Towards Implementation of 3D Amplitude Shaping at 515 nm and First Pulseshaping Experiments at PITZ
Abstract
:1. Introduction
2. Materials and Methods
2.1. PITZ Overview
2.2. Laser Overview
2.2.1. Synchronization to the Master Oscillator
2.2.2. Amplitude Shaping and Pulseshaper Design
2.2.3. Pulseshaping Diagnostics
2.2.4. Beam Transport to the Photocathode
3. Results
3.1. Gaussian Pulses
3.2. Optical Characterization of Parabolic Pulses
3.3. Generation of Flattop Pulses
3.4. Modulated Pulses for THz Generation
4. Discussion
4.1. Amplitude Shaping with a Single Pulseshaper
4.2. Towards 3D Ellipsoidal Pulses at Green Wavelengths
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BBO | Beta Barium Borate |
BSA | Beamshaping aperture |
DESY | Deutsches Elektronen-Synchrotron |
EMSY | Emittance measurement system |
FLASH | Free-electron laser in Hamburg |
FROG | Frequency-resolved optical gating |
HEDA | High-energy dispersive arm |
LCOS | Liquid crystal on silicon |
LEDA | Low-energy dispersive arm |
PITZ | Photo Injector Test Facility at DESY in Zeuthen |
RF | Radio frequency |
SHG | Second harmonic generation |
SLM | Spatial light modulator |
TDS | Transverse deflecting system |
XFEL | X-ray free-electron laser |
References
- Serafini, L.; Rosenzweig, J.B. Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: A theory of emittance compensation. Phys. Rev. E 1997, 55, 7565–7590. [Google Scholar] [CrossRef]
- Limborg-Deprey, C.; Tomizawa, H. Maximizing brightness in photoinjectors. Int. J. Mod. Phys. 2007, 22, 3864–3881. [Google Scholar] [CrossRef]
- Sannibale, F. High-brightness electron injectors for high-duty cycle X-ray free electron lasers. Front. Phys. 2023, 11, 1187346. [Google Scholar] [CrossRef]
- Krasilnikov, M.; Stephan, F.; Asova, G.; Grabosch, H.J.; Groß, M.; Hakobyan, L.; Isaev, I.; Ivanisenko, Y.; Jachmann, L.; Khojoyan, M.; et al. Experimentally minimized beam emittance from an L-band photoinjector. Phys. Rev. ST Accel. Beams 2012, 15, 100701. [Google Scholar] [CrossRef]
- Will, I. Generation of flat-top picosecond pulses by means of a two-stage birefringent filter. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2008, 594, 119–125. [Google Scholar] [CrossRef]
- Liu, F.; Huang, S.; Si, S.; Zhao, G.; Liu, K.; Zhang, S. Generation of picosecond pulses with variable temporal profiles and linear polarization by coherent pulse stacking in a birefringent crystal shaper. Opt. Express 2019, 27, 1467–1478. [Google Scholar] [CrossRef] [PubMed]
- Kapchinskij, I.M.; Vladimirskij, V.V. Limitations Of Proton Beam Current In A Strong Focusing Linear Accelerator Associated with The Beam Space Charge. In Proceedings of the 2nd International Conference on High-Energy Accelerators, Geneva, Switzerland, 14–19 September 1959; pp. 274–287. [Google Scholar]
- Reiser, M. Theory and Design of Charged Particle Beams; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Ha, G.; Kim, K.J.; Power, J.G.; Sun, Y.; Piot, P. Bunch shaping in electron linear accelerators. Rev. Mod. Phys. 2022, 94, 25006. [Google Scholar] [CrossRef]
- Serafini, L. Improving the beam quality of RF guns by correction of RF and space-charge effects. AIP Conf. Proc. 1992, 279, 645–674. [Google Scholar] [CrossRef]
- Luiten, O.J.; van der Geer, S.B.; de Loos, M.J.; Kiewiet, F.B.; van der Wiel, M.J. How to Realize Uniform Three-Dimensional Ellipsoidal Electron Bunches. Phys. Rev. Lett. 2004, 93, 094802. [Google Scholar] [CrossRef]
- Li, Y.; Lewellen, J.W. Generating a Quasiellipsoidal Electron Beam by 3D Laser-Pulse Shaping. Phys. Rev. Lett. 2008, 100, 74801. [Google Scholar] [CrossRef]
- Musumeci, P.; Moody, J.T.; England, R.J.; Rosenzweig, J.B.; Tran, T. Experimental Generation and Characterization of Uniformly Filled Ellipsoidal Electron-Beam Distributions. Phys. Rev. Lett. 2008, 100, 244801. [Google Scholar] [CrossRef] [PubMed]
- Piot, P.; Sun, Y.E.; Maxwell, T.J.; Ruan, J.; Secchi, E.; Thangaraj, J.C.T. Formation and acceleration of uniformly filled ellipsoidal electron bunches obtained via space-charge-driven expansion from a cesium-telluride photocathode. Phys. Rev. ST Accel. Beams 2013, 16, 010102. [Google Scholar] [CrossRef]
- Xu, T.; Doran, D.S.; Liu, W.; Piot, P.; Power, J.G.; Whiteford, C.; Wisniewski, E. Demonstration of eigen-to-projected emittance mapping for an ellipsoidal electron bunch. Phys. Rev. Accel. Beams 2022, 25, 44001. [Google Scholar] [CrossRef]
- Faillace, L.; Agustsson, R.; Behtouei, M.; Bosco, F.; Bruhwiler, D.; Camacho, O.; Carillo, M.; Fukasawa, A.; Gadjev, I.; Giribono, A.; et al. High field hybrid photoinjector electron source for advanced light source applications. Phys. Rev. Accel. Beams 2022, 25, 63401. [Google Scholar] [CrossRef]
- Rosenzweig, J.; Cook, A.; England, R.; Dunning, M.; Anderson, S.; Ferrario, M. Emittance compensation with dynamically optimized photoelectron beam profiles. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2006, 557, 87–93. [Google Scholar] [CrossRef]
- Will, I.; Templin, H.I.; Schreiber, S.; Sandner, W. Photoinjector drive laser of the FLASH FEL. Opt. Express 2011, 19, 23770–23781. [Google Scholar] [CrossRef] [PubMed]
- Winkelmann, L.; Choudhuri, A.; Grosse-Wortmann, U.; Hartl, I.; Li, C.; Mohr, C.; Müller, J.; Peters, F.; Pfeiffer, S.; Salman, S. The European XFEL Photocathode Laser. In Proceedings of the 39th in Free Electron Laser Conference, Proc. FEL’19, Hamburg, Germany, 26–30 August 2019; JACoW Publishing: Geneva, Switzerland, 2019; pp. 423–426. [Google Scholar] [CrossRef]
- Gilevich, S.; Alverson, S.; Carbajo, S.; Droste, S.; Edstrom, S.; Fry, A.; Greenberg, M.; Lemons, R.; Miahnahri, A.; Polzin, W.; et al. The LCLS-II Photo-Injector Drive Laser System. In Proceedings of the Conference on Lasers and Electro-Optics, Optica Publishing Group, Virtual Conference, 11–14 May 2020; p. SW3E.3. [Google Scholar] [CrossRef]
- Li, C.; Akcaalan, O.; Frede, M.; Grosse-Wortmann, U.; Hartl, I.; Mohr, C.; Puncken, O.; Seidel, M.; Tuennermann, H.; Vidoli, C.; et al. Photocathode Laser Development for Superconducting X-ray Free Electron Lasers at DESY. In Proceedings of the 12th in International Particle Accelerator Conference, Proc. IPAC’21, Virtual Conference, 24–28 May 2021; JACoW Publishing: Geneva, Switzerland, 2021; pp. 3599–3601. [Google Scholar] [CrossRef]
- O’Shea, B.; Rosenzweig, J.B.; Asova, G.; Bähr, J.; Hänel, M.; Ivanisenko, Y.; Khojoyan, M.; Krasilnikov, M.; Staykov, L.; Stephan, F.; et al. Measurement of self-shaped ellipsoidal bunches from a photoinjector with postacceleration. Phys. Rev. ST Accel. Beams 2011, 14, 012801. [Google Scholar] [CrossRef]
- Mironov, S.Y.; Potemkin, A.K.; Gacheva, E.I.; Andrianov, A.V.; Zelenogorskii, V.V.; Krasilnikov, M.; Stephan, F.; Khazanov, E.A. Shaping of cylindrical and 3D ellipsoidal beams for electron photoinjector laser drivers. Appl. Opt. 2016, 55, 1630–1635. [Google Scholar] [CrossRef]
- Zelenogorskii, V.; Andrianov, A.; Gacheva, E.; Gelikonov, G.; Krasilnikov, M.; Mart’yanov, M.; Mironov, S.; Potemkin, A.; Syresin, E.; Stephan, F.; et al. Scanning cross-correlator for monitoring uniform 3D ellipsoidal laser beams. Quantum Electron. 2014, 44, 76. [Google Scholar] [CrossRef]
- Koschitzki, C.; Qian, H.; Aboulbanine, Z.; Adhikari, G.; Aftab, N.; Boonpornprasert, P.; Georgiev, G.; Good, J.; Gross, M.; Hoffmann, A.; et al. Chirped Pulse Laser Shaping for High Brightness Photoinjectors. In Proceedings of the 40th International Free Electron Laser Conference, Proc. FEL2022, Trieste, Italy, 22–26 August 2022; JACoW Publishing: Geneva, Switzerland, 2022; pp. 345–348. [Google Scholar] [CrossRef]
- Mironov, S.Y.; Poteomkin, A.K.; Gacheva, E.I.; Andrianov, A.V.; Zelenogorskii, V.V.; Vasiliev, R.; Smirnov, V.; Krasilnikov, M.; Stephan, F.; Khazanov, E.A. Generation of 3D ellipsoidal laser beams by means of a profiled volume chirped Bragg grating. Laser Phys. Lett. 2016, 13, 055003. [Google Scholar] [CrossRef]
- Gacheva, E.I.; Martyanov, M.A.; Poteomkin, A.K.; Kuzmin, I.V.; Mironov, S.Y. Shaping ellipsoidal laser pulses in the scheme with black analog masks for photoinjector applications. Laser Phys. Lett. 2023, 20, 125002. [Google Scholar] [CrossRef]
- Kuzmin, I.V.; Mironov, S.Y.; Martyanov, M.A.; Potemkin, A.K.; Khazanov, E.A. Highly efficient fourth harmonic generation of broadband laser pulses retaining 3D pulse shape. Appl. Opt. 2021, 60, 3128–3135. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.K.; Krasilnikov, M.; Oppelt, A.; Stephan, F.; Sertore, D.; Monaco, L.; Pagani, C.; Hillert, W. Development and Characterization of Multi-Alkali Antimonide Photocathodes for High-Brightness RF Photoinjectors. Micromachines 2023, 14, 1182. [Google Scholar] [CrossRef]
- Brinkmann, R.; Schneidmiller, E.; Sekutowicz, J.; Yurkov, M. Prospects for CW and LP operation of the European XFEL in hard X-ray regime. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2014, 768, 20–25. [Google Scholar] [CrossRef]
- Sekutowicz, J.; Ayvazyan, V.; Barlak, M.; Branlard, J.; Cichalewski, W.; Grabowski, W.; Kostin, D.; Lorkiewicz, J.; Merz, W.; Nietubyc, R.; et al. Research and development towards duty factor upgrade of the European X-ray Free Electron Laser linac. Phys. Rev. ST Accel. Beams 2015, 18, 50701. [Google Scholar] [CrossRef]
- Zhang, H.; Gilevich, S.; Miahnahri, A.; Alverson, S.; Brachmann, A.; Duris, J.; Franz, P.; Fry, A.; Hirschman, J.; Larsen, K.; et al. The LCLS-II Photoinjector Laser Infrastructure. arXiv 2023, arXiv:2307.12030. [Google Scholar]
- Andruszkow, J.; Aune, B.; Ayvazyan, V.; Baboi, N.; Bakker, R.; Balakin, V.; Barni, D.; Bazhan, A.; Bernard, M.; Bosotti, A.; et al. First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength. Phys. Rev. Lett. 2000, 85, 3825–3829. [Google Scholar] [CrossRef]
- Ackermann, W.; Asova, G.; Ayvazyan, V.; Azima, A.; Baboi, N.; Baehr, J.; Balandin, V.; Beutner, B.; Brandt, A.; Bolzmann, A.; et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics 2007, 1, 336–342. [Google Scholar] [CrossRef]
- Altarelli, M.; Brinkmann, R.; Chergui, M.; Decking, W.; Dobson, B.; Düsterer, S.; Grübel, G.; Graeff, W.; Graafsma, H.; Hajdu, J.; et al. XFEL: The European X-ray Free-Electron Laser; Technical Design Report; DESY: Hamburg, Germany, 2006. [Google Scholar] [CrossRef]
- Decking, W.; Abeghyan, S.; Abramian, P.; Abramsky, A.; Aguirre, A.; Albrecht, C.; Alou, P.; Altarelli, M.; Altmann, P.; Amyan, K.; et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonics 2020, 14, 391–397. [Google Scholar] [CrossRef]
- Stein, W.E.; Sheffield, R.L. Electron micropulse diagnostics and results for the Los Alamos free electron laser. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1986, 250, 12–18. [Google Scholar] [CrossRef]
- Altenmueller, O.H.; Larsen, R.R.; Loew, G.A. Investigations of Traveling-Wave Separators for the Stanford Two-Mile Linear Accelerator. Rev. Sci. Instrum. 2004, 35, 438–442. [Google Scholar] [CrossRef]
- Röhrs, M.; Gerth, C.; Schlarb, H.; Schmidt, B.; Schmüser, P. Time-resolved electron beam phase space tomography at a soft x-ray free-electron laser. Phys. Rev. ST Accel. Beams 2009, 12, 050704. [Google Scholar] [CrossRef]
- Loisch, G.; Chen, Y.; Koschitzki, C.; Qian, H.; Gross, M.; Hannah, A.; Hoffmann, A.; Kalantaryan, D.; Krasilnikov, M.; Lederer, S.; et al. Direct measurement of photocathode time response in a high-brightness photoinjector. Appl. Phys. Lett. 2022, 120, 104102. [Google Scholar] [CrossRef]
- Krasilnikov, M.; Aboulbanine, Z.; Adhikari, G.; Aftab, N.; Boonpornprasert, P.; Bousonville, M.; Brinker, F.; Castro Carballo, M.E.; Georgiev, G.; Good, J.; et al. RF Performance of a Next-Generation L-Band RF Gun at PITZ. In Proceedings of the 31st International Linear Accelerator Conference, LINAC2022, Liverpool, UK, 28 August–2 September 2022; JACoW Publishing: Geneva, Switzerland, 2022; pp. 699–702. [Google Scholar] [CrossRef]
- Krasilnikov, M.; Aboulbanine, Z.; Adhikari, G.; Aftab, N.; Boonpornprasert, P.; General, R.; Georgiev, G.; Good, J.; Gross, M.; Heuchling, L.; et al. First Lasing of the THz SASE FEL at PITZ. In Proceedings of the 40th International Free Electron Laser Conference, Proc. FEL2022, Trieste, Italy, 22–26 August 2022; JACoW Publishing: Geneva, Switzerland, 2022; pp. 4–6. [Google Scholar] [CrossRef]
- Stephan, F.; Gross, M.; Grebinyk, A.; Aboulbanine, Z.; Amirkhanyan, Z.; Budach, V.; Ehrhardt, V.H.; Faus-Golfe, A.; Frohme, M.; Germond, J.F.; et al. FLASHlab@PITZ: New R&D platform with unique capabilities for electron FLASH and VHEE radiation therapy and radiation biology under preparation at PITZ. Phys. Medica 2022, 104, 174–187. [Google Scholar] [CrossRef]
- Przygoda, K.; Rybaniec, R.; Butkowski, L.; Gerth, C.; Peier, P.; Schmidt, C.; Steffen, B.; Schlarb, H. MicroTCA.4-Based RF and Laser Cavities Regulation Including Piezocontrols. IEEE Trans. Nucl. Sci. 2017, 64, 1389–1394. [Google Scholar] [CrossRef]
- Wefers, M.M.; Nelson, K.A. Generation of high-fidelity programmable ultrafast optical waveforms. Opt. Lett. 1995, 20, 1047–1049. [Google Scholar] [CrossRef]
- Frumker, E.; Silberberg, Y. Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators. J. Opt. Soc. Am. B 2007, 24, 2940–2947. [Google Scholar] [CrossRef]
- Weiner, A.M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 2000, 71, 1929–1960. [Google Scholar] [CrossRef]
- Trebino, R.; De Long, K.W.; Fittinghoff, D.N.; Sweetser, J.N.; Krumbügel, M.A.; Richman, B.A.; Kane, D.J. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 1997, 68, 3277–3295. [Google Scholar] [CrossRef]
- Sweetser, J.N.; Fittinghoff, D.N.; Trebino, R. Transient-grating frequency-resolved optical gating. Opt. Lett. 1997, 22, 519–521. [Google Scholar] [CrossRef]
- Neumann, J.G.; Fiorito, R.B.; O’Shea, P.G.; Loos, H.; Sheehy, B.; Shen, Y.; Wu, Z. Terahertz laser modulation of electron beams. J. Appl. Phys. 2009, 105, 53304. [Google Scholar] [CrossRef]
- Aryshev, A.; Shevelev, M.; Honda, Y.; Terunuma, N.; Urakawa, J. Femtosecond response time measurements of a Cs2Te photocathode. Appl. Phys. Lett. 2017, 111, 33508. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffmann, A.; Good, J.; Gross, M.; Krasilnikov, M.; Stephan, F. Towards Implementation of 3D Amplitude Shaping at 515 nm and First Pulseshaping Experiments at PITZ. Photonics 2024, 11, 6. https://doi.org/10.3390/photonics11010006
Hoffmann A, Good J, Gross M, Krasilnikov M, Stephan F. Towards Implementation of 3D Amplitude Shaping at 515 nm and First Pulseshaping Experiments at PITZ. Photonics. 2024; 11(1):6. https://doi.org/10.3390/photonics11010006
Chicago/Turabian StyleHoffmann, Andreas, James Good, Matthias Gross, Mikhail Krasilnikov, and Frank Stephan. 2024. "Towards Implementation of 3D Amplitude Shaping at 515 nm and First Pulseshaping Experiments at PITZ" Photonics 11, no. 1: 6. https://doi.org/10.3390/photonics11010006
APA StyleHoffmann, A., Good, J., Gross, M., Krasilnikov, M., & Stephan, F. (2024). Towards Implementation of 3D Amplitude Shaping at 515 nm and First Pulseshaping Experiments at PITZ. Photonics, 11(1), 6. https://doi.org/10.3390/photonics11010006