Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = ozone plant protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4304 KiB  
Article
Design and Performance Evaluation of a Multi-Fluid Swirling Mixing Atomizer for Efficient Generation of Ozonated Droplets in Agricultural Applications
by Xinkang Hu, Bo Zhang, Xiaohong Xu, Zhongwei Chang, Xu Wang and Chundu Wu
Agronomy 2025, 15(5), 1082; https://doi.org/10.3390/agronomy15051082 - 29 Apr 2025
Cited by 1 | Viewed by 440
Abstract
With the widespread application of ozone technology in agricultural plant protection, developing an ozonated water atomizer that integrates efficient mixing and precise spraying has been recognized as a significant challenge. Swirling flow is considered a method to enhance hydrodynamics and mass transfer in [...] Read more.
With the widespread application of ozone technology in agricultural plant protection, developing an ozonated water atomizer that integrates efficient mixing and precise spraying has been recognized as a significant challenge. Swirling flow is considered a method to enhance hydrodynamics and mass transfer in gas–liquid mixing. This study innovatively combines an axial nozzle with a swirling mixing chamber, utilizing the negative pressure generated by the high-speed central airflow at the nozzle throat as the driving force for swirling mixing and initial atomization, completing mass transfer and preliminary atomization before the formation of the mist, thereby improving gas–liquid contact and mass transfer efficiency. Through numerical simulations, the impact of geometric parameters at key locations on the internal flow of the atomizer was analyzed. The optimized inlet diameter of the atomizer was found to be 9 mm, with a throat length of 3 mm and a self-priming hole diameter of 1.5 mm. Experimental results on droplet size and ozone droplet concentration verified that at the optimal spraying pressure of 0.6 MPa, a concentration of up to 3.73 mg·L−1 with an average droplet size of 102 µm, evenly distributed, could be generated at a distance of 40 cm from the target. This work provides a technological framework for advancing precision ozone-based plant protection, aligning with global efforts to reduce agrochemical footprints through innovative application systems. It offers theoretical guidance and data support for the development and design of high-efficiency ozone atomizers in agricultural applications, aiming to minimize the use of agricultural chemicals and promote the growth of green plant protection technologies. Full article
Show Figures

Figure 1

16 pages, 22103 KiB  
Article
On the Effectiveness of Ozone Treatments: A Silver Bullet for Plant Health?
by Chiara Pastacaldi, Dario Gaudioso, Cosimo Beltrami, Benedetta Gunnella and Stefania Tegli
Agronomy 2025, 15(3), 567; https://doi.org/10.3390/agronomy15030567 - 25 Feb 2025
Cited by 1 | Viewed by 853
Abstract
The development of innovative and eco-friendly strategies to protect plant health is one of the main challenges for the agricultural sector to respond to the increasing global food demand. In this contest, ozone (O3) could be a promising sustainable alternative to [...] Read more.
The development of innovative and eco-friendly strategies to protect plant health is one of the main challenges for the agricultural sector to respond to the increasing global food demand. In this contest, ozone (O3) could be a promising sustainable alternative to current pesticides, since it is a powerful oxidizing agent and does not leave residues in the environment. However, the molecular mechanisms involved in its potential bioactivity as a plant defense inducer are still poorly known. Thus, this study aimed to understand the role of O3 in plant defenses, as well as in plant growth, development and physiology, by a multidisciplinary approach. Here, O3 was applied as ozonated water to the soil in field experiments or to the nutrient solution of hydroponically grown plants. Experiments were carried out on different plant species, including the model plant Nicotiana tabacum and agronomically important crops such as lettuce, bean, and tomato. The analysis of several physiological parameters, such as plant weight, chlorophyll content, and stomatal conductance, indicated that O3 effects are species-specific. Moreover, the expression analysis of specific defense-related genes showed that O3 induced substantial changes in key hormonal and defense signaling pathways. Overall, O3 was demonstrated to trigger plant defenses, mainly mediated by pathogenesis-related proteins, mimicking a pathogen attack. Full article
Show Figures

Figure 1

19 pages, 7476 KiB  
Article
Cyclic and Multi-Year Characterization of Surface Ozone at the WMO/GAW Coastal Station of Lamezia Terme (Calabria, Southern Italy): Implications for Local Environment, Cultural Heritage, and Human Health
by Francesco D’Amico, Daniel Gullì, Teresa Lo Feudo, Ivano Ammoscato, Elenio Avolio, Mariafrancesca De Pino, Paolo Cristofanelli, Maurizio Busetto, Luana Malacaria, Domenico Parise, Salvatore Sinopoli, Giorgia De Benedetto and Claudia Roberta Calidonna
Environments 2024, 11(10), 227; https://doi.org/10.3390/environments11100227 - 17 Oct 2024
Cited by 9 | Viewed by 1839
Abstract
Unlike stratospheric ozone (O3), which is beneficial for Earth due to its capacity to screen the surface from solar ultraviolet radiation, tropospheric ozone poses a number of health and environmental issues. It has multiple effects that drive anthropogenic climate change, ranging [...] Read more.
Unlike stratospheric ozone (O3), which is beneficial for Earth due to its capacity to screen the surface from solar ultraviolet radiation, tropospheric ozone poses a number of health and environmental issues. It has multiple effects that drive anthropogenic climate change, ranging from pure radiative forcing to a reduction of carbon sequestration potential in plants. In the central Mediterranean, which itself represents a hotspot for climate studies, multi-year data on surface ozone were analyzed at the Lamezia Terme (LMT) WMO/GAW coastal observation site, located in Calabria, Southern Italy. The site is characterized by a local wind circulation pattern that results in a clear differentiation between Western-seaside winds, which are normally depleted in pollutants and GHGs, and Northeastern-continental winds, which are enriched in these compounds. This study is the first detailed attempt at evaluating ozone concentrations at LMT and their correlations with meteorological parameters, providing new insights into the source of locally observed tropospheric ozone mole fractions. This research shows that surface ozone daily and seasonal patterns at LMT are “reversed” compared to the patterns observed by comparable studies applied to other parameters and compounds, thus confirming the general complexity of anthropogenic emissions into the atmosphere and their numerous effects on atmospheric chemistry. These observations could contribute to the monitoring and verification of new regulations and policies on environmental protection, cultural heritage preservation, and the mitigation of human health hazards in Calabria. Full article
(This article belongs to the Special Issue Advances in Urban Air Pollution: 2nd Edition)
Show Figures

Figure 1

13 pages, 2003 KiB  
Article
Modification of Fungicide Treatment Needs and Antioxidant Content as a Result of Real-Time Ozonation of Raspberry Plants
by Natalia Matłok, Tomasz Piechowiak, Małgorzata Szostek, Maciej Kuboń, Pavel Neuberger, Ireneusz Kapusta and Maciej Balawejder
Molecules 2024, 29(16), 3949; https://doi.org/10.3390/molecules29163949 - 21 Aug 2024
Cited by 2 | Viewed by 1057
Abstract
Raspberry plants need intensive anti-fungal protection. A solution to this problem could be the application of an ozonation process. For this purpose, a technical solution was proposed and implemented in raspberry plant production. The proposal suggests replacing 25% of standard fungicide treatments with [...] Read more.
Raspberry plants need intensive anti-fungal protection. A solution to this problem could be the application of an ozonation process. For this purpose, a technical solution was proposed and implemented in raspberry plant production. The proposal suggests replacing 25% of standard fungicide treatments with ozonation. It was demonstrated that the use of ozone under the proposed conditions made it possible to maintain stable parameters of chlorophyll content and fluorescence (no significant differences), but the intensity of gas exchange was increased. The greatest differences were observed in the second measurement period (T2), when the plants were in the stage of most active development. Additionally, the content and profile of low-molecular-weight antioxidants and the microbial load were determined in the collected fruits. In periods T2 and T3, the proposed method caused a reduction reaching ~2 log cfu g−1 in the microbial content of raspberry fruits. It was shown that ozone treatment intensified the biosynthesis of low-molecular-weight antioxidants in fruit (increasing the total polyphenol content by more than 20%). The proposed scheme allows a 25% reduction in standard fungicide treatments while maintaining the health of cultivated raspberry plants. The reduction in fungicide use aligns with the EU regulations and produces fruit with better quality. Full article
Show Figures

Figure 1

23 pages, 5735 KiB  
Article
UV-B Stress-Triggered Amino Acid Reprogramming and ABA-Mediated Hormonal Crosstalk in Rhododendron chrysanthum Pall.
by Wang Yu, Xiangru Zhou, Hongwei Xu and Xiaofu Zhou
Plants 2024, 13(16), 2232; https://doi.org/10.3390/plants13162232 - 12 Aug 2024
Cited by 2 | Viewed by 2084
Abstract
Increased UV-B radiation due to ozone depletion adversely affects plants. This study focused on the metabolite dynamics of Rhododendron chrysanthum Pall. (R. chrysanthum) and the role of ABA in mitigating UV-B stress. Chlorophyll fluorescence metrics indicated that both JA and ABA [...] Read more.
Increased UV-B radiation due to ozone depletion adversely affects plants. This study focused on the metabolite dynamics of Rhododendron chrysanthum Pall. (R. chrysanthum) and the role of ABA in mitigating UV-B stress. Chlorophyll fluorescence metrics indicated that both JA and ABA increased UV-B resistance; however, the effect of JA was not as strong as that of ABA. Metabolomic analysis using UPLC−MS/MS (ultra-performance liquid chromatography and tandem mass spectrometry) revealed significant fluctuations in metabolites under UV-B and ABA application. UV-B decreased amino acids and increased phenolics, suggesting antioxidant defense activation. ABA treatment upregulated lipids and phenolic acids, highlighting its protective role. Multivariate analysis showed distinct metabolic clusters and pathways responding to UV-B and ABA, which impacted amino acid metabolism and hormone signal transduction. Exogenous ABA negatively regulated the JA signaling pathway in UV-B-exposed R. chrysanthum, as shown by KEGG enrichment. This study deepens understanding of plant stress-tolerance mechanisms and has implications for enhancing plant stress tolerance through metabolic and hormonal interventions. Full article
(This article belongs to the Special Issue The Physiology of Abiotic Stress in Plants)
Show Figures

Figure 1

25 pages, 4111 KiB  
Review
Global Trends in the Research and Development of Petrochemical Waste Gas from 1981 to 2022
by Mengting Wu, Wei Liu, Zhifei Ma, Tian Qin, Zhiqin Chen, Yalan Zhang, Ning Cao, Xianchuan Xie, Sunlin Chi, Jinying Xu and Yi Qi
Sustainability 2024, 16(14), 5972; https://doi.org/10.3390/su16145972 - 12 Jul 2024
Cited by 4 | Viewed by 2508
Abstract
As a highly energy-intensive and carbon-emitting industry with significant emissions of volatile organic compounds (VOCs), the petroleum and chemical industry is a major contributor to the global greenhouse effect and ozone layer destruction. Improper treatment of petrochemical waste gas (PWG) seriously harms human [...] Read more.
As a highly energy-intensive and carbon-emitting industry with significant emissions of volatile organic compounds (VOCs), the petroleum and chemical industry is a major contributor to the global greenhouse effect and ozone layer destruction. Improper treatment of petrochemical waste gas (PWG) seriously harms human health and the natural environment. This study uses CiteSpace and VOSviewer to conduct a scientometric analysis of 1384 scholarly works on PWG and carbon sequestration published between 1981 and 2022, revealing the basic characteristics, knowledge base, research topic evolution, and research hotspots of the field. The results show the following: (1) In the early stages of the petrochemical industry, it was processed tail gas, plant leakage waste gas, and combustion flue gas that were investigated in PWG research. (2) Later, green environmental protection technology was widely studied in the field of PWG treatment, such as biotechnology, catalytic oxidation technology, membrane separation technology, etc., in order to achieve efficient, low energy consumption and low emissions of waste gas treatment, and the number of publications related to this topic has increased rapidly. In addition, researchers studied the internet of things and technology integration, such as the introduction of artificial intelligence, big data analysis, and other technologies, to improve the accuracy and efficiency of exhaust gas monitoring, control, and management. (3) The department has focused on how to reduce emissions by optimizing petrochemical process lines or improving energy efficiency. Emission reduction and low-carbon transition in the petrochemical industry will become the main trend in the future. Switching from renewable carbon to feedstock carbon derived from captured carbon dioxide, biomass, or recycled chemicals has become an attractive strategy to help curb emissions from the chemical industry. The results of our analysis can provide funding agencies and research groups with information to better understand the global trends and directions that have emerged in this field from 1981 to 2022 and serve as a reference for future research. Full article
Show Figures

Figure 1

14 pages, 5595 KiB  
Article
Foliar Application of Wood Distillate Protects Basil Plants against Ozone Damage by Preserving Membrane Integrity and Triggering Antioxidant Mechanisms
by Gemma Bianchi, Riccardo Fedeli, Lorenzo Mariotti, Claudia Pisuttu, Cristina Nali, Elisa Pellegrini and Stefano Loppi
Agronomy 2024, 14(6), 1233; https://doi.org/10.3390/agronomy14061233 - 6 Jun 2024
Cited by 5 | Viewed by 1917
Abstract
Ozone (O3) pollution is a critical issue for human health, crop yield, vegetation growth biodiversity, and food safety. Several protection strategies from O3-induced injuries have been proposed for crops. Here, we investigated if the foliar application of wood distillate [...] Read more.
Ozone (O3) pollution is a critical issue for human health, crop yield, vegetation growth biodiversity, and food safety. Several protection strategies from O3-induced injuries have been proposed for crops. Here, we investigated if the foliar application of wood distillate (WD), a plant-based biostimulant applied once a week (0.2%, v/v) for four consecutive weeks, could have a protective effect against the damage caused by chronic O3 concentrations (80 ppb O3, 5 h day−1 for 28 days) in basil plants (chosen as model horticultural plant). The results revealed that plants exposed to O3 showed severe chlorotic spots localized in the interveinal adaxial surface, chlorophyll loss (−25% compared to controls maintained in filtered air), and membrane impairment as indicated by the significant increase in malondialdehyde content (+62%). Conversely, plants exposed to O3 and treated with WD exhibited a reduction in visible injuries, preservation of membrane integrity, and production of antioxidant compounds such as abscisic and salicylic acids (+21 and +62%, respectively), suggesting a protective effect of WD. This research highlights new results regarding the efficacy of WD in mitigating the negative effects of O3-induced oxidative pressure in basil plants. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

16 pages, 4114 KiB  
Article
Wood Distillate Mitigates Ozone-Induced Visible and Photosynthetic Plant Damage: Evidence from Ozone-Sensitive Tobacco (Nicotiana tabacum L.) BelW3
by Andrea Vannini and Alessandro Petraglia
Horticulturae 2024, 10(5), 480; https://doi.org/10.3390/horticulturae10050480 - 7 May 2024
Cited by 1 | Viewed by 1564 | Correction
Abstract
The use of wood distillate (WD) is emerging as a valuable strategy for protecting horticultural crops from the oxidizing effects of ozone (O3). To fully understand its effectiveness, extensive testing on different plant species is needed. As a viable interim measure, [...] Read more.
The use of wood distillate (WD) is emerging as a valuable strategy for protecting horticultural crops from the oxidizing effects of ozone (O3). To fully understand its effectiveness, extensive testing on different plant species is needed. As a viable interim measure, an assessment of WD efficacy in model plants can be made until species-specific results become available. The aim of this study is to evaluate the ability of WD to protect the ozone-sensitive tobacco plant (Nicotiana tabacum L.) BelW3 from the oxidizing effects of O3, using the ozone-resistant tobacco plant BelB as a benchmark. The protective effect was evaluated during treatment applications and three weeks after these were completed. Ten BelW3 and five BelB plants were grown just outside Parma from June to October 2023, a period when average maximum O3 concentrations were approximately 61 ppb. Starting from July, five BelW3 plants were sprayed weekly with WD at 0.2% for two months. Morphometric and photosynthetic measurements were then taken after six and 11 weeks from the beginning of treatments and three weeks after the end to assess protection persistence (if any). BelW3 showed a significant effect of O3 compared to BelB plants for both morphometric and photosynthetic measurements, exhibiting increased necrotic areas on the leaf blade, reduced number of viable leaves, reduced average plant height, together with reduced chlorophyll content and impaired photosynthetic system functionality. BelW3 plants also showed a significant decrease in the efficiency of parameters related to PSII and PSI when compared to BelB. Wood distillate application, however, successfully mitigated O3 effects on BelW3, as revealed by morphometric and photosynthetic values, which were in line with those observed in BelB. Notably, WD protective effect persisted 3 weeks after treatment cessation, highlighting the short-term protective capacity of the distillate against the oxidative action of O3. Full article
Show Figures

Graphical abstract

32 pages, 1105 KiB  
Review
Selected Micropollutant Removal from Municipal Wastewater
by Ján Derco, Andreja Žgajnar Gotvajn, Patrícia Guľašová, Nikola Šoltýsová and Angelika Kassai
Processes 2024, 12(5), 888; https://doi.org/10.3390/pr12050888 - 27 Apr 2024
Cited by 5 | Viewed by 2888
Abstract
Micropollutants belong to various groups of chemicals. One of the most diverse and large group of them are pharmaceuticals. The presence of pharmaceutical residues in wastewater poses a significant challenge to water quality and environmental health. This paper provides an overview of recent [...] Read more.
Micropollutants belong to various groups of chemicals. One of the most diverse and large group of them are pharmaceuticals. The presence of pharmaceutical residues in wastewater poses a significant challenge to water quality and environmental health. This paper provides an overview of recent advancements in the removal of pharmaceuticals from water, focusing on various treatment processes and their effectiveness in eliminating micropollutants. Through a review of the literature, including studies on ozonation, UV irradiation, sulfate radical-based technologies, and photocatalytic processes, insights into degradation mechanisms and optimal conditions for their removal are synthesized. Additionally, with new legislation mandating the monitoring of selected micropollutants and the implementation of quaternary treatment in wastewater treatment plants, the paper discusses prospects for future research and recommendations for effective pharmaceutical removal. Key actions include conducting comprehensive laboratory and pilot trials, implementing quaternary treatment of wastewater, continuously monitoring water quality, investing in research and development, and promoting collaboration and knowledge sharing among stakeholders. By embracing these strategies, we can work towards safeguarding water resources and protecting public health from the adverse effects of pharmaceutical contamination. Full article
Show Figures

Figure 1

12 pages, 1270 KiB  
Article
Preliminary Tests of Tomato Plant Protection Method with Ozone Gas Fumigation Supported with Hydrogen Peroxide Solution and Its Effect on Some Fruit Parameters
by Miłosz Zardzewiały, Natalia Matłok, Tomasz Piechowiak, Bogdan Saletnik, Maciej Balawejder and Józef Gorzelany
Sustainability 2024, 16(8), 3481; https://doi.org/10.3390/su16083481 - 22 Apr 2024
Cited by 5 | Viewed by 2073
Abstract
The aim of this research was to determine the impact of hydrogen peroxide spraying and ozone gas fumigation during the growing season of tomato plants grown under cover on the mechanical and chemical parameters of fruit harvested from these plants. Tomato plants were [...] Read more.
The aim of this research was to determine the impact of hydrogen peroxide spraying and ozone gas fumigation during the growing season of tomato plants grown under cover on the mechanical and chemical parameters of fruit harvested from these plants. Tomato plants were grown under cover in accordance with the principles of good agricultural practice in the soil and climatic conditions of southeastern Poland. During the growing season, tomato fruits were collected for testing in order to determine the impact of the applied variable factors on the modification of selected metabolic pathways of bioactive compounds. As part of the tests on the chemical properties of the fruits, the content of ascorbic acid, the total content of polyphenols, and the antioxidant potential were determined. Additionally, the influence of the tested variable factors on the mechanical properties of tomato fruits was determined. In the case of the total polyphenol content, the most beneficial effects were observed for fruits collected from plants treated with ozonation at a dose of 2 ppm for 3 min and spraying the plants with 1% hydrogen peroxide. The highest antioxidant potential was recorded for fruits of the variants ozonated with doses of 2 ppm for 1 min, 2 ppm for 1.5 min, and 2 ppm for 3 min compared to the remaining variants and controls. In turn, the vitamin C content increased significantly in the tested fruits after the ozonation of plants with a dose of 2 ppm for 1 min and ozonation with a dose of 2 ppm for 3 min combined with spraying plants with 3% hydrogen peroxide. In the case of the mechanical properties of tomato fruits, only the ozonation dose of 2 ppm for 3 min significantly improved them. Full article
Show Figures

Figure 1

17 pages, 3190 KiB  
Review
The Anticancer Activities of Natural Terpenoids That Inhibit Both Melanoma and Non-Melanoma Skin Cancers
by Ye Eun Yoon, Young Jae Jung and Sung-Joon Lee
Int. J. Mol. Sci. 2024, 25(8), 4423; https://doi.org/10.3390/ijms25084423 - 17 Apr 2024
Cited by 10 | Viewed by 3117
Abstract
The prevalence of two major types of skin cancer, melanoma and non-melanoma skin cancer, has been increasing worldwide. Skin cancer incidence is estimated to rise continuously over the next 20 years due to ozone depletion and an increased life expectancy. Chemotherapeutic agents could [...] Read more.
The prevalence of two major types of skin cancer, melanoma and non-melanoma skin cancer, has been increasing worldwide. Skin cancer incidence is estimated to rise continuously over the next 20 years due to ozone depletion and an increased life expectancy. Chemotherapeutic agents could affect healthy cells, and thus may be toxic to them and cause numerous side effects or drug resistance. Phytochemicals that are naturally occurring in fruits, plants, and herbs are known to possess various bioactive properties, including anticancer properties. Although the effects of phytochemicals are relatively milder than chemotherapeutic agents, the long-term intake of phytochemicals may be effective and safe in preventing tumor development in humans. Diverse phytochemicals have shown anti-tumorigenic activities for either melanoma or non-melanoma skin cancer. In this review, we focused on summarizing recent research findings of the natural and dietary terpenoids (eucalyptol, eugenol, geraniol, linalool, and ursolic acid) that have anticancer activities for both melanoma and non-melanoma skin cancers. These terpenoids may be helpful to protect skin collectively to prevent tumorigenesis of both melanoma and nonmelanoma skin cancers. Full article
(This article belongs to the Special Issue Molecular Research and New Therapy in Melanoma and Other Skin Cancers)
Show Figures

Figure 1

9 pages, 2567 KiB  
Communication
New Hybrid Ethylenediurea (EDU) Derivatives and Their Phytoactivity
by Maxim S. Oshchepkov, Leonid V. Kovalenko, Antonida V. Kalistratova, Sergey V. Tkachenko, Olga N. Gorunova, Nataliya A. Bystrova and Konstantin A. Kochetkov
Int. J. Mol. Sci. 2024, 25(6), 3335; https://doi.org/10.3390/ijms25063335 - 15 Mar 2024
Cited by 2 | Viewed by 1216
Abstract
Natural and synthetic phytohormones are widely used in agriculture. The synthetic cytokinin ethylenediurea (EDU) induces protection in plants against ozone phytotoxicity. In our study, new hybrid derivatives of EDU were synthesized and tested for phytoactivity. The germination potential (Gp), germination of seeds (G), [...] Read more.
Natural and synthetic phytohormones are widely used in agriculture. The synthetic cytokinin ethylenediurea (EDU) induces protection in plants against ozone phytotoxicity. In our study, new hybrid derivatives of EDU were synthesized and tested for phytoactivity. The germination potential (Gp), germination of seeds (G), and relative water content in leaves (RWC), characterizing the drought resistance of plants, were determined. The results of laboratory studies showed that EDU and its hybrid derivatives have a positive effect on root length, the growth and development of shoots, as well as the ability of plants to tolerate stress caused by a lack of water. Full article
Show Figures

Graphical abstract

27 pages, 19893 KiB  
Article
Abscisic Acid Affects Phenolic Acid Content to Increase Tolerance to UV-B Stress in Rhododendron chrysanthum Pall.
by Xiangru Zhou, Fushuai Gong, Jiawei Dong, Xiaoru Lin, Kun Cao, Hongwei Xu and Xiaofu Zhou
Int. J. Mol. Sci. 2024, 25(2), 1234; https://doi.org/10.3390/ijms25021234 - 19 Jan 2024
Cited by 13 | Viewed by 1945
Abstract
The presence of the ozone hole increases the amount of UV radiation reaching a plant’s surface, and UV-B radiation is an abiotic stress capable of affecting plant growth. Rhododendron chrysanthum Pall. (R. chrysanthum) grows in alpine regions, where strong UV-B radiation [...] Read more.
The presence of the ozone hole increases the amount of UV radiation reaching a plant’s surface, and UV-B radiation is an abiotic stress capable of affecting plant growth. Rhododendron chrysanthum Pall. (R. chrysanthum) grows in alpine regions, where strong UV-B radiation is present, and has been able to adapt to strong UV-B radiation over a long period of evolution. We investigated the response of R. chrysanthum leaves to UV-B radiation using widely targeted metabolomics and transcriptomics. Although phytohormones have been studied for many years in plant growth and development and adaptation to environmental stresses, this paper is innovative in terms of the species studied and the methods used. Using unique species and the latest research methods, this paper was able to add information to this topic for the species R. chrysanthum. We treated R. chrysanthum grown in a simulated alpine environment, with group M receiving no UV-B radiation and groups N and Q (externally applied abscisic acid treatment) receiving UV-B radiation for 2 days (8 h per day). The results of the MN group showed significant changes in phenolic acid accumulation and differential expression of genes related to phenolic acid synthesis in leaves of R. chrysanthum after UV-B radiation. We combined transcriptomics and metabolomics data to map the metabolic regulatory network of phenolic acids under UV-B stress in order to investigate the response of such secondary metabolites to stress. L-phenylalanine, L-tyrosine and phenylpyruvic acid contents in R. chrysanthum were significantly increased after UV-B radiation. Simultaneously, the levels of 3-hydroxyphenylacetic acid, 2-phenylethanol, anthranilate, 2-hydroxycinnamic acid, 3-hydroxycinnamic acid, α-hydroxycinnamic acid and 2-hydroxy-3-phenylpropanoic acid in this pathway were elevated in response to UV-B stress. In contrast, the study in the NQ group found that externally applied abscisic acid (ABA) in R. chrysanthum had greater tolerance to UV-B radiation, and phenolic acid accumulation under the influence of ABA also showed greater differences. The contents of 2-phenylethanol, 1-o-p-coumaroyl-β-d-glucose, 2-hydroxy-3-phenylpropanoic acid, 3-(4-hydroxyphenyl)-propionic acid and 3-o-feruloylquinic ac-id-o-glucoside were significantly elevated in R. chrysanthum after external application of ABA to protect against UV-B stress. Taken together, these studies of the three groups indicated that ABA can influence phenolic acid production to promote the response of R. chrysanthum to UV-B stress, which provided a theoretical reference for the study of its complex molecular regulatory mechanism. Full article
Show Figures

Figure 1

14 pages, 2825 KiB  
Article
A Desktop Assessment of Ozone Micro-Nanobubble Technology for Algae and PFAS Removal from Surface Water Bodies Using Open-Source Water Quality Data
by Soheil Aber, Rachelle Aguada, Randimal Marasinghe, Christopher W. K. Chow, Raufdeen Rameezdeen and Ke Xing
Sustainability 2024, 16(2), 668; https://doi.org/10.3390/su16020668 - 12 Jan 2024
Cited by 3 | Viewed by 4076
Abstract
Ozone is an excellent oxidant and helps in breaking down both organic and inorganic compounds; this effect is further enhanced when it decomposes into hydroxyl radicals. Several studies confirm the good performance of ozonation and micro-nanobubble technology in eradicating algae and per- and [...] Read more.
Ozone is an excellent oxidant and helps in breaking down both organic and inorganic compounds; this effect is further enhanced when it decomposes into hydroxyl radicals. Several studies confirm the good performance of ozonation and micro-nanobubble technology in eradicating algae and per- and poly-fluoroalkyl substances. However, very little is known about the application of ozone micro-nanobubble technology in small-scale treatment; hence, this research aims to assess the potential of this technology. A survey was performed to obtain the water quality parameters of some selected water bodies via relevant open-source databases. The water quality was compared against the Environmental Protection Authority (EPA) guidelines to identify those that did not meet the criteria and it was identified that 18% of the surface water bodies were below the recommended guidelines. The identified water sources were then used for the treatment simulation, which applies the literature-reported % removal of water quality parameters to predict the effectiveness of ozone micro-nanobubble technology for the selected water sources in this study. Furthermore, the time (dose) that is needed for the treatment using this technology was estimated based on the surface area of the water bodies. The scalability study was conducted to assess how many water bodies could be treated within a day using a 50 m3/h flow rate, which yielded a value of 27%. It was concluded that ozone micro-nanobubble technology can treat algae and per- and poly-fluoroalkyl substances in surface waters as part of their treatment process by reducing treatment frequency and environmental impacts. By observing the benefits of ozone micro-nanobubble technology, there is a considerable chance that the surface water bodies in the City of Salisbury and, therefore, other small-scale water treatment plants, will be healthier after undergoing this process. This study demonstrated the advantages of applying open-source water quality data as a quick approximation of the evaluation of new treatment techniques, which will help engineers to better predict the performance of the designed field trials. Full article
(This article belongs to the Special Issue Digitalization and Its Application of Sustainable Development)
Show Figures

Graphical abstract

12 pages, 1939 KiB  
Hypothesis
A Subsurface Stepping Stone Hypothesis for the Conquest of Land by Arthropods
by Amos Frumkin and Ariel D. Chipman
Diversity 2024, 16(1), 6; https://doi.org/10.3390/d16010006 - 22 Dec 2023
Cited by 1 | Viewed by 2975
Abstract
The conquest of land by arthropods is commonly believed to be a surface phenomenon associated with the arrival of photosynthetic plants, atmospheric oxygenation, and an ozone shield in the mid-Paleozoic Era. However, recent molecular and fossil evidence suggests terrestrial fauna may have first [...] Read more.
The conquest of land by arthropods is commonly believed to be a surface phenomenon associated with the arrival of photosynthetic plants, atmospheric oxygenation, and an ozone shield in the mid-Paleozoic Era. However, recent molecular and fossil evidence suggests terrestrial fauna may have first appeared in the Cambrian, before the proliferation of plants and ozone, which are thought to be essential for survival. This raises the question—how could arthropods survive on land without established plants and an ozone shield? We propose a hypothesis that chemolithoautotrophic cave ecosystems, independent of photosynthesis, may have served as a subsurface stepping stone, providing a possible explanation for the land invasion enigma. Chemolithoautrophic caves have offered abundant food and radiation protection, enabling ancient arthropods to evolve strategies to adapt to new frontiers through gradual dispersion from the sea to shielded cave waters, then to cave hygropetric margins of cave waters, and, finally, to the surface. Full article
Show Figures

Figure 1

Back to TopTop