited by 9 | Viewed by 1772
Abstract
This paper seeks to find optical soliton solutions for Lakshmanan–Porsezian–Daniel (LPD) model with the parabolic law of nonlinearity. The spatiotemporal dispersion is included to the model, as it can contribute to handling the problem of internet bottleneck. This study was performed analytically using [...] Read more.
This paper seeks to find optical soliton solutions for Lakshmanan–Porsezian–Daniel (LPD) model with the parabolic law of nonlinearity. The spatiotemporal dispersion is included to the model, as it can contribute to handling the problem of internet bottleneck. This study was performed analytically using the traveling wave hypothesis to reduce the model to an integrable form. Then, the resulting equation was handled with two approaches, namely, the auxiliary equation method and the Bernoulli subordinary differential equation (sub-ODE) method. With an intentional focus on hyperbolic function solutions, abundant optical soliton waves including W-shaped, bright, dark, kink-dark, singular, kink, and antikink solitons were derived with the existing conditions. Furthermore, the behaviors of some optical solitons are illustrated. The spatiotemporal dispersion was found to significantly affect the pulse propagation dynamics. Finally, the modulation instability (MI) of the LPD model is explained in detail along with the extraction of the expression of MI gain. Full article
Show Figures

Figure 1

13 pages, 2020 KB  
Article
Development and Evaluation of a Multifrequency Ultrafast Doppler Spectral Analysis (MFUDSA) Algorithm for Wall Shear Stress Measurement: A Simulation and In Vitro Study
by Andrew J. Malone, Seán Cournane, Izabela Naydenova, James F. Meaney, Andrew J. Fagan and Jacinta E. Browne
Diagnostics 2023, 13(11), 1872; https://doi.org/10.3390/diagnostics13111872 - 27 May 2023
Viewed by 2052
Abstract
Cardiovascular pathology is the leading cause of death and disability in the Western world, and current diagnostic testing usually evaluates the anatomy of the vessel to determine if the vessel contains blockages and plaques. However, there is a growing school of thought that [...] Read more.
Cardiovascular pathology is the leading cause of death and disability in the Western world, and current diagnostic testing usually evaluates the anatomy of the vessel to determine if the vessel contains blockages and plaques. However, there is a growing school of thought that other measures, such as wall shear stress, provide more useful information for earlier diagnosis and prediction of atherosclerotic related disease compared to pulsed-wave Doppler ultrasound, magnetic resonance angiography, or computed tomography angiography. A novel algorithm for quantifying wall shear stress (WSS) in atherosclerotic plaque using diagnostic ultrasound imaging, called Multifrequency ultrafast Doppler spectral analysis (MFUDSA), is presented. The development of this algorithm is presented, in addition to its optimisation using simulation studies and in-vitro experiments with flow phantoms approximating the early stages of cardiovascular disease. The presented algorithm is compared with commonly used WSS assessment methods, such as standard PW Doppler, Ultrafast Doppler, and Parabolic Doppler, as well as plane-wave Doppler. Compared to an equivalent processing architecture with one-dimensional Fourier analysis, the MFUDSA algorithm provided an increase in signal-to-noise ratio (SNR) by a factor of 4–8 and an increase in velocity resolution by a factor of 1.10–1.35. The results indicated that MFUDSA outperformed the others, with significant differences detected between the typical WSS values of moderate disease progression (p = 0.003) and severe disease progression (p = 0.001). The algorithm demonstrated an improved performance for the assessment of WSS and has potential to provide an earlier diagnosis of cardiovascular disease than current techniques allow. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series—Advances in Ultrasound)
Show Figures

Figure 1

32 pages, 4095 KB  
Article
Sub-Diffusion Two-Temperature Model and Accurate Numerical Scheme for Heat Conduction Induced by Ultrashort-Pulsed Laser Heating
by Cuicui Ji and Weizhong Dai
Fractal Fract. 2023, 7(4), 319; https://doi.org/10.3390/fractalfract7040319 - 8 Apr 2023
Cited by 4 | Viewed by 2592
Abstract
In this study, we propose a new sub-diffusion two-temperature model and its accurate numerical method by introducing the Knudsen number (Kn) and two Caputo fractional derivatives (0<α,β<1) in time into the parabolic [...] Read more.
In this study, we propose a new sub-diffusion two-temperature model and its accurate numerical method by introducing the Knudsen number (Kn) and two Caputo fractional derivatives (0<α,β<1) in time into the parabolic two-temperature model of the diffusive type. We prove that the obtained sub-diffusion two-temperature model is well posed. The numerical scheme is obtained based on the L1 approximation for the Caputo fractional derivatives and the second-order finite difference for the spatial derivatives. Using the discrete energy method, we prove the numerical scheme to be unconditionally stable and convergent with O(τmin{2α,2β}+h2), where τ,h are time and space steps, respectively. The accuracy and applicability of the present numerical scheme are tested in two examples. Results show that the numerical solutions are accurate, and the present model and its numerical scheme could be used as a tool by changing the values of the Knudsen number and fractional-order derivatives as well as the parameter in the boundary condition for analyzing the heat conduction in porous media, such as porous thin metal films exposed to ultrashort-pulsed lasers, where the energy transports in phonons and electrons may be ultraslow at different rates. Full article
(This article belongs to the Special Issue Feature Papers in Fractal and Fractional 2022–2023)
Show Figures

Figure 1

Back to TopTop