Petrogenesis and Geodynamic Mechanisms of Porphyry Copper Deposits in a Collisional Setting: A Case from an Oligocene Porphyry Cu (Au) Deposit in Western Yangtze Craton, SW China
Abstract
1. Introduction
2. Geological Background
2.1. Regional Geology
2.2. Deposit Geology
3. Sampling and Analytical Methods
3.1. Sampling
3.2. Analytical Methods
4. Results
4.1. Petrography
4.2. Zircon U–Pb Ages
4.3. Whole-Rock Geochemistry
4.4. Zircon Lu–Hf Isotopic Data
5. Discussion
5.1. Igneous Age
5.2. Petrogenesis
5.3. Geodynamic Mechanism
6. Conclusions
- (1)
- mplacement of the Xifanping Cu (Au) deposit is a significant magmatic-metallogenic event in the western Yangtze craton. Zircon U–Pb dating yields precise emplacement ages of 31.87 ± 0.41 Ma and 32.24 ± 0.61 Ma for ore-bearing quartz monzonite porphyry intrusions and 254.9 ± 5.1 Ma for inherited zircons. We infer that the formation of ore-forming porphyry intrusions was derived from Indosinian magmatism in the Late Permian and mainly formed in the Himalayan magmatism in the Oligocene. The combined effect of the two periods of magmatism formed the unique Xifanping porphyry deposit.
- (2)
- High-K calc–alkaline to shoshonite and peraluminous series characterizes the Xifanping ore-bearing monzonite porphyry. This series is relatively enriched in light over heavy REEs, without distinct Eu anomalies. The series is poor in HFSEs, rich in LILEs, and has adakitic affinities. The data range of zircon εHf(t) is between −2.94 and +3.68 (average −0.47). Crustal model (TDM2) ages range from 0.88 to 1.30 Ga. The inherited zircons have positive values of εHf(t) between +1.83 and +7.98 (average +5.82), and the crustal model (TDM2) ages are between 0.77 and 1.17 Ga. Potential sources of the porphyry magma at the Xifanping deposit include the Neoproterozoic and Late Permian thickened juvenile lower crust materials of the early magmatic arc.
- (3)
- Two periods of magmatic activities characterize the Xifanping deposit. Paleo-Tethys oceanic subduction generated early magmas during the Late Permian. The subsequent porphyry magma was likely formed by the remelting of previously subduction-modified arc lithosphere, triggered by a continental collision between the Indian and Asian plates in the Cenozoic. The deep magmas and late hydrothermal fluids took advantage of the early magma transport channels along tectonically weak zones during the transition from extrusive to extensional-tensional tectonic environment. Remelted and assimilated early magmatic intrusive dikes contributed to the two age ranges observed in the porphyry intrusions of the Xifanping deposit.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooke, D.-R.; Hollings, P.; Walshe, J.-L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ. Geol. 2005, 100, 801–818. [Google Scholar] [CrossRef]
- Sillitoe, R.-H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Richards, J.-P.; Spell, T.; Rameh, E.; Razique, A.; Fletcher, T. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: Examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Econ. Geol. 2012, 107, 295–332. [Google Scholar] [CrossRef]
- Wang, R.; Weinberg, R.-F.; Collins, W.-J.; Richards, J.-P.; Zhu, D.-C. Origin of post-collisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Sci. Rev. 2018, 181, 122–143. [Google Scholar] [CrossRef]
- Sun, X.; Lu, Y.-J.; McCuaig, T.-C.; Zheng, Y.-Y.; Chang, H.-F.; Guo, F.; Xu, L.-J. Miocene ultrapotassic, high-Mg dioritic, and adakite-like rocks from Zhunuo in Southern Tibet: Implications for mantle metasomatism and porphyry copper mineralization in collisional orogens. J. Petrol. 2018, 59, 341–386. [Google Scholar] [CrossRef]
- Hou, Z.-Q.; Wang, R. Fingerprinting metal transfer from mantle. Nat. Commun. 2019, 10, 3510. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, H.-F.; Harris, N.; Luo, B.-J.; Zhang, W.; Xu, W.-C. Tectonic erosion and crustal relamination during the India-Asian continental collision: Insights from Eocene magmatism in the southeastern Gangdese belt. Lithos 2019, 346, 105161. [Google Scholar] [CrossRef]
- Wang, R.; Luo, C.-H.; Xia, W.-J.; Sun, Y.-C.; Liu, B.; Zhang, J.-B. Progresses in the Study of High Magmatic Water and Oxidation State of Post-collisional Magmas in the Gangdese Porphyry Deposit Belt. Bull. Mineral. Petrol. Geochem. 2021, 40, 1061–1077, (In Chinese with English Abstract). [Google Scholar]
- He, W.-Y.; Mo, X.-X.; Yang, L.-Q.; Xing, Y.-L.; Dong, G.-C.; Yang, Z.; Gao, X.; Bao, X.-S. Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit, western Yunnan, China: Implications for magma mixing/mingling and mineralization. Gondwana Res. 2016, 40, 230–248. [Google Scholar] [CrossRef]
- Luo, C.-H. The Geochronology, Geochemistry Characteristics and Petrogenesis of the Alkali-Rich Porphyry in Yao’an, West Yunnan Province. Master’s Thesis, China University of Geosciences, Beijing, China, 2018. [Google Scholar]
- Xu, L.-L.; Zhu, J.-J.; Huang, M.-L.; Pan, L.-C.; Hu, R.; Bi, X.-W. Genesis of hydrous-oxidized parental magmas for porphyry Cu (Mo, Au) deposits in a post-collisional setting: Examples from the Sanjiang region, SW China. Miner. Depos. 2023, 58, 161–196. [Google Scholar] [CrossRef]
- Haschke, M.; Ahmadian, J.; Murata, M.; McDonald, I. Copper mineralization prevented by arc-root delamination during Alpine-Himalayan collision in central Iran. Econ. Geol. 2010, 105, 855–865. [Google Scholar] [CrossRef]
- Rabiee, A.; Rossetti, F.; Lucci, F.; Lustrino, M. Cenozoic porphyry and other hydrothermal ore deposits along the South Caucasus-West Iranian tectono-magmatic belt: A critical reappraisal of the controlling factors. Lithos 2022, 430, 106874. [Google Scholar] [CrossRef]
- Martin, H.; Smithies, R.-H.; Rapp, R.; Moyen, J.-F.; Champion, D. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 2005, 79, 1–24. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Jiang, S.-Y.; Ling, H.-F.; Dai, B.-Z. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth Planet. Sci. Lett. 2006, 241, 617–633. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Liu, Z.; Jia, R.-Y.; Liao, S.-Y.; Zhou, Q.; Zhao, P. Miocene potassic granite-syenite association in western Tibetan plateau: Implications for shoshonitic and high Ba-Sr granite genesis. Lithos 2012, 134–135, 146–162. [Google Scholar] [CrossRef]
- Castillo, P.-R.; Janney, P.-E.; Solidum, R.-U. Petrology and geochemistry of Camiguin island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contrib. Mineral. Petrol. 1999, 134, 33–51. [Google Scholar] [CrossRef]
- Richards, J.-P.; Kerrich, R. Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Econ. Geol. 2007, 102, 534–576. [Google Scholar] [CrossRef]
- Chang, J.; Audétat, A. Post-subduction porphyry Cu magmas in the Sanjiang region of southwestern China formed by fractionation of lithospheric mantle–derived mafic magmas. Geology 2023, 51, 64–68. [Google Scholar] [CrossRef]
- Hou, Z.-Q.; Zhou, Y.; Wang, R.; Zheng, Y.-C.; He, W.-Y.; Zhao, M.; Evans, N.-J.; Weinberg, R.-F. Recycling of metal–fertilized lower continental crust: Origin of non–arc Au–rich porphyry deposits at cratonic edges. Geology 2017, 45, 563–566. [Google Scholar] [CrossRef]
- Zhou, Y.; Hou, Z.-Q.; Wang, R.; Zheng, Y.-C.; He, W.-Y.; Xu, B. Petrogenesis of Cenozoic high–Sr/Y shoshonites and associated mafic microgranular enclaves in an intracontinental setting: Implications for porphyry Cu-Au mineralization in western Yunnan, China. Lithos 2018, 324, 39–54. [Google Scholar] [CrossRef]
- Yang, M.-M.; Zhao, F.-F.; Liu, X.-F.; Qing, H.-R.; Chi, G.-X.; Li, X.-Y.; Lai, C.-K. Contribution of magma mixing to the formation of porphyry-skarn mineralization in a post-collisional setting: The Machangqing Cu-Mo-(Au) deposit, Sanjiang tectonic belt, SW China. Ore Geol. Rev. 2020, 122, 103518. [Google Scholar] [CrossRef]
- Chung, S.-L.; Chu, M.-F.; Zhang, Y.-Q.; Xie, Y.-W.; Lo, C.-H.; Lee, T.-Y.; Lan, C.-Y.; Li, X.-H.; Zhang, Q.; Wang, Y.-Z. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci. Rev. 2005, 68, 173–196. [Google Scholar] [CrossRef]
- Hou, Z.-Q.; Zhang, H.-R.; Pan, X.-F.; Yang, Z.-M. Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain. Ore Geol. Rev. 2011, 39, 21–45. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.-F.; Li, G.-J.; Santosh, M. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Sci. Rev. 2014, 138, 268–299. [Google Scholar] [CrossRef]
- Bao, X.-X.; He, W.-Y.; Mao, J.-W.; Liang, T.; Wang, H.; Zhou, Y.; Wang, J. Redox states and genesis of Cu-and Au-mineralized granite porphyries in the jinshajiang Cu–Au metallogenic belt, SW China: Studies on the zircon chemistry. Miner. Depos. 2023, 58, 1123–1142. [Google Scholar] [CrossRef]
- Metcalfe, I. Paleozoic and Mesozoic tectonic evolution and paleogeography of East Asian crustal fragments: The Korean Peninsula in context. Gondwana Res. 2006, 9, 24–46. [Google Scholar] [CrossRef]
- Xu, L.-L.; Bi, X.-W.; Hu, R.-Z.; Zhang, X.-C.; Su, W.-C.; Qu, W.-J.; Hu, Z.-C.; Tang, Y.-Y. Relationships between porphyry Cu–Mo mineralization in the Jinshajiang–Red River metallogenic belt and tectonic activity: Constraints from zircon U–Pb and molybdenite Re–Os geochronology. Ore Geol. Rev. 2012, 48, 460–473. [Google Scholar] [CrossRef]
- Hu, R.-Z.; Burnard, P.-G.; Bi, X.-W.; Zhou, M.-F.; Pen, J.-T.; Su, W.-C.; Wu, K.-X. Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River–Jinshajiang fault belt, SW China. Chem. Geol. 2004, 203, 305–317. [Google Scholar] [CrossRef]
- Gao, S.; Ling, W.-L.; Qiu, Y.-M.; Lian, Z.; Hartmann, G.; Simon, K. Constrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crust anatexis. Geochim. Cosmochim. Acta 1999, 63, 2071–2088. [Google Scholar] [CrossRef]
- Sun, W.-H.; Zhou, M.-F.; Gao, J.-F.; Yang, Y.-H.; Zhao, X.-F.; Zhao, J.-H. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China. Precambrian Res. 2009, 172, 99–126. [Google Scholar] [CrossRef]
- Zhou, M.-F.; Ma, Y.-X.; Yan, D.-P.; Xia, X.-P.; Zhao, J.-H.; Sun, M. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Res. 2006, 144, 19–38. [Google Scholar] [CrossRef]
- Cawood, P.-A.; Wang, Y.-J.; Xu, Y.-J.; Zhao, G.-C. Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere? Geology 2013, 41, 903–906. [Google Scholar] [CrossRef]
- Du, L.-L.; Guo, J.-H.; Nutman, A.-P.; Wyman, D.; Geng, Y.-S.; Yang, C.-H.; Liu, F.-L.; Ren, L.-D.; Zhou, X.-W. Implications for Rodinia reconstructions for the initiation of Neoproterozoic subduction at ~860 Ma on the western margin of the Yangtze Block: Evidence from the Guandaoshan pluton. Lithos 2014, 196–197, 67–82. [Google Scholar] [CrossRef]
- Zou, F.-H.; Wu, C.-L.; Gao, D.; Deng, L.-H.; Gao, Y.-H. Triassic granites in theWest Qinling Orogen, China: Implications for the Early Mesozoic tectonic evolution of the Paleo-Tethys ocean. Int. Geol. Rev. 2022, 65, 1–33. [Google Scholar]
- Wang, X.-F.; Metcalfe, I.; Jian, P.; He, L.-Q.; Wang, C.-S. The Jinshajiang- Ailaoshan Suture zone, China: Tectonostratigraphy, age and evolution. Asian Earth Sci. 2000, 18, 675–690. [Google Scholar] [CrossRef]
- Lu, Y.-J.; McCuaig, T.-C.; Li, Z.-X.; Jourdan, F.; Hart, C.-J.-R.; Hou, Z.-Q.; Tang, S.-H. Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze Craton: Mantle source and tectonic implications. Lithos 2015, 233, 139–161. [Google Scholar] [CrossRef]
- Lu, Y.-J.; Kerrich, R.; Kemp, A.-I.-S.; McCuaig, T.-C.; Hou, Z.-Q.; Hart, C.-J.-R.; Li, Z.-X.; Cawood, P.-A.; Bagas, L.; Yang, Z.-M.; et al. Intracontinental Eocene-Oligocene porphyry Cu mineral systems of Yunnan, Western Yangtze Craton, China: Compositional characteristics, sources, and implications for continental collision metallogeny. Econ. Geol. 2013, 108, 1541–1576. [Google Scholar] [CrossRef]
- Fu, F.; Yang, Z.-S.; Zhao, L.-Q. Metallogeneny and Resources Prodiction for the Xifanping Porphyry Cu Deposit. Sichuan J. Geol. 2014, 34, 44–48, (In Chinese with English Abstract). [Google Scholar]
- Xu, S.-J.; Shen, W.-Z.; Wang, R.-C.; Lu, J.-J.; Lin, Y.-P.; Ni, P.; Luo, Y.-N.; Li, L.-Z. Characteristics and genesis of Xifanping porphyry copper deposit in Yanyuan, Sichuan Province. J. Mineral. 1997, 1, 56–62. [Google Scholar]
- Hou, Z.-Q.; Zeng, P.-S.; Gao, Y.-F.; Du, A.-D.; Fu, D.-M. Himalayan Cu–Mo–Au mineralization in the eastern Indo–Asian collision zone: Constraints from Re–Os dating of molybdenite. Miner. Depos. 2006, 41, 33–45. [Google Scholar] [CrossRef]
- Fu, D.-M.; Xu, M.-J. Geological characteristics of the silver polymetallic deposit in Jiacun, Sichuan Province and its analogy with the Black ore deposit in Japan. J. Sichuan Geol. 1996, 16, 67–72, (In Chinese with English Abstract). [Google Scholar]
- Li, L.-Z.; Zhao, Z.-G.; He, J.-L. Geological characteristics of Himalayan porphyry copper deposit in Mofan Village, Yanyuan, Sichuan Province. Miner. Depos. Geol. 2006, 25, 269–280. [Google Scholar]
- Ding, H.; Hou, Q.; Zhang, Z. Petrogenesis and tectonic significance of the Eocene adakite-like rocks in western Yunnan, southeastern Tibetan Plateau. Lithos 2016, 245, 161–173. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, D.-F.; Zhang, H.; Liu, H.; Zhang, Y.; Jin, C.-H.; Shen, Z.-W. Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Quartz Monzonite-Porphyry from Xifanping Copper Deposit in Yanyuan County, Sichuan Province, China. Acta Mineral. Sin. 2017, 37, 475–485, (In Chinese with English Abstract). [Google Scholar]
- Black, L.-P.; Kamo, S.-L.; Allen, C.-M.; Aleinikoff, J.-N.; Davis, D.-W.; Korsch, R.-J.; Foudoulis, C. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.-J.; Crowley, J.-L.; Gerdes, A.; Hanchar, J.-M.; Horstwood, M.-S.-A.; Morris, G.-A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.-L.; Meier, M.; Oberli, F.; Quadt, A.-V.; Roddick, J.-C.; Spiegel, W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Li, X.-H.; Tang, G.-Q.; Guo, B.; Yang, Y.-H.; Hou, K.-J.; Hu, Z.-C.; Li, Q.-L.; Liu, Y.; Li, W.-X. Qinghu zircon: A working reference for microbeam analysis of U–Pb age and Hf and O isotopes. Chin. Sci. Bull. 2013, 36, 4647–4654. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Y.; Gao, S.; Liu, W.; Zhang, W.; Tong, X.; Zhou, L. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1391–1399. [Google Scholar] [CrossRef]
- Gao, J.-F.; Lu, J.-J.; Lin, Y.-P.; Pu, W. Analysis of trace elements in rock samples using HR-ICPMS. J. Nanjing Univ. (Nat. Sci.) 2003, 39, 844–850, (In Chinese with English Abstract). [Google Scholar]
- Hoskin, P.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Defant, M.-J.; Drummond, M.-S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Middlemost, E.-A.-K. Naming Materials in the Magma/igneous Rock System. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Collins, W.-J.; Scams, S.-D.; White, A.-J.-R. Nature and Origin of A–Type Uranitcs with Particular Reference to Southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Maniar, P.-D.; Piccole, I.-P.-M. Tectonic Discrimination of Granitoids. Geol. Soc. Am. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.-F. Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Yang, M.-M.; Zhao, F.-F.; Liu, X.-F.; Qing, H.-R.; Raharimahefa, T.; Duan, W.-J. Petrogenesis and geodynamic setting of granitoids at Machangqing Cu–Mo (Au) deposit, western Yangtze craton, southwestern China: Constraints from zircon U–Pb and molybdenite Re–Os geochronology, Lu–Hf isotopes, and geochemistry. Can. J. Earth Sci. 2020, 57, 1066–1088. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.-B.; Luo, C.-H.; Zhou, Q.-S.; Xia, W.-J.; Zhao, Y. Control of Deep Processes and Material Structure on Cu-REE Metallogenic System in Continental Collision Belt: A Case Study of Gangdise and Sanjiang Collision Belt; Tongfang Knowledge Network (Beijing) Technology Co., Ltd.: Beijing, China, 2023; (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Hawkesworth, C.-J.; Turner, S.-P.; McDermott, F.; Peate, D.-M.; Calsteren, V.-P. U–Th isotopes in arc magmas: Implications for element transfer from subducted crust. Science 1997, 276, 561–563. [Google Scholar] [CrossRef]
- Chappell, B.-W.; White, A.-J.-R. I– and S–type granites in the Lachlan Fold Belt. Trans. R. Soc. Edinb.–Earth Sci. 1992, 83, 1–26. [Google Scholar]
- Loiselle, M.-C.; Wones, D.-R. Characteristics and origin of anorogenic granites. Geol. Soc. Am. Abstr. Programs 1979, 11, 468. [Google Scholar]
- White, A.-J.-R. Sources of granite magmas. Geol. Soc. Am. 1979, 11, 539. [Google Scholar]
- Hu, P.-Y.; Li, C.; Li, J.; Wang, M.; Xie, C.-M.; Wu, Y.-W. Zircon U-Pb-Hf isotopes and whole-rock geochemistry of gneissic granites from the Jitang complex in Leiwuqi area, eastern Tibet, China: Record of the closure of the Paleo-Tethys Ocean. Tectonophysics 2014, 623, 83–99. [Google Scholar] [CrossRef]
- Eby, G.-N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Whalen, J.-B.; Currie, K.-L.; Chappell, B.-W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Pearce, J.-A.; Harris, N.-B.-W.; Tindle, A.-G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Huang, J.-H. Comparative Study on the Petrogenesis of the Ore-Bearing and Barren Porphyries from the Xifanping Copper Deposit in Yuan; China University of Geosciences (Beijing): Beijing, China, 2019; (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Qiu, L. Origin and Deep Process of Cenozoic Alkali-Rich Porphyry in Taozi Xiang, Yanyuan, Sichuan; China University of Geosciences (Beijing): Beijing, China, 2020; (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Taylor, S.-R.; Mclennan, S.-M. The Continental Crust: Its Composition and Evolution; An Examination of the Geochemical Record Preserved in Sedimentary Rock; Blackwell Scientific Publication: Hoboken, NJ, USA, 1985; pp. 1–328. [Google Scholar]
- Wang, C.-M.; Deng, J.; Santosh, M.; McCuaig, T.-C.; Lu, Y.-J.; Carranza, E.-J.-M.; Wang, Q.-F. Age and origin of the Bulangshan and Mengsong granitoids and their significance for post-collisional tectonics in the Changning-Menglian Paleo-Tethys Orogen. J. Asian Earth Sci. 2015, 113, 656–676. [Google Scholar] [CrossRef]
- Wang, C.-M.; Deng, J.; Bagas, L.; Wang, Q. Zircon Hf-isotopic mapping for understanding crustal architecture and metallogenesis in the Eastern Qinling Orogen. Gondwana Res. 2017, 50, 293–310. [Google Scholar] [CrossRef]
- Wang, E.-C.; Buchifel, B.-C. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the AilaoShan shear zone and the eastern Himalayan syntaxis. Int. Geol. Rev. 1997, 39, 191–219. [Google Scholar] [CrossRef]
- Wang, J.-H.; Yin, A.; Harrison, T.-M.; Grove, M.; Zhang, Y.-Q.; Xie, G.-H. A tectonic model for Cenozoic igneous activities in the eastern Indo–Asian collision zone. Earth Planet 2001, 88, 123–133. [Google Scholar] [CrossRef]
- Hou, Z.-Q.; Pan, X.-F.; Yang, Z.-M.; Qu, X.-M. Porphyry Cu–(Mo–Au) deposits not related to oceanic-slab subduction: Examples from Chinese porphyry deposits in continental setting. Geosciences 2007, 21, 332–351, (In Chinese with English Abstract). [Google Scholar]
- Richards, J.-P. Post subduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 2009, 37, 247–250. [Google Scholar] [CrossRef]
- Chen, J.-L.; Xu, J.-F.; Wang, B.-D.; Yang, Z.-M.; Ren, J.-B.; Yu, H.-X.; Liu, H.-F.; Feng, Y.-X. Geochemical differences between subduction-and collision-related copper-bearing porphyries and implications for metallogenesis. Ore Geol. Rev. 2015, 70, 424–437. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, Y.-Y.; Sun, X.; Shen, Y.-H. Geochronology and petrogenesis of Miocene granitic intrusions related to the Zhibula Cu skarn deposit in the Gangdese belt, southern Tibet. J. Asian Earth Sci. 2016, 120, 100–116. [Google Scholar] [CrossRef]
- Deng, J.-H.; Yang, X.-Y.; Zartman, R.-E.; Qi, H.-S.; Zhang, L.-P.; Liu, H.; Zhang, Z.-F.; Mastoi, A.-S.; Al Emil, G.-B.; Sun, W.-D. Early cretaceous transformation from Pacific to Neo-Tethys subduction in the SW Pacific Ocean: Constraints from Pb-Sr-Nd-Hf isotopes of the Philippine arc. Geochim. Cosmochim. Acta 2020, 285, 21–40. [Google Scholar] [CrossRef]
- Deng, J.-H.; Yang, X.-Y.; Qi, H.-S.; Zhang, Z.-F.; Mastoi, A.-S.; Al Emil, G.-B.; Sun, W.-D. Early Cretaceous adakite from the Atlas porphyry Cu-Au deposit in Cebu Island, Central Philippines: Partial melting of subducted oceanic crust. Ore Geol. Rev. 2019, 110, 102937. [Google Scholar] [CrossRef]
- Sun, W.-D. Initiation and evolution of the South China Sea: An overview. Chin. J. Geochem. 2016, 35, 215–225. [Google Scholar]
- Hou, Z.; Wang, R.; Zhang, H.; Zheng, Y.; Thybo, H.; Zhang, L. Formation of giant copper deposits in Tibet driven by tearing of the subducted Indian plate. Earth-Sci. Rev. 2023, 243, 104482. [Google Scholar] [CrossRef]
- Mo, X.-X.; Niu, Y.-L.; Dong, G.-C.; Zhao, Z.-D.; Hou, Z.-Q.; Zhou, S.; Ke, S. Contribution of syn collisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chem. Geol. 2008, 250, 49–67. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, Z.-D.; DePaolo, D.-J.; Zhu, D.-C.; Meng, F.-Y.; Shi, Q.-S.; Wang, Q. Potassic volcanic rocks and adakitic intrusions in southern Tibet: Insights into mantle–crust interaction and mass transfer from Indian plate. Lithos 2017, 268, 48–64. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Li, X.; Chi, G.; Song, H.; Xu, Z.; Zhao, F. Petrogenesis and Geodynamic Mechanisms of Porphyry Copper Deposits in a Collisional Setting: A Case from an Oligocene Porphyry Cu (Au) Deposit in Western Yangtze Craton, SW China. Minerals 2024, 14, 874. https://doi.org/10.3390/min14090874
Yang M, Li X, Chi G, Song H, Xu Z, Zhao F. Petrogenesis and Geodynamic Mechanisms of Porphyry Copper Deposits in a Collisional Setting: A Case from an Oligocene Porphyry Cu (Au) Deposit in Western Yangtze Craton, SW China. Minerals. 2024; 14(9):874. https://doi.org/10.3390/min14090874
Chicago/Turabian StyleYang, Mimi, Xingyuan Li, Guoxiang Chi, Hao Song, Zhengqi Xu, and Fufeng Zhao. 2024. "Petrogenesis and Geodynamic Mechanisms of Porphyry Copper Deposits in a Collisional Setting: A Case from an Oligocene Porphyry Cu (Au) Deposit in Western Yangtze Craton, SW China" Minerals 14, no. 9: 874. https://doi.org/10.3390/min14090874
APA StyleYang, M., Li, X., Chi, G., Song, H., Xu, Z., & Zhao, F. (2024). Petrogenesis and Geodynamic Mechanisms of Porphyry Copper Deposits in a Collisional Setting: A Case from an Oligocene Porphyry Cu (Au) Deposit in Western Yangtze Craton, SW China. Minerals, 14(9), 874. https://doi.org/10.3390/min14090874