Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = palm weevil larvae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3234 KiB  
Article
Evaluation of Red Palm Weevils (Rhynchophorus ferrugineus: Curculionidae) for Putative Oxidation of Ingested Polystyrene and Polyurethane and Their Gut Microbiota Response
by Khanchai Danmek, Pichet Praphawilai, Sampat Ghosh, Chuleui Jung, Saeed Mohamadzade Namin, Phattharawadee Aedtem and Bajaree Chuttong
Insects 2025, 16(6), 587; https://doi.org/10.3390/insects16060587 - 2 Jun 2025
Viewed by 734
Abstract
This study assessed the growth performance of red palm weevil (RPW) (Rhynchophorus ferrugineus: Curculionidae) larvae on a liquid diet of yeast-enriched potato dextrose broth (control) and on diets with added polystyrene and polyurethane. For 15 days of diet exposure, the growth [...] Read more.
This study assessed the growth performance of red palm weevil (RPW) (Rhynchophorus ferrugineus: Curculionidae) larvae on a liquid diet of yeast-enriched potato dextrose broth (control) and on diets with added polystyrene and polyurethane. For 15 days of diet exposure, the growth and survival, plastic degradation, and gut microbiota of larvae were examined. RPWs showed higher survival rates under polystyrene and polyurethane treatments than in the control group. Head diameter showed a higher trend under polyurethane treatment than under the other treatments. Treated plastics were partly degraded after a 15-day exposure. Further analysis of plastic residues from frass revealed significant differences in Fourier Transform Infrared Spectroscopy (FTIR), with decreased intensity of characteristic peaks compared to frass from larvae fed in the control. Gut bacterial communities in the gut of RPW larvae showed that plastic feeding did not significantly alter the presence of key microbial taxa, but members of Firmicutes and Proteobacteria were higher in the plastic treatment, showing preliminary signs of plastic oxidation and degradation. Overall, these findings provide evidence that ingestion of PS and PU by RPW larvae supports their survival and alters their gut microbiota, possibly due to plastic degradation, paving the way for further research into the interactions between RPWs, their microbiome, and key functional activities, with implications for plastic waste management and recycling. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Graphical abstract

15 pages, 3162 KiB  
Article
Pathogenicity of Steinernema carpocapsae ALL Entomopathogenic Nematodes and Their Symbiotic Bacteria as a Biological Control Agent on Red Palm Weevil
by Chaojun Lv, Taigao Meng, Baozhu Zhong, Zhongqiu Shang, Chaoxu Li, Abdullah A. Zahra and Talat M. Abdelrahman
Microorganisms 2025, 13(5), 971; https://doi.org/10.3390/microorganisms13050971 - 24 Apr 2025
Viewed by 621
Abstract
Insect-specific pathogens present a sustainable alternative to pesticides for managing the red palm weevil (RPW). This study assessed the efficacy of Steinernema carpocapsae ALL nematodes and their symbiotic bacteria against the third-instar larvae and adults of RPW under laboratory conditions. The symbiotic bacteria [...] Read more.
Insect-specific pathogens present a sustainable alternative to pesticides for managing the red palm weevil (RPW). This study assessed the efficacy of Steinernema carpocapsae ALL nematodes and their symbiotic bacteria against the third-instar larvae and adults of RPW under laboratory conditions. The symbiotic bacteria were isolated, morphologically characterized, and genetically identified. The results indicated that the mortality rates of RPW larvae treated with S. carpocapsae exceeded 50% in all treatments at 120 h, reaching 93.33% at a concentration of 250 IJs/mL. The morphology of isolated symbiotic bacterium from S. carpocapsae on NBTA medium exhibited a light green color with a glossy surface, a raised center, and a mucilaginous texture. A novel strain of symbiotic bacterium was identified and named as LZ-G7. The bacteria toxicity on RPW adults showed a notable mortality rate of 66.67% at 48 h after feeding with concentration of 10 × 107 CFU/mL. The mortality rate of the third-instar larvae of RPW reached 83.33% after feeding with 0.30 × 108 CFU/g at 96 h and 93.33% after injection into blood cavity with 8 × 106 CFU at 48 h. These results suggest that S. carpocapsae and a novel symbiotic bacterium strain exhibit strong virulence against RPW and have the potential to serve as effective biological control agents in integrated pest management strategies. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Graphical abstract

6 pages, 222 KiB  
Proceeding Paper
Nutritional Properties of Selected Edible Insects
by Yee Ling Tan, Fuen Ann Tan and Fook Yee Chye
Biol. Life Sci. Forum 2024, 40(1), 43; https://doi.org/10.3390/blsf2024040043 - 4 Mar 2025
Viewed by 1745
Abstract
This study aimed to determine the nutritional properties of selected edible insects as a potential future food. A total of eight species of edible insects, including the dubia roach (Blaptica dubia), super worm (Zophobas morio) larvae, locust (Locusta [...] Read more.
This study aimed to determine the nutritional properties of selected edible insects as a potential future food. A total of eight species of edible insects, including the dubia roach (Blaptica dubia), super worm (Zophobas morio) larvae, locust (Locusta migratoria), silkworm (Bombyx mori) pupae, house cricket (Acheta domesticus), sago palm weevil (Rhynchophorus ferrugineus) larvae, black soldier fly (Hermetia illucens) larvae, and grasshopper (Oxya Yezoensis) have been obtained and analyzed for their macronutrient contents. Results showed that grasshopper (68.18 g/100 g) has the highest protein content, which is comparable to conventional animal meats. This indicates that the edible insect is a valuable alternative protein and provides essential amino acids. Thus, some edible insects could serve as a source of sustainable nutrients for daily requirements and mitigating food insecurity in the future. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Foods)
17 pages, 5760 KiB  
Article
The Proteolytic Activation, Toxic Effects, and Midgut Histopathology of the Bacillus thuringiensis Cry1Ia Protoxin in Rhynchophorus ferrugineus (Coleoptera: Curculionidae)
by Camilo Ayra-Pardo, Victor Ramaré, Ana Couto, Mariana Almeida, Ricardo Martins, José Américo Sousa and Maria João Santos
Toxins 2025, 17(2), 84; https://doi.org/10.3390/toxins17020084 - 12 Feb 2025
Viewed by 1544
Abstract
The red palm weevil (RPW; Coleoptera: Curculionidae) is a destructive pest affecting palms worldwide, capable of causing significant economic losses and ecological damage in managed palm ecosystems. Current management heavily relies on synthetic insecticides, but their overuse fosters resistance. Bacillus thuringiensis (Bt) offers [...] Read more.
The red palm weevil (RPW; Coleoptera: Curculionidae) is a destructive pest affecting palms worldwide, capable of causing significant economic losses and ecological damage in managed palm ecosystems. Current management heavily relies on synthetic insecticides, but their overuse fosters resistance. Bacillus thuringiensis (Bt) offers a promising alternative, producing toxins selective against various insect orders, including Coleoptera. However, no specific Bt toxin has yet been identified for RPW. This study investigates the toxicity against RPW larvae of the Bt Cry1Ia protoxin, known for its dual activity against Lepidoptera and Coleoptera. A laboratory RPW colony was reared for two generations, ensuring a reliable insect source for bioassays. Cry1Ia was expressed as a 6xHis-tagged fusion protein in Escherichia coli and purified using nickel affinity. Incubation with RPW larval gut proteases for 24 h produced a stable core of ~65 kDa. Diet-incorporation bioassays revealed high Cry1Ia toxicity in neonate larvae. In contrast, the lepidopteran-active Cry1Ac protoxin, used as a robust negative control, was completely degraded after 24 h of in vitro proteolysis and showed no toxicity in bioassays. Cry1Ia-fed larvae exhibited significant midgut cell damage, characteristic of Bt intoxication. These findings highlight Cry1Ia’s strong potential for integration into RPW management programs. Full article
Show Figures

Figure 1

14 pages, 3262 KiB  
Article
Spätzle Regulates Developmental and Immune Trade-Offs Induced by Bacillus thuringiensis Priming in Rhynchophorus ferrugineus
by Pengju Li, He Zhang, Anran Tan, Zhuolin Hu, Lu Peng and Youming Hou
Insects 2024, 15(12), 925; https://doi.org/10.3390/insects15120925 - 26 Nov 2024
Viewed by 835
Abstract
The red palm weevil (RPW) is an invasive pest that causes devastating damage to a variety of palm plants, which exhibit specific immune priming to Bacillus thuringiensis (Bt). However, immune priming in RPW may incur a high fitness cost, and its molecular signaling [...] Read more.
The red palm weevil (RPW) is an invasive pest that causes devastating damage to a variety of palm plants, which exhibit specific immune priming to Bacillus thuringiensis (Bt). However, immune priming in RPW may incur a high fitness cost, and its molecular signaling pathways have not yet been reported. Here, we investigated the effect of Bt priming on RPW development and subsequently analyzed the hormonal and immune-related molecular pathways influencing the fitness cost induced by Bt priming. Bt priming delayed the body weight gain of fifth-instar larvae and prolonged their developmental duration. Bt priming significantly reduced the 20-hydroxyecdysone (20E) content in RPW hemolymph, and the expression levels of the 20E biosynthesis-related genes SHADOW and SHADE were significantly downregulated. Furthermore, we analyzed Toll pathway genes influencing Bt priming and found that only Spätzle (SPZ) transcription was significantly activated under Bt priming. After silencing SPZ expression, the negative effects of Bt priming on development, SHADOW expression, and 20E synthesis were eliminated, thereby suggesting that SPZ is a key molecular signal mediating developmental and immune trade-offs induced by Bt priming. Our results elucidate the molecular cascade pathway of immune priming and provide new targets for improving the efficiency of RPW biological controls. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

18 pages, 3938 KiB  
Article
Effect of Commercial Trap Design and Location on Captures of Diocalandra frumenti (Fabricius) (Coleoptera: Dryophthoridae) on Palm Trees
by Carina Ramos-Cordero, Elena Seris-Barrallo, Sandra Vacas, Vicente Navarro-Llopis and Estrella M. Hernández-Suárez
Insects 2024, 15(10), 738; https://doi.org/10.3390/insects15100738 - 25 Sep 2024
Viewed by 1736
Abstract
Diocalandra frumenti (Fabricius) (Coleoptera: Dryophthoridae) is a weevil present in the Canary Islands, affecting economically important palms such as Phoenix canariensis H. Wildpret and its hybrids, for which there were no trapping tools. The larvae cause the main damage by burrowing galleries in [...] Read more.
Diocalandra frumenti (Fabricius) (Coleoptera: Dryophthoridae) is a weevil present in the Canary Islands, affecting economically important palms such as Phoenix canariensis H. Wildpret and its hybrids, for which there were no trapping tools. The larvae cause the main damage by burrowing galleries in the rachis of the leaves, causing premature drying and collapse. To develop an effective trap, six trials were carried out to evaluate the effect of trap type, design, colour, height, distance and location of the trap in relation to the palm tree on D. frumenti captures. This study confirms that the Econex® trap, green in colour, without a cover and with two ventilation holes of 2.5 cm in diameter, diametrically opposite each other and at 1 cm from the top of the base of the trap, baited with sugar cane and water, and placed between the first and second ring of green leaves of the palm canopy, is efficient in capturing D. frumenti. These results establish a basis for future research focused on the development of a specific trapping system based on semiochemicals to serve as a tool for detection, monitoring and mass trapping of D. frumenti. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

27 pages, 4531 KiB  
Article
Exploring Gut Microbiota in Red Palm Weevil (Rhynchophorus ferrugineus): Effects on Pest Management, Pesticide Resistance, and Thermal Stress Tolerance
by Omnia Abdullah Elkraly, Tahany Abd Elrahman, Mona Awad, Hassan Mohamed El-Saadany, Mohamed A. M. Atia, Noura S. Dosoky, El-Desoky S. Ibrahim and Sherif M. Elnagdy
Microbiol. Res. 2024, 15(3), 1359-1385; https://doi.org/10.3390/microbiolres15030092 - 28 Jul 2024
Cited by 4 | Viewed by 2404
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus, poses a significant threat to date palms globally, heavily relying on symbiotic microbes for various physiological and behavioral functions. This comprehensive study delves into the intricate dynamics of RPW gut microbiota, revealing a diverse microbial [...] Read more.
The red palm weevil (RPW), Rhynchophorus ferrugineus, poses a significant threat to date palms globally, heavily relying on symbiotic microbes for various physiological and behavioral functions. This comprehensive study delves into the intricate dynamics of RPW gut microbiota, revealing a diverse microbial community consisting of seven genera and eight species from Proteobacteria, Firmicutes, and Actinobacteria. The stability of gut bacteria across different life stages was observed, with notable impacts on larval metabolism attributed to shifts in bacterial composition. Bacillus subtilis emerged as a key player, producing a spectrum of metabolic enzymes. Furthermore, the gut bacteria exhibited remarkable pesticide degradation capabilities, suggesting a potential role in the host’s resistance to pesticides. The Arthrobacter sp. was identified as a promising candidate for eco-friendly pest biocontrol and biodegradation strategies. Investigating the influence of thermal stress on two groups of RPW larvae (conventional-fed and antibiotic-fed) at varying temperatures (15, 27, and 35 °C) unveiled potential survival implications. This study highlights the pivotal role of bacterial symbionts in enabling larvae adaptation and thermal stress tolerance. In essence, this research contributes crucial insights into the diversity and functions of RPW gut bacteria, emphasizing their prospective applications in pest control strategies. Full article
Show Figures

Figure 1

26 pages, 5841 KiB  
Article
Combined Analysis of Metabolomics and Biochemical Changes Reveals the Nutritional and Functional Characteristics of Red Palm Weevil Rhynchophus ferrugineus (Coleoptera: Curculionidae) Larvae at Different Developmental Stages
by Mengran Chen, Jintao Kan, Yufeng Zhang, Jinhao Zhao, Chaojun Lv, Baozhu Zhong, Chaoxu Li and Weiquan Qin
Insects 2024, 15(4), 294; https://doi.org/10.3390/insects15040294 - 21 Apr 2024
Cited by 4 | Viewed by 2553
Abstract
In this study, the changes in the conventional nutrient and mineral compositions as well as the metabolomics characteristics of the red palm weevil (RPW) Rhynchophus ferrugineus Olivier (Curculionidae: Coleoptera) larvae at early (EL), middle (ML) and old (OL) developmental stages were investigated. Results [...] Read more.
In this study, the changes in the conventional nutrient and mineral compositions as well as the metabolomics characteristics of the red palm weevil (RPW) Rhynchophus ferrugineus Olivier (Curculionidae: Coleoptera) larvae at early (EL), middle (ML) and old (OL) developmental stages were investigated. Results showed that the EL and ML had the highest content of protein (53.87 g/100 g dw) and fat (67.95 g/100 g), respectively, and three kinds of RPW larvae were all found to be rich in unsaturated fatty acids (52.17–53.12%), potassium (5707.12–15,865.04 mg/kg) and phosphorus (2123.87–7728.31 mg/kg). In addition, their protein contained 17 amino acids with the largest proportion of glutamate. A total of 424 metabolites mainly including lipids and lipid-like molecules, organic acids and their derivatives, organic heterocycle compounds, alkaloids and their derivatives, etc. were identified in the RPW larvae. There was a significant enrichment in the ABC transport, citrate cycle (TCA cycle), aminoacyl-tRNA biosynthesis, and mTOR signaling pathways as the larvae grow according to the analysis results of the metabolic pathways of differential metabolites. The water extract of EL exhibited relatively higher hydroxyl, 2,2-diphenyl-1-pyrroline hydrochloride (DPPH) and 2,2’-azobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging ability with the EC50 values of 1.12 mg/mL, 11.23 mg/mL, and 2.52 mg/mL, respectively. These results contribute to a better understanding of the compositional changes of the RPW larvae during its life cycle and provide a theoretical grounding for its deep processing and high-value utilization. Full article
(This article belongs to the Collection Edible Insects and Circular Economy)
Show Figures

Graphical abstract

12 pages, 1381 KiB  
Article
Laboratory Evaluation of Indigenous and Commercial Entomopathogenic Nematodes against Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae)
by Mureed Husain, Khawaja G. Rasool, Koko D. Sutanto, Abdalsalam O. Omer, Muhammad Tufail and Abdulrahman S. Aldawood
Insects 2024, 15(4), 290; https://doi.org/10.3390/insects15040290 - 19 Apr 2024
Cited by 4 | Viewed by 2346
Abstract
The red palm weevil (RPW) is a significant threat to date palms. Conventional pest control has been ineffective. This study aims to evaluate entomopathogenic nematodes (EPNs) indigenous to Saudi Arabia and commercial against RPW. We used 33 soil samples collected from four areas [...] Read more.
The red palm weevil (RPW) is a significant threat to date palms. Conventional pest control has been ineffective. This study aims to evaluate entomopathogenic nematodes (EPNs) indigenous to Saudi Arabia and commercial against RPW. We used 33 soil samples collected from four areas of Saudi Arabia. The indigenous EPNs were isolated and cultured using an insect baiting method to obtain infective juveniles. Pathogenicity bioassays were conducted against different stages of RPW, including eggs, larvae, and adults. The bioassay was performed using all the isolates at 1 × 106 IJ/mL. Distilled water was used as a control. The results revealed that only 9.09% of soil samples contained positive EPNs. Through DNA sequencing analysis, the positive samples were identified as indigenous isolates belonging to Heterorhabditis indica and Steinernema carpocapsae EPN species. In pathogenicity tests, 90% mortality of RPW eggs was observed after five days. Similar mortality trends were seen in RPW larvae and adults, with 90% mortality recorded after ten days for all the EPN treatments. Mortality increased with the duration of post-EPN inoculation exposure. The 1 × 106 IJ/mL concentrations of EPN effectively killed various stages of RPW in the laboratory. More research is needed to test EPNs against RPW in the field. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

21 pages, 922 KiB  
Article
Efficacy and Persistence of Entomopathogenic Fungi against Rhynchophorus ferrugineus on Date Palm: Host to Host Transmission
by Waleed S. Alwaneen, Waqas Wakil, Nickolas G. Kavallieratos, Mirza Abdul Qayyum, Muhammad Tahir, Khawaja G. Rasool, Mureed Husain, Abdulrahman S. Aldawood and David Shapiro-Ilan
Agronomy 2024, 14(4), 642; https://doi.org/10.3390/agronomy14040642 - 22 Mar 2024
Cited by 6 | Viewed by 2693
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae), is a destructive and voracious pest of palm species worldwide. Due to environmental and regulatory concerns, ecologically safe alternatives to synthetic chemical insecticides are needed to manage this cryptic insect species. Entomopathogenic fungi [...] Read more.
The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae), is a destructive and voracious pest of palm species worldwide. Due to environmental and regulatory concerns, ecologically safe alternatives to synthetic chemical insecticides are needed to manage this cryptic insect species. Entomopathogenic fungi have the potential to manage this pest. The scope of management and effectiveness can be improved by direct control or horizontal transmission of entomopathogenic fungal isolates. We tested in the laboratory the virulence and pathogenicity of fifteen different entomopathogenic fungal isolates belonging to the following species: Beauveria bassiana, Metarhizium anisopliae, Beauveria brongniartii and Purpureocillium lilacinum. All fungal isolates were found virulent against larvae (14.9 ± 1.06 to 81.5 ± 1.48% mortality) and adults (5.6 ± 1.12 to 51.7 ± 1.51% mortality) at 12 d post-treatment. From a screening bioassay, five M. anisopliae (WG-08, WG-09) and B. bassiana (WG-23, WG-24, WG-25) isolates were tested for their concentration response mortality against larvae and adults after 7, 14 and 21 days (d) of treatment. Mortality was found positively correlated with concentration and time. At 21 d of treatment, WG-23 and WG-25 1 × 108 conidia/mL resulted in 100% mortality against larvae while only WG-25 1 × 109 conidia/mL caused 100% mortality of adults. Along with mortality, all the potential isolates have strong ovicidal effects that reduced 81.49% at 1 × 108 conidia/mL. The horizontal transmission bioassay indicated that the infected adults transmitted the disease to healthy individuals. Horizontal transmission of fungi from infected to non-infected adults not only caused significant mortality but also had a serious sublethal impact on insect development and fitness including reduced number of eggs/d fecundity, egg viability and neonate survival. Isolate WG-25 reduced oviposition (0.5 eggs/d), fecundity (11.7 eggs/female), egg viability (11.6%) along with larval survival 25.9% when infected male mated with normal female. In semi-field trials, all fungal isolates reduced survival of larvae found inside the palms and ultimately reduced infestations over a period of two months. The results of this study indicate that entomopathogenic fungi should be further tested for sustainable and efficient control of RPW in date palm production systems. Full article
(This article belongs to the Special Issue Biological Pest Control in Agroecosystems)
Show Figures

Figure 1

11 pages, 2759 KiB  
Article
A C-Type Lectin, RfCTL27, Activates the Immune Defense in the Red Palm Weevil Rhynchophorus ferrugineus (A.G. Olivier, 1791) (Coleoptera: Curculionidae: Dryophthorinae) by the Recognition of Gram-Negative Bacteria
by Yanru Gong, Yongjian Xia, Zhiping Su, Xinghong Wang, Yishuo Kou, Bing Ma, Youming Hou and Zhanghong Shi
Insects 2024, 15(3), 212; https://doi.org/10.3390/insects15030212 - 21 Mar 2024
Cited by 1 | Viewed by 1775
Abstract
Red palm weevil, Rhynchophorus ferrugineus (Olivier), is a palm tree insect pest that causes significant damage in the many countries from the Indian sub-continent and southeast Asia into date palm-growing countries of Africa, the Middle East, and the Mediterranean Basin. This study is [...] Read more.
Red palm weevil, Rhynchophorus ferrugineus (Olivier), is a palm tree insect pest that causes significant damage in the many countries from the Indian sub-continent and southeast Asia into date palm-growing countries of Africa, the Middle East, and the Mediterranean Basin. This study is aimed at determining the role of a C-type lectin, RfCTL27, in the immune defense of RPW larvae. RfCTL27 is a secreted protein that possesses a QPD motif, being integral for the discrimination of Gram-negative bacteria. The abundance of RfCTL27 transcripts in the gut and fat body was significantly higher than that in other tissues. Six hours after injection of Escherichia coli, the expression level of RfCTL27 in the gut of RPW larvae was significantly elevated compared with other groups. At 12 h after injection of E. coli, the expression of RfCTL27 in fat body was dramatically induced in contrast with other treatments. More interestingly, the ability of RPW larvae to clear the pathogenic bacteria in the body cavity and gut was markedly impaired by the silencing of RfCTL27. Additionally, the expression levels of two antimicrobial peptide genes, RfCecropin in the gut and RfDefensin in fat body of RPW larvae, were significantly decreased. Taken together, these data suggested that RfCTL27 can recognize the Gram-negative bacterium and activate the expression of antimicrobial peptides to remove the invaded bacterial pathogens. This study provides a new scientific basis for improving the control efficiency of pathogenic microorganisms against red palm weevils in production practice. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

11 pages, 649 KiB  
Article
Chemical and Nutritional Fat Profile of Acheta domesticus, Gryllus bimaculatus, Tenebrio molitor and Rhynchophorus ferrugineus
by Agnieszka Orkusz, Lucyna Dymińska, Karol Banaś and Joanna Harasym
Foods 2024, 13(1), 32; https://doi.org/10.3390/foods13010032 - 21 Dec 2023
Cited by 12 | Viewed by 2646
Abstract
The use of edible insects in the human diet is gaining importance because they are characterized by high nutritional value, and their cultivation is much more environmentally friendly than traditional livestock farming. The objective of this study was to determine the chemical and [...] Read more.
The use of edible insects in the human diet is gaining importance because they are characterized by high nutritional value, and their cultivation is much more environmentally friendly than traditional livestock farming. The objective of this study was to determine the chemical and nutritional fat profile of selected edible insects as follows: house cricket (Acheta domesticus adult), field cricket (Gryllus bimaculatus adult), mealworm (Tenebrio molitor larvae), and palm weevil (Rhynchophorus ferrugineus larvae) which are now commercially available worldwide. Additionally, the degree of implementation of nutrition standards for selected nutrients by these insects was assessed. Freeze-dried insects were studied using infrared-attenuated total reflectance mid-infrared spectroscopy for basic differentiation. The content of fat and fatty acids was determined, and dietary indicators were calculated. The spectroscopic findings align with biochemical data, revealing that Rhynchophorus ferrugineus larvae contain the highest fat content and the least protein. Unsaturated fatty acids (UFAs) predominated in the fat of the assessed insects. The highest content of saturated fatty acids (SFAs), along with the lowest content of polyunsaturated fatty acids (PUFAs), was observed in the larvae of the Rhynchophorus ferrugineus species. From a nutritional standpoint, Tenebrio molitor larvae exhibit the most favorable indicators, characterized by minimal athero- and thrombogenic effects, along with an optimal balance of hypo- and hypercholesterolemic acids. Knowledge of the composition and quantities of fats in different insect species is valuable for planning and preparing meals with accurate nutritional profiles, among other applications. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

10 pages, 1658 KiB  
Brief Report
Efficacy of Entomopathogenic Fungi as Prevention against Early Life Stages of the Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Laboratory and Greenhouse Trials
by Dana Ment, Noa Levy, Arnon Allouche, Michael Davidovitz and Gal Yaacobi
Insects 2023, 14(12), 918; https://doi.org/10.3390/insects14120918 - 30 Nov 2023
Cited by 4 | Viewed by 2013
Abstract
The red palm weevil (RPW) Rhynchophorus ferrugineus is a highly destructive invasive pest for palms whose management is mainly by application of synthetic pesticides. As a key pest of date palm plantations, it is necessary to integrate environmentally safe measures for its management. [...] Read more.
The red palm weevil (RPW) Rhynchophorus ferrugineus is a highly destructive invasive pest for palms whose management is mainly by application of synthetic pesticides. As a key pest of date palm plantations, it is necessary to integrate environmentally safe measures for its management. Entomopathogenic fungi (EPF) have been primarily studied as a preventative control measure due to the horizontal transfer of conidia within the RPW population. We previously demonstrated the horizontal transmission of fungal conidia from an egg-laying surface to the female weevil and then to the eggs and larvae. Based on that strategy, this study aimed to evaluate the virulence of commercial EPF products and laboratory EPF preparations to RPW females and their progeny, and their ability to protect palms against infestation. As such, it serves as a screening platform for field experiments. Mortality rates of females and eggs depended on the applied treatment formulation and fungal strain. Velifer®, a Beauveria bassiana product, and Metarhizium brunneum (Mb7) resulted in 60–88% female mortality. Mb7—as a conidial suspension or powder—resulted in 18–21% egg-hatching rates, approximately 3 times less than in the non-treated control. Treating palms with Mb7 suspension or dry formulation significantly inhibits infestation signs and results in protection. These results lay the foundation for investigating the protective rate of EPF products against RPW in date plantations. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

21 pages, 2290 KiB  
Article
Balancing the Growth Performance and Nutritional Value of Edible Farm-Raised Sago Palm Weevil (Rhynchophorus ferregineus) Larvae by Feeding Various Plant Supplemented-Sago Palm Trunk Diets
by Athakorn Promwee, Khanittha Chinarak, Worawan Panpipat, Atikorn Panya, Natthaporn Phonsatta, Matija Harcet and Manat Chaijan
Foods 2023, 12(18), 3474; https://doi.org/10.3390/foods12183474 - 19 Sep 2023
Cited by 5 | Viewed by 2491
Abstract
Herein, the effect of supplementing ground sago palm trunk (GSPT) with varying concentrations of plant-based ingredients (PIs), including rice bran (RB), soybean meal (SM), and perilla seed (PS), on the nutritional profile of sago palm weevil larvae (SPWL) was investigated. Increased PS intake [...] Read more.
Herein, the effect of supplementing ground sago palm trunk (GSPT) with varying concentrations of plant-based ingredients (PIs), including rice bran (RB), soybean meal (SM), and perilla seed (PS), on the nutritional profile of sago palm weevil larvae (SPWL) was investigated. Increased PS intake induced an increase in α-linolenic acid level and a reduction in the n-6/n-3 ratio in SPWL (p < 0.05). The presence of fatty acids in SPWL was determined predominantly by the fatty acid profile in the feed. The activities of Δ5 + Δ6 desaturases and thioesterase were not different among SPWL fed different diets (p < 0.05); however, PI intake resulted in low suppression of fads2 gene expression. RB, SM, and PS at the appropriate concentrations of 17.5%, 8.8%, and 7.0% in GSPT (F3 diet), respectively, boosted both protein quantity and quality of SPWL, as indicated by higher levels of essential amino acids, particularly lysine, than the FAO protein reference. Therefore, incorporating PIs into a regular diet is a viable method for enhancing the nutritional value and sustainability of farm-raised SPWL as a potential alternative source of high-quality lipid and protein. Full article
Show Figures

Figure 1

13 pages, 4619 KiB  
Article
Towards Monitoring and Identification of Red Palm Weevil Gender Using Microwave CSRR-Loaded TL Sensors
by Mohammed M. Bait-Suwailam
Sensors 2023, 23(15), 6798; https://doi.org/10.3390/s23156798 - 30 Jul 2023
Cited by 2 | Viewed by 1866
Abstract
This paper presents for the first time the design of a microwave sensing setup for the potential monitoring and identification of red palm weevil (RPW) gender type. The microwave sensor consists of a planar two-port transmission line (TL) with a single complementary split-ring [...] Read more.
This paper presents for the first time the design of a microwave sensing setup for the potential monitoring and identification of red palm weevil (RPW) gender type. The microwave sensor consists of a planar two-port transmission line (TL) with a single complementary split-ring resonant (CSRR) inclusion etched from the bottom metallic layer. The CSRR sensor is placed on top of a customized non-conductive container. The microwave sensing setup was designed, numerically demonstrated, fabricated and tested experimentally. Simulated results correlate quite well with the experimental data. Moreover, the sensitivity of the CSRR sensor when in close proximity to different RPW genders was evaluated both numerically and experimentally. Based on the measured results from 15 RPW samples with different body sizes, different RPW gender types showed unique microwave signatures. A notable shift in the sensor’s resonance frequency was achieved, where on average a resonant frequency shift of 10% for adult RPWs was achieved, while a 2.4% frequency change was obtained for larvae (young) RPWs. Hence, the proposed microwave sensing setup can be adopted in field trials to examine and differentiate between various RPW genders at various developmental stages. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop