Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = paleo-channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 28055 KiB  
Article
Sequence Stratigraphic and Geochemical Records of Paleo-Sea Level Changes in Upper Carboniferous Mixed Clastic–Carbonate Successions in the Eastern Qaidam Basin
by Yifan Li, Xiaojie Wei, Kui Liu and Kening Qi
J. Mar. Sci. Eng. 2025, 13(7), 1299; https://doi.org/10.3390/jmse13071299 - 2 Jul 2025
Viewed by 301
Abstract
The Upper Carboniferous strata in the eastern Qaidam Basin, comprising several hundred meters of thick, mixed clastic–carbonate successions that have been little reported or explained, provide an excellent geological record of paleoenvironmental and paleo-sea level changes during the Late Carboniferous icehouse period. This [...] Read more.
The Upper Carboniferous strata in the eastern Qaidam Basin, comprising several hundred meters of thick, mixed clastic–carbonate successions that have been little reported or explained, provide an excellent geological record of paleoenvironmental and paleo-sea level changes during the Late Carboniferous icehouse period. This tropical carbonate–clastic system offers critical constraints for correlating equatorial sea level responses with high-latitude glacial cycles during the Late Paleozoic Ice Age. Based on detailed outcrop observations and interpretations, five facies assemblages, including fluvial channel, tide-dominated estuary, wave-dominated shoreface, tide-influenced delta, and carbonate-dominated marine, have been identified and organized into cyclical stacking patterns. Correspondingly, four third-order sequences were recognized, each composed of lowstand, transgressive, and highstand system tracts (LST, TST, and HST). LST is generally dominated by fluvial channels as a result of river juvenation when the sea level falls. The TST is characterized by tide-dominated estuaries, followed by retrogradational, carbonated-dominated marine deposits formed during a period of sea level rise. The HST is dominated by aggradational marine deposits, wave-dominated shoreface environments, or tide-influenced deltas, caused by subsequent sea level falls and increased debris supply. The sequence stratigraphic evolution and geochemical records, based on carbon and oxygen isotopes and trace elements, suggest that during the Late Carboniferous period, the eastern Qaidam Basin experienced at least four significant sea level fluctuation events, and an overall long-term sea level rise. These were primarily driven by the Gondwana glacio-eustasy and regionally ascribed to the Paleo-Tethys Ocean expansion induced by the late Hercynian movement. Assessing the history of glacio-eustasy-driven sea level changes in the eastern Qaidam Basin is useful for predicting the distribution and evolution of mixed cyclic succession in and around the Tibetan Plateau. Full article
Show Figures

Figure 1

20 pages, 9046 KiB  
Article
Characterization and Numerical Modeling of Shallow Marine Turbidite Depositional Systems: A Case Study from the Second Member of the Yinggehai Formation, X Gas Field, Yinggehai Basin
by Jiaying Wei, Lei Li, Yong Xu, Guoqing Xue, Zhongpo Zhang and Guohua Zhang
J. Mar. Sci. Eng. 2025, 13(6), 1107; https://doi.org/10.3390/jmse13061107 - 31 May 2025
Viewed by 356
Abstract
Objective: The research on turbid current deposition in shallow Marine shelf environments is relatively weak. Method: Based on three-dimensional seismic, drilling and logging data, etc., the spatio-temporal characterization of the shallow sea turbidity current sedimentary system was carried out by using seismic geomorphology [...] Read more.
Objective: The research on turbid current deposition in shallow Marine shelf environments is relatively weak. Method: Based on three-dimensional seismic, drilling and logging data, etc., the spatio-temporal characterization of the shallow sea turbidity current sedimentary system was carried out by using seismic geomorphology and sedimentary numerical simulation techniques. Results and Conclusions: (1) A set of standards for identifying sedimentary units in the X Gas Field was established, identifying four sedimentary units: channel, mound body, channel-side accumulation body, and shelf mud; (2) The vertical evolution and planar distribution of the sedimentary units in the painting were precisely engraved. Along with the weakly–strongly–weak succession of turbidity current energy, the lithological combination of argillaceous siltstone–siltstone–mudstone developed vertically. On the plane, the clusters showed an evolution of isolation–connection–superposition. The scale of the river channel continued to expand, and the phenomena of oscillation and lateral accumulation occurred. (3) Three factors were analyzed: sea level, material sources, and sedimentary substrates (paleo landforms), and a shallow Marine turbidity current sedimentary system was established in the Honghe area in the northwest direction under the background of Marine receding, which is controlled by sedimentary slope folds and blocked by the high part of the diapause during the downward accumulation process of material sources along the shelf. (4) The numerical simulation results reconstructed the process of lateral migration of waterways, evolution of branch waterways into clusters, expansion of the scale of isolated clusters, and connection and superposition to form cluster complexes on a three-dimensional scale. The simulation results are in high agreement with the actual geological data. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

13 pages, 7031 KiB  
Article
Sand Distribution Controlled by Paleogeomorphology in Marine–Continental Rift Basin
by Bochuan Geng, Peidong Su and Shilin Wang
J. Mar. Sci. Eng. 2025, 13(6), 1077; https://doi.org/10.3390/jmse13061077 - 29 May 2025
Viewed by 368
Abstract
The analysis of sand distribution in a marine–continental rift basin is of practical value for hydrocarbon prediction. The primary objective of this study is to investigate the correlation between Paleoproterozoic sand development and paleomorphology in the Nanpu sag, and to focus on identifying [...] Read more.
The analysis of sand distribution in a marine–continental rift basin is of practical value for hydrocarbon prediction. The primary objective of this study is to investigate the correlation between Paleoproterozoic sand development and paleomorphology in the Nanpu sag, and to focus on identifying the key factors controlling sand deposition in the marine–continental rift basin. Correspondence between the development of the Paleoproterozoic sand in the Nanpu sag and the paleogeomorphology shows that the gully limited the deposition of the sand into the lake. The differentiation and aggregation of the sand in the lake basin were influenced by two kinds of slope break zones (the syn-sedimentary fracture tectonic slope break zone and the paleo-topographic flexural depositional slope break zone). Due to tectonic movements in the marine–continental rift basin, as well as provenance supply and weather during chasmic stages, the impact of valley and syndeposit slope break zone on sand development varies. In areas where allocation is better as valley–syndeposit slope break zone, basal slope and its vicinity usually are favorable for delta (braided channel) and fan delta sand development, which extend basinward through hydraulic transport. Meanwhile, under the influence of syntectonic and gravitational disequilibrium, gravity flow sand can be seen sporadically distributed in the deep end of fan fronts. This study is of great significance for oil and gas exploration in the Bohai Bay Basin region and contributes to a better understanding of depositional processes in similar marine–continental rift basins around the globe. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

18 pages, 5765 KiB  
Article
River Meanders, Tributary Junctions, and Antecedent Morphology
by Jonathan D. Phillips
Hydrology 2025, 12(5), 101; https://doi.org/10.3390/hydrology12050101 - 22 Apr 2025
Viewed by 724
Abstract
Tributaries to meandering rivers rarely join the river on the interior of bends. The limited drainage area on bend interiors explains why tributaries seldom form there, but not why existing tributaries are redirected as meanders develop. Other relevant factors include flow dynamics at [...] Read more.
Tributaries to meandering rivers rarely join the river on the interior of bends. The limited drainage area on bend interiors explains why tributaries seldom form there, but not why existing tributaries are redirected as meanders develop. Other relevant factors include flow dynamics at junctions, runoff partitioning on inner vs. outer bends, and tributary deflection as the main channel migrates laterally. This study investigated whether the lack of confluences on bend interiors applies to lower coastal plain rivers in South and North Carolina, USA, where the factors above are not necessarily active, and if so how tributaries at sites of developing meanders are redirected. Of the 121 confluences examined using GIS data supplemented with field observations, none occurred on meander bend interiors. A total of 17 cases of potentially deflected tributaries were identified. Of these, 11 had sufficient evidence for a confident interpretation of how redirection occurred. In all 11 cases, pre-bend river paleochannels were involved in redirecting the tributaries away from the bend interior. This is explained by a model showing that the local slope gradient and mean depth advantages of the paleochannels provide velocity, stream power, and shear stress advantages over extension of the tributary channel into the bend interior. The results illustrate the importance of local hydraulic selection, and the influence of antecedent morphology on river hydrology and geomorphology. Full article
Show Figures

Figure 1

20 pages, 14671 KiB  
Article
Field Pumping and Recharge Test Study for Confined Aquifers in Super-Large Deep Foundation Pit Group Sites
by Shuo Wang, Weidong Wang, Zhonghua Xu, Qingjun Song and Jiangu Qian
Buildings 2025, 15(8), 1383; https://doi.org/10.3390/buildings15081383 - 21 Apr 2025
Viewed by 475
Abstract
To ensure the stability of deep foundation pits in confined aquifers, dewatering is often required. However, pumping from confined aquifers in large deep foundation pit groups may lead to significant environmental deformations. Therefore, field pumping and recharge tests are required to guide design [...] Read more.
To ensure the stability of deep foundation pits in confined aquifers, dewatering is often required. However, pumping from confined aquifers in large deep foundation pit groups may lead to significant environmental deformations. Therefore, field pumping and recharge tests are required to guide design of groundwater and environmental deformation control scheme. Focusing on a super-large deep foundation pit group in Shanghai, single-well pumping, multi-well pumping, and recharge tests were conducted in distinct geological zones (normally consolidated area and paleochannel zone). The hydraulic connectivity and spatiotemporal patterns of groundwater drawdown and soil settlement were systematically analyzed. The results show that: (1) There exists a certain hydraulic connection between the first and second confined aquifers. In the paleochannel area, the aquitard between the micro-confined and the first confined aquifer is insufficient to completely block hydraulic connectivity. (2) The ratio of ground surface settlement to groundwater drawdown is about 3.4 mm/m, and the deep soil settlement is significantly or even greater than the surface settlement, so it is necessary to strengthen the monitoring of deep settlement. (3) Recharge can elevate the groundwater and reduce settlement; however, it is difficult to eliminate the variation in settlement along the vertical direction. Full article
Show Figures

Figure 1

15 pages, 14363 KiB  
Article
Sedimentary Diversity of Tsunami Deposits in a River Channel Associated with the 2024 Noto Peninsula Earthquake, Central Japan
by Rina Okada, Koji Umeda, Keigo Motegi, Takanobu Kamataki and Tadashi Amano
Geosciences 2025, 15(4), 153; https://doi.org/10.3390/geosciences15040153 - 17 Apr 2025
Viewed by 738
Abstract
A comprehensive analysis of modern tsunami deposits offers a valuable opportunity to elucidate the characteristics of paleo-tsunami deposits. On 1 January 2024, a tsunami was generated by a magnitude 7.6 seismic event and subsequently struck the Noto Peninsula in central Japan. In order [...] Read more.
A comprehensive analysis of modern tsunami deposits offers a valuable opportunity to elucidate the characteristics of paleo-tsunami deposits. On 1 January 2024, a tsunami was generated by a magnitude 7.6 seismic event and subsequently struck the Noto Peninsula in central Japan. In order to create a facies model of the tsunami deposits in terrestrial and riverine environments, field surveys were conducted on both the onshore and sandbars within the river channel in the Nunoura area on the northeastern Noto Peninsula. Terrestrial tsunami deposits were observed up to several hundred meters inland, with a slight decrease in thickness of several centimeters with distance from the shoreline. In terrestrial settings, the presence of a substantial silty layer overlying a graded sandy layer is indicative of ponded stagnant water from the tsunami wave. In contrast, riverine tsunami deposits are thicker and more extensive than terrestrial sediments, containing both gravels and shell fragments. An erosional surface develops between deposits of run-up and backwash flows, but a mud drape is not observed. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Natural Hazards)
Show Figures

Figure 1

21 pages, 11239 KiB  
Article
Genetic Model of the Luhai Sandstone-Type Uranium Deposit in the Erlian Basin, Inner Mongolia
by Chao Tang, Zenglian Xu, Ming Duan, Lishan Meng, Huajian Liu, Jialin Wei, Chao Zhang and Lijun Zhao
Minerals 2025, 15(3), 294; https://doi.org/10.3390/min15030294 - 13 Mar 2025
Cited by 1 | Viewed by 683
Abstract
The Luhai uranium deposit is a large-scale uranium deposit newly discovered in recent years through comprehensive prospecting methods. It is located in the Basaiqi Paleochannel Uranium metallogenic belt of the Erlian Basin and is characterized by its shallow burial and large scale. This [...] Read more.
The Luhai uranium deposit is a large-scale uranium deposit newly discovered in recent years through comprehensive prospecting methods. It is located in the Basaiqi Paleochannel Uranium metallogenic belt of the Erlian Basin and is characterized by its shallow burial and large scale. This paper provides new data on the genetic processes of sandstone-type uranium mineralization through sedimentological and geochemical environmental indicators (such as Fe3⁺/Fe2⁺, organic carbon, total sulfur, etc.), analysis of C-O isotopes of carbonate cements and H-O isotopes of groundwater, and geochemical and mineralogical studies of uranium minerals, iron–titanium oxides (involving backscatter analysis, micro-area chemical composition determination, and elemental surface scanning), and organic matter. Sedimentological analysis shows that the ore- bearing layer in the upper member of the Saihan Formation developed a braided channel within floodplain subfacies, which control the distribution of uranium ore bodies. Uranium mineralogical observations, geochemical environmental indicators, and organic geochemical data indicate that the main reducing agents related to mineralization are pyrite, terrestrial plants, and deep-sourced oil and gas. The δD values of groundwater in the ore-bearing layer range from −95.34‰ to −90.68‰, and the δ18O values range from −12.24‰ to −11.87‰. For calcite cements, the δ18OV-PDB values range from −24‰ to −11.5‰, and the δ18OV-SMOW values range from 6.2‰ to 19‰. It was determined that the ore-forming fluid is mainly surface fresh water that entered the strata during the tectonic uplift stage, with local mixing of deep-sourced brine. Based on these data, the main modes of uranium mineralization in the paleochannel were obtained as follows: (1) Redox mineralization occurs due to the reducing medium within the sand body itself and the reduction caused by deep- sourced oil and gas generated from the Tengge’er and Arshan Formations. (2) Mineralization is achieved through the mixing of fluids from different sources. Furthermore, a genetic model related to uranium mineralization in the paleochannels of the Luhai area has been established: favorable uranium reservoirs were formed during the sedimentary period, and during the post-sedimentary stage, reverse structures promoted redox reactions and fluid-mixing-induced mineralization. The research findings can provide guidance for the exploration of paleochannel sandstone-type uranium deposits in other areas of the Erlian Basin. Full article
Show Figures

Figure 1

14 pages, 6702 KiB  
Article
Study on the Occurrence of Double Bottom Simulating Reflectors in the Makran Accretionary Zone
by Jiangxin Chen, Wenyu Zhao, Siyou Tong, Leonardo Azevedo, Nengyou Wu, Bin Liu, Huaning Xu, Jianming Gong, Jing Liao, Jie Liang, Dongxu Luo and Yu Fu
J. Mar. Sci. Eng. 2025, 13(1), 68; https://doi.org/10.3390/jmse13010068 - 2 Jan 2025
Cited by 2 | Viewed by 908
Abstract
A Bottom Simulating Reflector (BSR) is a seismic feature closely related to marine gas hydrate as it is usually regarded as the seismic response of the base of the gas hydrate stability zone in seismic profiles. BSRs are widely distributed in the Makran [...] Read more.
A Bottom Simulating Reflector (BSR) is a seismic feature closely related to marine gas hydrate as it is usually regarded as the seismic response of the base of the gas hydrate stability zone in seismic profiles. BSRs are widely distributed in the Makran accretionary wedge, and double BSRs are observed at some locations. Double BSRs usually appear on seismic profiles as two layers of BSRs located at distinct depths but with large lateral seismic amplitude variations. Based on the multi-channel seismic reflection data acquired over the Makran accretionary wedge, this work studies the origin of the double BSR in the Makran accretionary wedge and its association with fluid escape events. Our modeling suggests that double BSRs correspond to both the paleo-seafloor and modern seafloor caused by late sedimentary activities. Also, the residual paleo-BSR migrates upward due to the increase in local geothermal gradient caused by diapirs and gas chimney thermal fluids. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

29 pages, 13372 KiB  
Article
Identifying Anthropogenic Versus Natural Submerged Prehistoric Landscapes: Two Case Studies from the Sicilian Channel
by Ehud Galili, Liora Kolska Horwitz, Ilaria Patania, Amir Bar and Isaac Ogloblin Ramirez
J. Mar. Sci. Eng. 2024, 12(11), 1981; https://doi.org/10.3390/jmse12111981 - 2 Nov 2024
Viewed by 1513
Abstract
In submerged landscapes, distinguishing anthropogenic features versus natural ones is often challenging. We have developed a set of criteria to validate the identification of submerged anthropogenic remains that include examining the geological context, sea-level considerations, associated archaeological finds (including coastal survey), and documenting [...] Read more.
In submerged landscapes, distinguishing anthropogenic features versus natural ones is often challenging. We have developed a set of criteria to validate the identification of submerged anthropogenic remains that include examining the geological context, sea-level considerations, associated archaeological finds (including coastal survey), and documenting the broader archaeological context. Furthermore, our experience demonstrates that, while progress has been made in applying remote-sensing technologies to detect anthropogenic features on the seabed, there is no substitute for direct, visual assessment by an underwater archaeologist for verification of their anthropogenic status. We have applied these criteria to examine two published case studies detailing suspected anthropogenic stone features on the seabed in the Sicilian Channel. Our examination has led us to conclude that both localities are not anthropogenic features. The Pantelleria Vecchia Bank features represent natural outcrops on a submerged paleo-landscape that were shaped by depositional and erosional processes during transgression and regression periods. The suspected Lampedusa cultic site comprises natural features that are located on a submerged neo-landscape formed due to erosion and retreat of the coastal cliff since the mid-Holocene, when the sea level reached its present level. Full article
Show Figures

Figure 1

18 pages, 8969 KiB  
Article
Petrogenesis and Geodynamic Mechanisms of Porphyry Copper Deposits in a Collisional Setting: A Case from an Oligocene Porphyry Cu (Au) Deposit in Western Yangtze Craton, SW China
by Mimi Yang, Xingyuan Li, Guoxiang Chi, Hao Song, Zhengqi Xu and Fufeng Zhao
Minerals 2024, 14(9), 874; https://doi.org/10.3390/min14090874 - 27 Aug 2024
Viewed by 1462
Abstract
The Xifanping deposit is a distinct Cenozoic porphyry Cu (Au) deposit located in the Sanjing porphyry metallogenic belt 100–150 km east of the JinshajFiang fault in the western Yangtze craton. We present new zircon U–Pb–Lu–Hf isotopic studies and geochemical data of the ore-bearing [...] Read more.
The Xifanping deposit is a distinct Cenozoic porphyry Cu (Au) deposit located in the Sanjing porphyry metallogenic belt 100–150 km east of the JinshajFiang fault in the western Yangtze craton. We present new zircon U–Pb–Lu–Hf isotopic studies and geochemical data of the ore-bearing quartz monzonite porphyry from the Xifanping deposit to determine their petrogenesis and geodynamic mechanisms. LA–ICP–MS zircon U–Pb dating yielded precise emplacement ages of 31.87 ± 0.41 Ma (MSWD = 0.86) and 32.24 ± 0.61 Ma (MSWD = 1.8) for quartz monzonite porphyry intrusions, and 254.9 ± 5.1 Ma (MSWD = 1.7) for inherited zircons of the monzonite porphyry. The ore-bearing monzonite porphyry is characterized by high-K calc–alkaline to shoshonite and peraluminous series, relatively enriched in light over heavy REEs, with no distinct Eu anomalies, as well as enrichment in LILEs and depletion of HFSEs, with adakitic affinities. The zircon Lu–Hf isotope data ranged from εHf(t) values of −2.94 to +3.68 (average −0.47) with crustal model (TDM2) ages ranging from 0.88 to 1.30 Ga, whereas the inherited zircons displayed positive εHf(t) values ranging from +1.83 to +7.98 (average +5.82), with crustal model (TDM2) ages ranging from 0.77 to 1.17 Ga. Results suggest that the Xifanping porphyry Cu (Au) deposit is related to two periods of magmatic activities. Early magmas were generated from the Paleo-Tethys oceanic subduction during the Late Permian. The subsequent porphyry magma was likely formed by the remelting of previously subduction-modified arc lithosphere, triggered by the continental collision between the Indian and Asian plates in the Cenozoic. The deep magmas and late hydrothermal fluids took advantage of the early magma transport channels along tectonically weak zones during the transition from an extrusive to an extensional–tensional tectonic environment. Early dikes from remelted and assimilated crust contributed to the two age ranges observed in the porphyry intrusions from the Xifanping deposit. The juvenile lower crust materials of the early magmatic arc were potential sources of the Cenozoic porphyry magmas, which has significant implications for mineral exploration and the geological understanding of porphyry Cu deposits in this region. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

18 pages, 22905 KiB  
Article
New Diatom and Sedimentary Data Confirm the Existence of the Northern Paleo-Outlet from Lake Ladoga to the Baltic Sea
by Anna V. Ludikova, Dmitry A. Subetto, Denis D. Kuznetsov, Alexander V. Orlov and Angelina E. Shatalova
Quaternary 2024, 7(3), 31; https://doi.org/10.3390/quat7030031 - 19 Jul 2024
Cited by 1 | Viewed by 1581
Abstract
Despite more than 100 years of research, a number of questions concerning the evolution of the post-glacial connection between Lake Ladoga, the largest European lake, and the Baltic Sea remain unanswered. In particular, the location and chronological frames of the paleo-outlet from Lake [...] Read more.
Despite more than 100 years of research, a number of questions concerning the evolution of the post-glacial connection between Lake Ladoga, the largest European lake, and the Baltic Sea remain unanswered. In particular, the location and chronological frames of the paleo-outlet from Lake Ladoga in the Holocene remain debatable. Paleolimnological studies were performed in small lakes in the northern part of the Karelian Isthmus (NW Russia), where the outlet from Lake Ladoga, the Heinjoki Strait, is thought to have existed until the lake drained to the south due to the tilting of its basin. The presence of the indicative “Ladoga species” (e.g., Aulacoseira islandica, Achnanthes joursacense, Cymbella sinuata, Ellerbeckia arenaria, Navicula aboensis, N. jaernefeltii, N. jentzschii, etc.) in the diatom assemblages is used as evidence for the influence of Lake Ladoga during the accumulation of coarse-grained sediments at the bottom of the ancient channel. It also confirms the functioning of the hypothetical northern local branch of the strait. Decreased abundances of the “Ladoga species” and the onset of the accumulation of fine-grained sediments suggest that the water discharge via this paleo-outlet rapidly reduced starting from ca. 4100 cal BP. The termination of the functioning of the Heinjoki Strait is recorded as an abrupt disappearance of the indicative taxa from the diatom record. This was dated to ca. 3500–3200 cal BP, which corresponds to the estimated ages of the birth of the River Neva, the present outlet from Lake Ladoga. Full article
Show Figures

Figure 1

19 pages, 62150 KiB  
Article
Characteristics and Environmental Indications of Grain Size and Magnetic Susceptibility of the Late Quaternary Sediments from the Xiyang Tidal Channel, Western South Yellow Sea
by Fei Xia, Dezheng Liu and Yongzhan Zhang
J. Mar. Sci. Eng. 2024, 12(5), 699; https://doi.org/10.3390/jmse12050699 - 24 Apr 2024
Cited by 1 | Viewed by 2100
Abstract
To reveal the characteristics and environmental indications for the combination of the grain size and magnetic susceptibility of coastal sediments, we provided a necessary basis for further study on their genetic mechanisms. Based on the data of grain size and magnetic susceptibility of [...] Read more.
To reveal the characteristics and environmental indications for the combination of the grain size and magnetic susceptibility of coastal sediments, we provided a necessary basis for further study on their genetic mechanisms. Based on the data of grain size and magnetic susceptibility of the 36.10 m long core 07SR01 sediments in the Xiyang tidal channel of western South Yellow Sea, we analyzed their variations and correlations and further revealed their environmental indications and corresponding regional sedimentary evolution via the combination of the aforementioned analysis results, the reinterpretation results of the sedimentary sequence and the age of core 07SR01 and shallow seismic profiles, and the findings of climate and glacial–eustatic cycles during Late Quaternary. The three stages of the sedimentary evolution of the Xiyang tidal channel between marine isotope stage (MIS) 7 and MIS 5 were summarized as follows: First is the stage of marginal bank and riverbed developments in the tidal estuary under a relatively high sea level and strong hydrodynamic conditions during MIS 7 (core section: 36.10–26.65 m). The sediments deposited in this stage were mainly affected by the paleo-Changjiang River and characterized by a coarse grain size (mean: 4.02 Φ) and relatively high magnetic susceptibilities (mean: 27.06 × 10−8 m3·kg−1), with small fluctuations which were strongly and positively correlated with the sand component. Second is the stage dominated by fluviolacustrine and littoral environments with the weak hydrodynamics during MIS 6–5, in which the climate changed from cold and dry to warm and humid as the sea level rose after a drop (core section: 26.65–15.77 m). The sediments deposited in this stage were characterized by a fine grain size (mean: 5.27 Φ) and low magnetic susceptibilities with minor variations (mean: 10.83 × 10−8 m3·kg−1) which were weakly and positively correlated with the coarse silt component. Third is the stage of delta front in the tidal estuary with a relatively high sea level and strong hydrodynamics during MIS 5 (core section: 15.77–0 m). The sediments deposited in this stage were strongly influenced by the paleo-Yellow River and characterized by a relatively coarse grain size (mean: 4.86 Φ), and high magnetic susceptibilities (mean: 37.15 × 10−8 m3·kg−1) with large fluctuations which were weakly and positively correlated with the sand and coarse silt components. Full article
Show Figures

Figure 1

28 pages, 45922 KiB  
Article
The Dunes of Belvedere–San Marco of Aquileia: Integrating High-Resolution Digital Terrain Models and Multispectral Images with Ground-Penetrating Radar Survey to Map the Largest System of Continental Dunes of Northern Italy
by Federica Vanzani, Alessandro Fontana, Livio Ronchi, Jacopo Boaga, Veronica Chiarini and Irka Hajdas
Remote Sens. 2024, 16(5), 765; https://doi.org/10.3390/rs16050765 - 22 Feb 2024
Viewed by 2271
Abstract
The interpretation of high-resolution remote-sensed data (i.e., LiDAR-derived DTMs, aerial photos and satellite images), compared with ground-penetrating radar surveys, historical cartography, geomorphological surveys and stratigraphic data, allowed us to map a large system of dunes near the Grado-Marano Lagoon (NE Italy) and reconstruct [...] Read more.
The interpretation of high-resolution remote-sensed data (i.e., LiDAR-derived DTMs, aerial photos and satellite images), compared with ground-penetrating radar surveys, historical cartography, geomorphological surveys and stratigraphic data, allowed us to map a large system of dunes near the Grado-Marano Lagoon (NE Italy) and reconstruct its evolution. Remote sensing investigations allowed us to recognize, map and interpret the sandy reliefs as a field of continental aeolian landforms extending for over 15 km2 and consisting of parabolic dunes elongated in the WSW direction. Radar soundings, together with the description of stratigraphic sections and cores, documented the internal clinostratification of the dunes, supporting their aeolian origin. Radiocarbon dating documents that the dunes formed 22 ka ago, at the end of the Last Glacial Maximum, and probably evolved until the first part of the Late Glacial, when vegetation was scarce. The landforms were fed by the sands blown from a paleochannel of Isonzo River flowing eastward of the dune’s field and blown by Bora. This is a very strong katabatic wind, still characterizing the area, but that was likely much stronger during last glaciation, when it was probably sustained by a stronger wind pattern in Central Europe. Full article
(This article belongs to the Special Issue Remote Sensing and Geophysics Methods for Geomorphology Research)
Show Figures

Figure 1

20 pages, 15122 KiB  
Article
Identification of Breaches in a Regional Confining Unit Using Electrical Resistivity Methods in Southwestern Tennessee, USA
by Md Rizwanul Hasan, Daniel Larsen, Scott Schoefernacker and Brian Waldron
Water 2023, 15(23), 4090; https://doi.org/10.3390/w15234090 - 25 Nov 2023
Viewed by 1998
Abstract
Electrical resistivity and borehole data are applied to delineate lithostratigraphic boundaries and image the geometry of confining-unit breaches in Eocene coastal-plain deposits to evaluate inter-aquifer exchange pathways. Eight dipole–dipole array surveys were carried out, and apparent resistivity was inverted to examine the lateral [...] Read more.
Electrical resistivity and borehole data are applied to delineate lithostratigraphic boundaries and image the geometry of confining-unit breaches in Eocene coastal-plain deposits to evaluate inter-aquifer exchange pathways. Eight dipole–dipole array surveys were carried out, and apparent resistivity was inverted to examine the lateral continuity of lithologic units in different water-saturation and geomorphic settings. In addition, sensitivity analysis of inverted resistivity profiles to electrode spacing was performed. Resistivity profiles from Shelby Farms (SF) highlight the effect of varied electrode spacing (2.5, 5, and 10 m), showing an apparent ~0.63 to 0.75 depth shift in resistivity-layer boundaries when spacing is halved, with the 10 m spacing closely matching borehole stratigraphy. Grays Creek and Presidents Island profiles show clay-rich Eocene Cook Mountain Formation (CMF), with resistivity ranging from 10 to 70 Ω-m, overlying the Eocene Memphis Sand—a prolific water-supply aquifer. Resistivity profiles of SF and Audubon Park reveal sandy Cockfield Formation (CFF) paleochannels inset within and through the CMF, providing hydrogeologic connection between aquifers, and clarifying the sedimentary origin of confining-unit breaches in the region. The results underscore the efficacy of the electrical resistivity method in identifying sand-rich paleochannel discontinuities in a low-resistivity regional confining unit, which may be a common origin of breaches in coastal-plain confining units. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology)
Show Figures

Graphical abstract

19 pages, 13718 KiB  
Article
Sedimentary Facies, Paleogeography, and Depositional Models of the Middle–Late Permian in the Sichuan Basin, Southwest China
by Mo Deng, Guowei Zhao, Xiaobing Lin, Chunyu Chen, Longlong Li and Qingshao Liang
Minerals 2023, 13(11), 1406; https://doi.org/10.3390/min13111406 - 1 Nov 2023
Cited by 4 | Viewed by 2742
Abstract
This study focuses on the analysis of the sedimentary facies of the Middle–Late Permian, including the Qixia, Maokou, Wujiaoping/Longtan, and Changxing/Dalong Formations, in the Sichuan Basin, southwest China. Integrating drilling data and field outcrop data, various sedimentary facies indicators were employed to define [...] Read more.
This study focuses on the analysis of the sedimentary facies of the Middle–Late Permian, including the Qixia, Maokou, Wujiaoping/Longtan, and Changxing/Dalong Formations, in the Sichuan Basin, southwest China. Integrating drilling data and field outcrop data, various sedimentary facies indicators were employed to define eight sedimentary facies types in the Sichuan Basin during the Middle–Late Permian, namely, mixed tidal flat, tidal flat, restricted platform, open platform, platform margin, slope, basin, and volcanic facies. Detailed facies analysis was conducted on selected well logs, and sedimentary facies distribution maps were compiled for different time intervals, establishing depositional models. During the Qixia to Maokou stages, an extensive open platform was developed in the Sichuan Basin, accompanied by shallow intra-platform shoals. Towards the west along the Dayi–Ya’an line, platform margins were developed, followed by slope facies and basin facies in a northwest direction. During the Changxing stage, the Kaijiang–Liangping fault block subsided, forming the “Kaijiang-Liangping” paleochannel, which controls reef–shoal deposition in the region. This study provides comprehensive insights into the sedimentary facies characteristics and depositional environments of the Middle–Late Permian in the Sichuan Basin, contributing to the understanding of the regional sedimentary history and geological evolution. Full article
Show Figures

Figure 1

Back to TopTop